vpx/vpx_dsp/fwd_txfm.c
Jingning Han b67821f37b Factor forward 2D-DCT transforms into vpx_dsp
This commit factors the 4x4, 8x8, and 16x16 2D-DCT forward
transform operations into vpx_dsp folder.

Change-Id: I084b117b79c0925edcbcabb93f62b9f4bf8dbe7d
2015-07-22 15:48:17 -07:00

362 lines
14 KiB
C

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_dsp/fwd_txfm.h"
void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[4 * 4];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t input[4]; // canbe16
tran_high_t step[4]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 4; ++i) {
// Load inputs.
if (0 == pass) {
input[0] = in_pass0[0 * stride] * 16;
input[1] = in_pass0[1 * stride] * 16;
input[2] = in_pass0[2 * stride] * 16;
input[3] = in_pass0[3 * stride] * 16;
if (i == 0 && input[0]) {
input[0] += 1;
}
} else {
input[0] = in[0 * 4];
input[1] = in[1 * 4];
input[2] = in[2 * 4];
input[3] = in[3 * 4];
}
// Transform.
step[0] = input[0] + input[3];
step[1] = input[1] + input[2];
step[2] = input[1] - input[2];
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
out[0] = (tran_low_t)fdct_round_shift(temp1);
out[2] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[3] = (tran_low_t)fdct_round_shift(temp2);
// Do next column (which is a transposed row in second/horizontal pass)
in_pass0++;
in++;
out += 4;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
{
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
}
}
}
void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
int i, j;
tran_low_t intermediate[64];
int pass;
tran_low_t *output = intermediate;
const tran_low_t *in = NULL;
// Transform columns
for (pass = 0; pass < 2; ++pass) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
int i;
for (i = 0; i < 8; i++) {
// stage 1
if (pass == 0) {
s0 = (input[0 * stride] + input[7 * stride]) * 4;
s1 = (input[1 * stride] + input[6 * stride]) * 4;
s2 = (input[2 * stride] + input[5 * stride]) * 4;
s3 = (input[3 * stride] + input[4 * stride]) * 4;
s4 = (input[3 * stride] - input[4 * stride]) * 4;
s5 = (input[2 * stride] - input[5 * stride]) * 4;
s6 = (input[1 * stride] - input[6 * stride]) * 4;
s7 = (input[0 * stride] - input[7 * stride]) * 4;
++input;
} else {
s0 = in[0 * 8] + in[7 * 8];
s1 = in[1 * 8] + in[6 * 8];
s2 = in[2 * 8] + in[5 * 8];
s3 = in[3 * 8] + in[4 * 8];
s4 = in[3 * 8] - in[4 * 8];
s5 = in[2 * 8] - in[5 * 8];
s6 = in[1 * 8] - in[6 * 8];
s7 = in[0 * 8] - in[7 * 8];
++in;
}
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0] = (tran_low_t)fdct_round_shift(t0);
output[2] = (tran_low_t)fdct_round_shift(t2);
output[4] = (tran_low_t)fdct_round_shift(t1);
output[6] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1] = (tran_low_t)fdct_round_shift(t0);
output[3] = (tran_low_t)fdct_round_shift(t2);
output[5] = (tran_low_t)fdct_round_shift(t1);
output[7] = (tran_low_t)fdct_round_shift(t3);
output += 8;
}
in = intermediate;
output = final_output;
}
// Rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
final_output[j + i * 8] /= 2;
}
}
void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[256];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t step1[8]; // canbe16
tran_high_t step2[8]; // canbe16
tran_high_t step3[8]; // canbe16
tran_high_t input[8]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 16; i++) {
if (0 == pass) {
// Calculate input for the first 8 results.
input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
// Calculate input for the next 8 results.
step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
} else {
// Calculate input for the first 8 results.
input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
// Calculate input for the next 8 results.
step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
}
// Work on the first eight values; fdct8(input, even_results);
{
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// stage 1
s0 = input[0] + input[7];
s1 = input[1] + input[6];
s2 = input[2] + input[5];
s3 = input[3] + input[4];
s4 = input[3] - input[4];
s5 = input[2] - input[5];
s6 = input[1] - input[6];
s7 = input[0] - input[7];
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
out[0] = (tran_low_t)fdct_round_shift(t0);
out[4] = (tran_low_t)fdct_round_shift(t2);
out[8] = (tran_low_t)fdct_round_shift(t1);
out[12] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
out[2] = (tran_low_t)fdct_round_shift(t0);
out[6] = (tran_low_t)fdct_round_shift(t2);
out[10] = (tran_low_t)fdct_round_shift(t1);
out[14] = (tran_low_t)fdct_round_shift(t3);
}
// Work on the next eight values; step1 -> odd_results
{
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
step2[2] = fdct_round_shift(temp1);
step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
step2[4] = fdct_round_shift(temp1);
step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
step3[1] = step1[1] + step2[2];
step3[2] = step1[1] - step2[2];
step3[3] = step1[0] - step2[3];
step3[4] = step1[7] - step2[4];
step3[5] = step1[6] - step2[5];
step3[6] = step1[6] + step2[5];
step3[7] = step1[7] + step2[4];
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
step2[1] = fdct_round_shift(temp1);
step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
step2[5] = fdct_round_shift(temp1);
step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
step1[1] = step3[0] - step2[1];
step1[2] = step3[3] + step2[2];
step1[3] = step3[3] - step2[2];
step1[4] = step3[4] - step2[5];
step1[5] = step3[4] + step2[5];
step1[6] = step3[7] - step2[6];
step1[7] = step3[7] + step2[6];
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[9] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
out[5] = (tran_low_t)fdct_round_shift(temp1);
out[13] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
out[3] = (tran_low_t)fdct_round_shift(temp1);
out[11] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
out[7] = (tran_low_t)fdct_round_shift(temp1);
out[15] = (tran_low_t)fdct_round_shift(temp2);
}
// Do next column (which is a transposed row in second/horizontal pass)
in++;
in_pass0++;
out += 16;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct4x4_c(input, output, stride);
}
void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
int stride) {
vp9_fdct8x8_c(input, final_output, stride);
}
void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct16x16_c(input, output, stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH