640dea4d9d
Change-Id: Ieb7077ca3586b9491912027eed450a4f6fd38d30
265 lines
10 KiB
C
265 lines
10 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "./vpx_scale_rtcd.h"
|
|
#include "./vpx_config.h"
|
|
|
|
#include "vpx/vpx_integer.h"
|
|
|
|
#include "vp9/common/vp9_blockd.h"
|
|
#include "vp9/common/vp9_filter.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
|
|
|
|
void vp9_setup_interp_filters(MACROBLOCKD *xd,
|
|
INTERPOLATIONFILTERTYPE mcomp_filter_type,
|
|
VP9_COMMON *cm) {
|
|
if (xd->mode_info_context) {
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1,
|
|
cm->active_ref_scale);
|
|
}
|
|
|
|
switch (mcomp_filter_type) {
|
|
case EIGHTTAP:
|
|
case SWITCHABLE:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
|
|
break;
|
|
case EIGHTTAP_SMOOTH:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
|
|
break;
|
|
case EIGHTTAP_SHARP:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
|
|
break;
|
|
case BILINEAR:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
|
|
break;
|
|
}
|
|
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
|
|
}
|
|
|
|
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
|
|
uint8_t *dst, int dst_stride,
|
|
const MV *src_mv,
|
|
const struct scale_factors *scale,
|
|
int w, int h, int ref,
|
|
const struct subpix_fn_table *subpix,
|
|
enum mv_precision precision) {
|
|
const int is_q4 = precision == MV_PRECISION_Q4;
|
|
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row << 1,
|
|
is_q4 ? src_mv->col : src_mv->col << 1 };
|
|
const MV32 mv = scale->scale_mv(&mv_q4, scale);
|
|
const int subpel_x = mv.col & SUBPEL_MASK;
|
|
const int subpel_y = mv.row & SUBPEL_MASK;
|
|
|
|
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
|
|
scale->predict[subpel_x != 0][subpel_y != 0][ref](
|
|
src, src_stride, dst, dst_stride,
|
|
subpix->filter_x[subpel_x], scale->x_step_q4,
|
|
subpix->filter_y[subpel_y], scale->y_step_q4,
|
|
w, h);
|
|
}
|
|
|
|
static INLINE int round_mv_comp_q4(int value) {
|
|
return (value < 0 ? value - 2 : value + 2) / 4;
|
|
}
|
|
|
|
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
|
|
MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
|
|
mi->bmi[1].as_mv[idx].as_mv.row +
|
|
mi->bmi[2].as_mv[idx].as_mv.row +
|
|
mi->bmi[3].as_mv[idx].as_mv.row),
|
|
round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
|
|
mi->bmi[1].as_mv[idx].as_mv.col +
|
|
mi->bmi[2].as_mv[idx].as_mv.col +
|
|
mi->bmi[3].as_mv[idx].as_mv.col) };
|
|
return res;
|
|
}
|
|
|
|
// TODO(jkoleszar): yet another mv clamping function :-(
|
|
MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
|
|
int bw, int bh, int ss_x, int ss_y) {
|
|
// If the MV points so far into the UMV border that no visible pixels
|
|
// are used for reconstruction, the subpel part of the MV can be
|
|
// discarded and the MV limited to 16 pixels with equivalent results.
|
|
const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
|
|
const int spel_right = spel_left - SUBPEL_SHIFTS;
|
|
const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
|
|
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
|
|
MV clamped_mv = {
|
|
src_mv->row << (1 - ss_y),
|
|
src_mv->col << (1 - ss_x)
|
|
};
|
|
assert(ss_x <= 1);
|
|
assert(ss_y <= 1);
|
|
|
|
clamp_mv(&clamped_mv, (xd->mb_to_left_edge << (1 - ss_x)) - spel_left,
|
|
(xd->mb_to_right_edge << (1 - ss_x)) + spel_right,
|
|
(xd->mb_to_top_edge << (1 - ss_y)) - spel_top,
|
|
(xd->mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);
|
|
|
|
return clamped_mv;
|
|
}
|
|
|
|
struct build_inter_predictors_args {
|
|
MACROBLOCKD *xd;
|
|
int x, y;
|
|
};
|
|
|
|
static void build_inter_predictors(int plane, int block,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int pred_w, int pred_h,
|
|
void *argv) {
|
|
const struct build_inter_predictors_args* const arg = argv;
|
|
MACROBLOCKD *const xd = arg->xd;
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const int bwl = b_width_log2(bsize) - pd->subsampling_x;
|
|
const int bw = 4 << bwl;
|
|
const int bh = plane_block_height(bsize, pd);
|
|
const int x = 4 * (block & ((1 << bwl) - 1));
|
|
const int y = 4 * (block >> bwl);
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const int use_second_ref = mi->mbmi.ref_frame[1] > 0;
|
|
int ref;
|
|
|
|
assert(x < bw);
|
|
assert(y < bh);
|
|
assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw);
|
|
assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh);
|
|
|
|
for (ref = 0; ref < 1 + use_second_ref; ++ref) {
|
|
struct scale_factors *const scale = &xd->scale_factor[ref];
|
|
struct buf_2d *const pre_buf = &pd->pre[ref];
|
|
struct buf_2d *const dst_buf = &pd->dst;
|
|
|
|
const uint8_t *const pre = pre_buf->buf + scaled_buffer_offset(x, y,
|
|
pre_buf->stride, scale);
|
|
|
|
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
|
|
|
|
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
|
|
// same MV (the average of the 4 luma MVs) but we could do something
|
|
// smarter for non-4:2:0. Just punt for now, pending the changes to get
|
|
// rid of SPLITMV mode entirely.
|
|
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
|
|
? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
|
|
: mi_mv_pred_q4(mi, ref))
|
|
: mi->mbmi.mv[ref].as_mv;
|
|
|
|
// TODO(jkoleszar): This clamping is done in the incorrect place for the
|
|
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
|
|
// MV. Note however that it performs the subsampling aware scaling so
|
|
// that the result is always q4.
|
|
const MV res_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
|
|
pd->subsampling_x,
|
|
pd->subsampling_y);
|
|
|
|
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
|
|
vp9_build_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
|
|
&res_mv, scale,
|
|
4 << pred_w, 4 << pred_h, ref,
|
|
&xd->subpix, MV_PRECISION_Q4);
|
|
}
|
|
}
|
|
|
|
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
|
|
// calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for
|
|
// sizes smaller than 16x16 yet.
|
|
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int pred_w, int pred_h,
|
|
void *arg);
|
|
static INLINE void foreach_predicted_block_in_plane(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
|
|
foreach_predicted_block_visitor visit, void *arg) {
|
|
int i, x, y;
|
|
|
|
// block sizes in number of 4x4 blocks log 2 ("*_b")
|
|
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
|
|
// subsampled size of the block
|
|
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
|
|
|
|
// size of the predictor to use.
|
|
int pred_w, pred_h;
|
|
|
|
if (xd->mode_info_context->mbmi.sb_type < BLOCK_8X8) {
|
|
assert(bsize == BLOCK_8X8);
|
|
pred_w = 0;
|
|
pred_h = 0;
|
|
} else {
|
|
pred_w = bwl;
|
|
pred_h = bhl;
|
|
}
|
|
assert(pred_w <= bwl);
|
|
assert(pred_h <= bhl);
|
|
|
|
// visit each subblock in raster order
|
|
i = 0;
|
|
for (y = 0; y < 1 << bhl; y += 1 << pred_h) {
|
|
for (x = 0; x < 1 << bwl; x += 1 << pred_w) {
|
|
visit(plane, i, bsize, pred_w, pred_h, arg);
|
|
i += 1 << pred_w;
|
|
}
|
|
i += (1 << (bwl + pred_h)) - (1 << bwl);
|
|
}
|
|
}
|
|
|
|
static void build_inter_predictors_for_planes(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int mi_row, int mi_col,
|
|
int plane_from, int plane_to) {
|
|
int plane;
|
|
for (plane = plane_from; plane <= plane_to; ++plane) {
|
|
struct build_inter_predictors_args args = {
|
|
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
|
|
};
|
|
foreach_predicted_block_in_plane(xd, bsize, plane, build_inter_predictors,
|
|
&args);
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
|
|
}
|
|
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
|
|
MAX_MB_PLANE - 1);
|
|
}
|
|
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
|
|
MAX_MB_PLANE - 1);
|
|
}
|
|
|
|
// TODO(dkovalev: find better place for this function)
|
|
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
|
|
const int ref = cm->active_ref_idx[i];
|
|
struct scale_factors *const sf = &cm->active_ref_scale[i];
|
|
if (ref >= NUM_YV12_BUFFERS) {
|
|
vp9_zero(*sf);
|
|
} else {
|
|
YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
|
|
vp9_setup_scale_factors_for_frame(cm, sf,
|
|
fb->y_crop_width, fb->y_crop_height,
|
|
cm->width, cm->height);
|
|
|
|
if (vp9_is_scaled(sf))
|
|
vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y);
|
|
}
|
|
}
|
|
|