vpx/vp9/common/vp9_blockd.h
John Koleszar eb939f45b8 Spatial resamping of ZEROMV predictors
This patch allows coding frames using references of different
resolution, in ZEROMV mode. For compound prediction, either
reference may be scaled.

To test, I use the resize_test and enable WRITE_RECON_BUFFER
in vp9_onyxd_if.c. It's also useful to apply this patch to
test/i420_video_source.h:

  --- a/test/i420_video_source.h
  +++ b/test/i420_video_source.h
  @@ -93,6 +93,7 @@ class I420VideoSource : public VideoSource {

     virtual void FillFrame() {
       // Read a frame from input_file.
  +    if (frame_ != 3)
       if (fread(img_->img_data, raw_sz_, 1, input_file_) == 0) {
         limit_ = frame_;
       }

This forces the frame that the resolution changes on to be coded
with no motion, only scaling, and improves the quality of the
result.

Change-Id: I1ee75d19a437ff801192f767fd02a36bcbd1d496
2013-02-26 23:54:23 -08:00

639 lines
18 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
void vpx_log(const char *format, ...);
#include "./vpx_config.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_convolve.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_treecoder.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#define TRUE 1
#define FALSE 0
// #define MODE_STATS
/*#define DCPRED 1*/
#define DCPREDSIMTHRESH 0
#define DCPREDCNTTHRESH 3
#define MB_FEATURE_TREE_PROBS 3
#define PREDICTION_PROBS 3
#define MBSKIP_CONTEXTS 3
#define MAX_MB_SEGMENTS 4
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 4
/* Segment Feature Masks */
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_MV_REFS 9
#define MAX_MV_REF_CANDIDATES 4
typedef struct {
int r, c;
} POS;
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef struct {
ENTROPY_CONTEXT y1[4];
ENTROPY_CONTEXT u[2];
ENTROPY_CONTEXT v[2];
} ENTROPY_CONTEXT_PLANES;
#define VP9_COMBINEENTROPYCONTEXTS(Dest, A, B) \
Dest = ((A)!=0) + ((B)!=0);
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1
} FRAME_TYPE;
typedef enum
{
#if CONFIG_ENABLE_6TAP
SIXTAP,
#endif
EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR,
SWITCHABLE /* should be the last one */
} INTERPOLATIONFILTERTYPE;
typedef enum
{
DC_PRED, /* average of above and left pixels */
V_PRED, /* vertical prediction */
H_PRED, /* horizontal prediction */
D45_PRED, /* Directional 45 deg prediction [anti-clockwise from 0 deg hor] */
D135_PRED, /* Directional 135 deg prediction [anti-clockwise from 0 deg hor] */
D117_PRED, /* Directional 112 deg prediction [anti-clockwise from 0 deg hor] */
D153_PRED, /* Directional 157 deg prediction [anti-clockwise from 0 deg hor] */
D27_PRED, /* Directional 22 deg prediction [anti-clockwise from 0 deg hor] */
D63_PRED, /* Directional 67 deg prediction [anti-clockwise from 0 deg hor] */
TM_PRED, /* Truemotion prediction */
I8X8_PRED, /* 8x8 based prediction, each 8x8 has its own prediction mode */
B_PRED, /* block based prediction, each block has its own prediction mode */
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
SPLITMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
// Segment level features.
typedef enum {
SEG_LVL_ALT_Q = 0, // Use alternate Quantizer ....
SEG_LVL_ALT_LF = 1, // Use alternate loop filter value...
SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame
SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode
SEG_LVL_TRANSFORM = 4, // Block transform size.
SEG_LVL_MAX = 5 // Number of MB level features supported
} SEG_LVL_FEATURES;
// Segment level features.
