Files
vpx/av1/encoder/ransac.c
Sarah Parker efa6582235 Fix ransac random generator seeding
Ransac's get_rand_indices originally used rand_r seeded with the
same value every time, producing the same random sequence at every
iteration. This causes the global motion parameters to be slightly
less accurate because ransac cannot improve the model fit after
the first attempt.

Change-Id: Idca2f88468ea21d19ba41ab66e5a2744ee33aade
2016-10-18 16:14:46 -07:00

364 lines
13 KiB
C

/*
* (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "av1/encoder/ransac.h"
#define MAX_MINPTS 4
#define MAX_DEGENERATE_ITER 10
#define MINPTS_MULTIPLIER 5
////////////////////////////////////////////////////////////////////////////////
// ransac
typedef int (*IsDegenerateFunc)(double *p);
typedef void (*NormalizeFunc)(double *p, int np, double *T);
typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2);
typedef int (*FindTransformationFunc)(int points, double *points1,
double *points2, double *params);
typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points,
double *proj, const int n,
const int stride_points,
const int stride_proj);
static void project_points_double_translation(double *mat, double *points,
double *proj, const int n,
const int stride_points,
const int stride_proj) {
int i;
for (i = 0; i < n; ++i) {
const double x = *(points++), y = *(points++);
*(proj++) = x + mat[1];
*(proj++) = y + mat[0];
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static void project_points_double_rotzoom(double *mat, double *points,
double *proj, const int n,
const int stride_points,
const int stride_proj) {
int i;
for (i = 0; i < n; ++i) {
const double x = *(points++), y = *(points++);
*(proj++) = mat[3] * x + mat[2] * y + mat[1];
*(proj++) = -mat[2] * x + mat[3] * y + mat[0];
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static void project_points_double_affine(double *mat, double *points,
double *proj, const int n,
const int stride_points,
const int stride_proj) {
int i;
for (i = 0; i < n; ++i) {
const double x = *(points++), y = *(points++);
*(proj++) = mat[3] * x + mat[2] * y + mat[1];
*(proj++) = mat[4] * x + mat[5] * y + mat[0];
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static void project_points_double_homography(double *mat, double *points,
double *proj, const int n,
const int stride_points,
const int stride_proj) {
int i;
double x, y, Z;
for (i = 0; i < n; ++i) {
x = *(points++), y = *(points++);
Z = 1. / (mat[7] * x + mat[6] * y + 1);
*(proj++) = (mat[1] * x + mat[0] * y + mat[3]) * Z;
*(proj++) = (mat[2] * x + mat[4] * y + mat[4]) * Z;
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static int get_rand_indices(int npoints, int minpts, int *indices,
unsigned int *seed) {
int i, j;
int ptr = rand_r(seed) % npoints;
if (minpts > npoints) return 0;
indices[0] = ptr;
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
i = 1;
while (i < minpts) {
int index = rand_r(seed) % npoints;
while (index) {
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
for (j = 0; j < i; ++j) {
if (indices[j] == ptr) break;
}
if (j == i) index--;
}
indices[i++] = ptr;
}
return 1;
}
static int ransac(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params, const int minpts,
const int paramdim, IsDegenerateFunc is_degenerate,
NormalizeFunc normalize, DenormalizeFunc denormalize,
FindTransformationFunc find_transformation,
ProjectPointsDoubleFunc projectpoints) {
static const double INLIER_THRESHOLD_NORMALIZED = 0.1;
static const double INLIER_THRESHOLD_UNNORMALIZED = 1.0;
static const double PROBABILITY_REQUIRED = 0.9;
static const double EPS = 1e-12;
static const int MIN_TRIALS = 20;
const double inlier_threshold =
(normalize && denormalize ? INLIER_THRESHOLD_NORMALIZED
: INLIER_THRESHOLD_UNNORMALIZED);
int N = 10000, trial_count = 0;
int i;
int ret_val = 0;
unsigned int seed = (unsigned int)npoints;
int max_inliers = 0;
double best_variance = 0.0;
double params[MAX_PARAMDIM];
WarpedMotionParams wm;
double points1[2 * MAX_MINPTS];
double points2[2 * MAX_MINPTS];
int indices[MAX_MINPTS] = { 0 };
double *best_inlier_set1;
double *best_inlier_set2;
double *inlier_set1;
double *inlier_set2;
double *corners1;
double *corners2;
double *image1_coord;
int *inlier_mask;
double *cnp1, *cnp2;
double T1[9], T2[9];
*number_of_inliers = 0;
if (npoints < minpts * MINPTS_MULTIPLIER) {
printf("Cannot find motion with %d matches\n", npoints);
return 1;
}
memset(&wm, 0, sizeof(wm));
best_inlier_set1 =
(double *)aom_malloc(sizeof(*best_inlier_set1) * npoints * 2);
best_inlier_set2 =
(double *)aom_malloc(sizeof(*best_inlier_set2) * npoints * 2);
inlier_set1 = (double *)aom_malloc(sizeof(*inlier_set1) * npoints * 2);
inlier_set2 = (double *)aom_malloc(sizeof(*inlier_set2) * npoints * 2);
corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);
inlier_mask = (int *)aom_malloc(sizeof(*inlier_mask) * npoints);
if (!(best_inlier_set1 && best_inlier_set2 && inlier_set1 && inlier_set2 &&
corners1 && corners2 && image1_coord && inlier_mask)) {
ret_val = 1;
goto finish_ransac;
}
for (cnp1 = corners1, cnp2 = corners2, i = 0; i < npoints; ++i) {
*(cnp1++) = *(matched_points++);
*(cnp1++) = *(matched_points++);
*(cnp2++) = *(matched_points++);
*(cnp2++) = *(matched_points++);
}
matched_points -= 4 * npoints;
if (normalize && denormalize) {
normalize(corners1, npoints, T1);
normalize(corners2, npoints, T2);
}
while (N > trial_count) {
int num_inliers = 0;
double sum_distance = 0.0;
double sum_distance_squared = 0.0;
int degenerate = 1;
int num_degenerate_iter = 0;
while (degenerate) {
num_degenerate_iter++;
if (!get_rand_indices(npoints, minpts, indices, &seed)) {
ret_val = 1;
goto finish_ransac;
}
i = 0;
while (i < minpts) {
int index = indices[i];
// add to list
points1[i * 2] = corners1[index * 2];
points1[i * 2 + 1] = corners1[index * 2 + 1];
points2[i * 2] = corners2[index * 2];
points2[i * 2 + 1] = corners2[index * 2 + 1];
i++;
}
degenerate = is_degenerate(points1);
if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
ret_val = 1;
goto finish_ransac;
}
}
if (find_transformation(minpts, points1, points2, params)) {
trial_count++;
continue;
}
projectpoints(params, corners1, image1_coord, npoints, 2, 2);
for (i = 0; i < npoints; ++i) {
double dx = image1_coord[i * 2] - corners2[i * 2];
double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
double distance = sqrt(dx * dx + dy * dy);
inlier_mask[i] = distance < inlier_threshold;
if (inlier_mask[i]) {
inlier_set1[num_inliers * 2] = corners1[i * 2];
inlier_set1[num_inliers * 2 + 1] = corners1[i * 2 + 1];
inlier_set2[num_inliers * 2] = corners2[i * 2];
inlier_set2[num_inliers * 2 + 1] = corners2[i * 2 + 1];
num_inliers++;
sum_distance += distance;
sum_distance_squared += distance * distance;
}
}
if (num_inliers >= max_inliers) {
double mean_distance = sum_distance / ((double)num_inliers);
double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
mean_distance * mean_distance * ((double)num_inliers) /
((double)num_inliers - 1.0);
if ((num_inliers > max_inliers) ||
(num_inliers == max_inliers && variance < best_variance)) {
best_variance = variance;
max_inliers = num_inliers;
memcpy(best_params, params, paramdim * sizeof(*best_params));
memcpy(best_inlier_set1, inlier_set1,
num_inliers * 2 * sizeof(*best_inlier_set1));
memcpy(best_inlier_set2, inlier_set2,
num_inliers * 2 * sizeof(*best_inlier_set2));
memcpy(best_inlier_mask, inlier_mask,
npoints * sizeof(*best_inlier_mask));
if (num_inliers > 0) {
double fracinliers = (double)num_inliers / (double)npoints;
double pNoOutliers = 1 - pow(fracinliers, minpts);
int temp;
pNoOutliers = fmax(EPS, pNoOutliers);
pNoOutliers = fmin(1 - EPS, pNoOutliers);
temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
if (temp > 0 && temp < N) {
N = AOMMAX(temp, MIN_TRIALS);
}
}
}
}
trial_count++;
}
find_transformation(max_inliers, best_inlier_set1, best_inlier_set2,
best_params);
if (normalize && denormalize) {
denormalize(best_params, T1, T2);
}
*number_of_inliers = max_inliers;
finish_ransac:
aom_free(best_inlier_set1);
aom_free(best_inlier_set2);
aom_free(inlier_set1);
aom_free(inlier_set2);
aom_free(corners1);
aom_free(corners2);
aom_free(image1_coord);
aom_free(inlier_mask);
return ret_val;
}
static int is_collinear3(double *p1, double *p2, double *p3) {
static const double collinear_eps = 1e-3;
const double v =
(p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
return fabs(v) < collinear_eps;
}
static int is_degenerate_translation(double *p) {
return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
}
static int is_degenerate_affine(double *p) {
return is_collinear3(p, p + 2, p + 4);
}
static int is_degenerate_homography(double *p) {
return is_collinear3(p, p + 2, p + 4) || is_collinear3(p, p + 2, p + 6) ||
is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6);
}
int ransac_translation(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, 2, is_degenerate_translation,
NULL, // normalize_homography,
NULL, // denormalize_rotzoom,
find_translation, project_points_double_translation);
}
int ransac_rotzoom(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, 4, is_degenerate_affine,
NULL, // normalize_homography,
NULL, // denormalize_rotzoom,
find_rotzoom, project_points_double_rotzoom);
}
int ransac_affine(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, 6, is_degenerate_affine,
NULL, // normalize_homography,
NULL, // denormalize_affine,
find_affine, project_points_double_affine);
}
int ransac_homography(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *best_params) {
const int result =
ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 4, 8, is_degenerate_homography,
NULL, // normalize_homography,
NULL, // denormalize_homography,
find_homography, project_points_double_homography);
if (!result) {
// normalize so that H33 = 1
int i;
const double m = 1.0 / best_params[8];
for (i = 0; i < 8; ++i) best_params[i] *= m;
best_params[8] = 1.0;
}
return result;
}