typedef enum {
TX_4X4 = 0, // 4x4 dct transform
TX_8X8 = 1, // 8x8 dct transform
TX_16X16 = 2, // 16x16 dct transform
TX_SIZE_MAX_MB = 3, // Number of different transforms available
TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform
TX_SIZE_MAX_SB, // Number of transforms available to SBs
} TX_SIZE;
typedef enum {
DCT_DCT = 0, // DCT in both horizontal and vertical
ADST_DCT = 1, // ADST in vertical, DCT in horizontal
DCT_ADST = 2, // DCT in vertical, ADST in horizontal
ADST_ADST = 3 // ADST in both directions
} TX_TYPE;
#define VP9_YMODES (B_PRED + 1)
#define VP9_UV_MODES (TM_PRED + 1)
#define VP9_I8X8_MODES (TM_PRED + 1)
#define VP9_I32X32_MODES (TM_PRED + 1)
#define VP9_MVREFS (1 + SPLITMV - NEARESTMV)
#define WHT_UPSCALE_FACTOR 2
typedef enum {
B_DC_PRED, /* average of above and left pixels */
B_TM_PRED,
B_VE_PRED, /* vertical prediction */
B_HE_PRED, /* horizontal prediction */
B_LD_PRED,
B_RD_PRED,
B_VR_PRED,
B_VL_PRED,
B_HD_PRED,
B_HU_PRED,
#if CONFIG_NEWBINTRAMODES
B_CONTEXT_PRED,
#endif
LEFT4X4,
ABOVE4X4,
ZERO4X4,
NEW4X4,
B_MODE_COUNT
} B_PREDICTION_MODE;
#define VP9_BINTRAMODES (LEFT4X4)
#define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4)
#if CONFIG_NEWBINTRAMODES
/* The number of B_PRED intra modes that are replaced by B_CONTEXT_PRED */
#define CONTEXT_PRED_REPLACEMENTS 0
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES - 1)
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES - CONTEXT_PRED_REPLACEMENTS)
#else
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
#endif
typedef enum {
PARTITIONING_16X8 = 0,
PARTITIONING_8X16,
PARTITIONING_8X8,
PARTITIONING_4X4,
NB_PARTITIONINGS,
} SPLITMV_PARTITIONING_TYPE;
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
union b_mode_info {
struct {
B_PREDICTION_MODE first;
TX_TYPE tx_type;
#if CONFIG_NEWBINTRAMODES
B_PREDICTION_MODE context;
#endif
} as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
};
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
typedef enum {
BLOCK_SIZE_MB16X16 = 0,
BLOCK_SIZE_SB32X32 = 1,
BLOCK_SIZE_SB64X64 = 2,
} BLOCK_SIZE_TYPE;
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
#if CONFIG_COMP_INTERINTRA_PRED
MB_PREDICTION_MODE interintra_mode, interintra_uv_mode;
#endif
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
TX_SIZE txfm_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv, best_second_mv;
#if CONFIG_NEW_MVREF
int best_index, best_second_index;
#endif
int mb_mode_context[MAX_REF_FRAMES];
SPLITMV_PARTITIONING_TYPE partitioning;
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
unsigned char need_to_clamp_mvs;
unsigned char need_to_clamp_secondmv;
unsigned char segment_id; /* Which set of segmentation parameters should be used for this MB */
// Flags used for prediction status of various bistream signals
unsigned char seg_id_predicted;
unsigned char ref_predicted;
// Indicates if the mb is part of the image (1) vs border (0)
// This can be useful in determining whether the MB provides
// a valid predictor
unsigned char mb_in_image;
INTERPOLATIONFILTERTYPE interp_filter;
BLOCK_SIZE_TYPE sb_type;
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
union b_mode_info bmi[16];
} MODE_INFO;
typedef struct blockd {
int16_t *qcoeff;
int16_t *dqcoeff;
uint8_t *predictor;
int16_t *diff;
int16_t *dequant;
/* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */
uint8_t **base_pre;
uint8_t **base_second_pre;
int pre;
int pre_stride;
uint8_t **base_dst;
int dst;
int dst_stride;
int eob;
union b_mode_info bmi;
} BLOCKD;
typedef struct superblockd {
/* 32x32 Y and 16x16 U/V */
DECLARE_ALIGNED(16, int16_t, diff[32*32+16*16*2]);
DECLARE_ALIGNED(16, int16_t, qcoeff[32*32+16*16*2]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[32*32+16*16*2]);
} SUPERBLOCKD;
struct scale_factors {
int x_num;
int x_den;
int x_offset_q4;
int x_step_q4;
int y_num;
int y_den;
int y_offset_q4;
int y_step_q4;
convolve_fn_t predict[2][2][2]; // horiz, vert, avg
};
typedef struct macroblockd {
DECLARE_ALIGNED(16, int16_t, diff[384]); /* from idct diff */
DECLARE_ALIGNED(16, uint8_t, predictor[384]);
DECLARE_ALIGNED(16, int16_t, qcoeff[384]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[384]);
SUPERBLOCKD sb_coeff_data;
/* 16 Y blocks, 4 U, 4 V, each with 16 entries. */
BLOCKD block[24];
int fullpixel_mask;
YV12_BUFFER_CONFIG pre; /* Filtered copy of previous frame reconstruction */
YV12_BUFFER_CONFIG second_pre;
YV12_BUFFER_CONFIG dst;
struct scale_factors scale_factor[2];
struct scale_factors scale_factor_uv[2];
MODE_INFO *prev_mode_info_context;
MODE_INFO *mode_info_context;
int mode_info_stride;
FRAME_TYPE frame_type;
int up_available;
int left_available;
int right_available;
/* Y,U,V */
ENTROPY_CONTEXT_PLANES *above_context;
ENTROPY_CONTEXT_PLANES *left_context;
/* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */
unsigned char segmentation_enabled;
/* 0 (do not update) 1 (update) the macroblock segmentation map. */
unsigned char update_mb_segmentation_map;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char update_mb_segmentation_data;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char mb_segment_abs_delta;
/* Per frame flags that define which MB level features (such as quantizer or loop filter level) */
/* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */
// Probability Tree used to code Segment number
vp9_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS];
vp9_prob mb_segment_mispred_tree_probs[MAX_MB_SEGMENTS];
#if CONFIG_NEW_MVREF
vp9_prob mb_mv_ref_probs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES-1];
#endif
// Segment features
signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX];
unsigned int segment_feature_mask[MAX_MB_SEGMENTS];
/* mode_based Loop filter adjustment */
unsigned char mode_ref_lf_delta_enabled;
unsigned char mode_ref_lf_delta_update;
/* Delta values have the range +/- MAX_LOOP_FILTER */
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */
signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = BPRED, ZERO_MV, MV, SPLIT */
signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = BPRED, ZERO_MV, MV, SPLIT */
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
unsigned int frames_since_golden;
unsigned int frames_till_alt_ref_frame;
int lossless;
/* Inverse transform function pointers. */
void (*inv_txm4x4_1)(int16_t *input, int16_t *output, int pitch);
void (*inv_txm4x4)(int16_t *input, int16_t *output, int pitch);
void (*itxm_add)(int16_t *input, const int16_t *dq,
uint8_t *pred, uint8_t *output, int pitch, int stride);
void (*dc_only_itxm_add)(int input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr, int pitch, int stride);
void (*itxm_add_y_block)(int16_t *q, const int16_t *dq,
uint8_t *pre, uint8_t *dst, int stride, struct macroblockd *xd);
void (*itxm_add_uv_block)(int16_t *q, const int16_t *dq,
uint8_t *pre, uint8_t *dst_u, uint8_t *dst_v, int stride,
struct macroblockd *xd);
struct subpix_fn_table subpix;
int allow_high_precision_mv;
int corrupted;
int sb_index;
int mb_index; // Index of the MB in the SB (0..3)
int q_index;
} MACROBLOCKD;
#define ACTIVE_HT 110 // quantization stepsize threshold
#define ACTIVE_HT8 300
#define ACTIVE_HT16 300
// convert MB_PREDICTION_MODE to B_PREDICTION_MODE
static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) {
B_PREDICTION_MODE b_mode;
switch (mode) {
case DC_PRED:
b_mode = B_DC_PRED;
break;
case V_PRED:
b_mode = B_VE_PRED;
break;
case H_PRED:
b_mode = B_HE_PRED;
break;
case TM_PRED:
b_mode = B_TM_PRED;
break;
case D45_PRED:
b_mode = B_LD_PRED;
break;
case D135_PRED:
b_mode = B_RD_PRED;
break;
case D117_PRED:
b_mode = B_VR_PRED;
break;
case D153_PRED:
b_mode = B_HD_PRED;
break;
case D27_PRED:
b_mode = B_HU_PRED;
break;
case D63_PRED:
b_mode = B_VL_PRED;
break;
default :
// for debug purpose, to be removed after full testing
assert(0);
break;
}
return b_mode;
}
// transform mapping
static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) {
// map transform type
TX_TYPE tx_type;
switch (bmode) {
case B_TM_PRED :
case B_RD_PRED :
tx_type = ADST_ADST;
break;
case B_VE_PRED :
case B_VR_PRED :
tx_type = ADST_DCT;
break;
case B_HE_PRED :
case B_HD_PRED :
case B_HU_PRED :
tx_type = DCT_ADST;
break;
#if CONFIG_NEWBINTRAMODES
case B_CONTEXT_PRED:
assert(0);
break;
#endif
default :
tx_type = DCT_DCT;
break;
}
return tx_type;
}
extern const uint8_t vp9_block2left[TX_SIZE_MAX_SB][24];
extern const uint8_t vp9_block2above[TX_SIZE_MAX_SB][24];
#define USE_ADST_FOR_I16X16_8X8 0
#define USE_ADST_FOR_I16X16_4X4 0
#define USE_ADST_FOR_I8X8_4X4 1
#define USE_ADST_PERIPHERY_ONLY 1
static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, const BLOCKD *b) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
int ib = (int)(b - xd->block);
if (ib >= 16)
return tx_type;
if (xd->lossless)
return DCT_DCT;
// TODO(rbultje, debargha): Explore ADST usage for superblocks
if (xd->mode_info_context->mbmi.sb_type)
return tx_type;
if (xd->mode_info_context->mbmi.mode == B_PRED &&
xd->q_index < ACTIVE_HT) {
tx_type = txfm_map(
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.first == B_CONTEXT_PRED ? b->bmi.as_mode.context :
#endif
b->bmi.as_mode.first);
} else if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
xd->q_index < ACTIVE_HT) {
#if USE_ADST_FOR_I8X8_4X4
#if USE_ADST_PERIPHERY_ONLY
// Use ADST for periphery blocks only
int ic = (ib & 10);
b += ic - ib;
tx_type = (ic != 10) ?
txfm_map(pred_mode_conv((MB_PREDICTION_MODE)b->bmi.as_mode.first)) :
DCT_DCT;
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
} else if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT) {
#if USE_ADST_FOR_I16X16_4X4
#if USE_ADST_PERIPHERY_ONLY
// Use ADST for periphery blocks only
tx_type = (ib < 4 || ((ib & 3) == 0)) ?
txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)) : DCT_DCT;
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, const BLOCKD *b) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
int ib = (int)(b - xd->block);
if (ib >= 16)
return tx_type;
// TODO(rbultje, debargha): Explore ADST usage for superblocks
if (xd->mode_info_context->mbmi.sb_type)
return tx_type;
if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
xd->q_index < ACTIVE_HT8) {
// TODO(rbultje): MB_PREDICTION_MODE / B_PREDICTION_MODE should be merged
// or the relationship otherwise modified to address this type conversion.
tx_type = txfm_map(pred_mode_conv(
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
} else if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT8) {
#if USE_ADST_FOR_I8X8_4X4
#if USE_ADST_PERIPHERY_ONLY
// Use ADST for periphery blocks only
tx_type = (ib != 10) ?
txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)) : DCT_DCT;
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, const BLOCKD *b) {
TX_TYPE tx_type = DCT_DCT;
int ib = (int)(b - xd->block);
if (ib >= 16)
return tx_type;
// TODO(rbultje, debargha): Explore ADST usage for superblocks
if (xd->mode_info_context->mbmi.sb_type)
return tx_type;
if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT16) {
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
}
return tx_type;
}
static TX_TYPE get_tx_type(const MACROBLOCKD *xd, const BLOCKD *b) {
TX_TYPE tx_type = DCT_DCT;
int ib = (int)(b - xd->block);
if (ib >= 16)
return tx_type;
if (xd->mode_info_context->mbmi.txfm_size == TX_16X16) {
tx_type = get_tx_type_16x16(xd, b);
}
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
ib = (ib & 8) + ((ib & 4) >> 1);
tx_type = get_tx_type_8x8(xd, &xd->block[ib]);
}
if (xd->mode_info_context->mbmi.txfm_size == TX_4X4) {
tx_type = get_tx_type_4x4(xd, b);
}
return tx_type;
}
void vp9_build_block_doffsets(MACROBLOCKD *xd);
void vp9_setup_block_dptrs(MACROBLOCKD *xd);
static void update_blockd_bmi(MACROBLOCKD *xd) {
int i;
int is_4x4;
is_4x4 = (xd->mode_info_context->mbmi.mode == SPLITMV) ||
(xd->mode_info_context->mbmi.mode == I8X8_PRED) ||
(xd->mode_info_context->mbmi.mode == B_PRED);
if (is_4x4) {
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
}
#endif // VP9_COMMON_VP9_BLOCKD_H_