Files
vpx/av1/encoder/encoder.c
Urvang Joshi b5ed35008d Move STAT_TYPE enum to source file.
In the header, all we need is number of stat types, not the names for actual
types.

Removing it avoids names like 'Y', 'U', 'V' and 'ALL' being visible
in all files that include the encoder.h header.

Change-Id: I874a73a3cfe6bcb29aedea102077a52addc49af6
2016-10-18 17:22:00 -07:00

5615 lines
206 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./aom_config.h"
#include "av1/common/alloccommon.h"
#if CONFIG_CLPF
#include "aom/aom_image.h"
#include "av1/common/clpf.h"
#include "av1/encoder/clpf_rdo.h"
#endif
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/filter.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/bitstream.h"
#if CONFIG_ANS
#include "aom_dsp/buf_ans.h"
#endif
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mbgraph.h"
#include "av1/encoder/picklpf.h"
#if CONFIG_LOOP_RESTORATION
#include "av1/encoder/pickrst.h"
#endif // CONFIG_LOOP_RESTORATION
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/resize.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/temporal_filter.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "aom_dsp/psnr.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "aom_scale/aom_scale.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#define AM_SEGMENT_ID_INACTIVE 7
#define AM_SEGMENT_ID_ACTIVE 0
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file = NULL;
#endif
#ifdef OUTPUT_YUV_SKINMAP
FILE *yuv_skinmap_file = NULL;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#define FILE_NAME_LEN 100
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if CONFIG_INTERNAL_STATS
typedef enum { Y, U, V, ALL } STAT_TYPE;
#endif // CONFIG_INTERNAL_STATS
static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Mark all inactive blocks as active. Other segmentation features may be set
// so memset cannot be used, instead only inactive blocks should be reset.
static void suppress_active_map(AV1_COMP *cpi) {
unsigned char *const seg_map = cpi->segmentation_map;
int i;
if (cpi->active_map.enabled || cpi->active_map.update)
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
}
static void apply_active_map(AV1_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->segmentation_map;
const unsigned char *const active_map = cpi->active_map.map;
int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
if (frame_is_intra_only(&cpi->common)) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
av1_enable_segmentation(seg);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
// Setting the data to -MAX_LOOP_FILTER will result in the computed loop
// filter level being zero regardless of the value of seg->abs_delta.
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF,
-MAX_LOOP_FILTER);
} else {
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
unsigned char *const active_map_8x8 = cpi->active_map.map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
cpi->active_map.update = 1;
if (new_map_16x16) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
active_map_8x8[r * mi_cols + c] =
new_map_16x16[(r >> 1) * cols + (c >> 1)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
}
}
cpi->active_map.enabled = 1;
} else {
cpi->active_map.enabled = 0;
}
return 0;
} else {
return -1;
}
}
int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
new_map_16x16) {
unsigned char *const seg_map_8x8 = cpi->segmentation_map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
if (cpi->active_map.enabled) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
// Cyclic refresh segments are considered active despite not having
// AM_SEGMENT_ID_ACTIVE
new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
}
}
}
return 0;
} else {
return -1;
}
}
void av1_set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->td.mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
#if CONFIG_REF_MV
if (cpi->common.allow_high_precision_mv) {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost_hp[i];
mb->mvsadcost = mb->nmvsadcost_hp;
}
} else {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost[i];
mb->mvsadcost = mb->nmvsadcost;
}
}
#else
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvcost;
}
#endif
}
static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) {
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64)
return BLOCK_64X64;
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128)
return BLOCK_128X128;
assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC);
assert(IMPLIES(cpi->common.tile_cols > 1,
cpi->common.tile_width % MAX_MIB_SIZE == 0));
assert(IMPLIES(cpi->common.tile_rows > 1,
cpi->common.tile_height % MAX_MIB_SIZE == 0));
// TODO(any): Possibly could improve this with a heuristic.
return BLOCK_128X128;
#else
(void)cpi;
return BLOCK_64X64;
#endif // CONFIG_EXT_PARTITION
}
static void setup_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
av1_setup_past_independence(cm);
} else {
#if CONFIG_EXT_REFS
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
cm->frame_context_idx = EXT_ARF_FRAME;
else if (cpi->refresh_alt_ref_frame)
cm->frame_context_idx = ARF_FRAME;
#else
if (cpi->refresh_alt_ref_frame) cm->frame_context_idx = ARF_FRAME;
#endif
else if (cpi->rc.is_src_frame_alt_ref)
cm->frame_context_idx = OVERLAY_FRAME;
else if (cpi->refresh_golden_frame)
cm->frame_context_idx = GLD_FRAME;
#if CONFIG_EXT_REFS
else if (cpi->refresh_bwd_ref_frame)
cm->frame_context_idx = BRF_FRAME;
#endif
else
cm->frame_context_idx = REGULAR_FRAME;
}
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
av1_zero(cpi->interp_filter_selected);
} else {
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
av1_zero(cpi->interp_filter_selected[0]);
}
cpi->vaq_refresh = 0;
set_sb_size(cm, select_sb_size(cpi));
}
static void av1_enc_setup_mi(AV1_COMMON *cm) {
int i;
cm->mi = cm->mip + cm->mi_stride + 1;
memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
// Clear top border row
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
// Clear left border column
for (i = 1; i < cm->mi_rows + 1; ++i)
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
memset(cm->mi_grid_base, 0,
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
}
static int av1_enc_alloc_mi(AV1_COMMON *cm, int mi_size) {
cm->mip = aom_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip) return 1;
cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip));
if (!cm->prev_mip) return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base = (MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *));
if (!cm->mi_grid_base) return 1;
cm->prev_mi_grid_base =
(MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *));
if (!cm->prev_mi_grid_base) return 1;
return 0;
}
static void av1_enc_free_mi(AV1_COMMON *cm) {
aom_free(cm->mip);
cm->mip = NULL;
aom_free(cm->prev_mip);
cm->prev_mip = NULL;
aom_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
aom_free(cm->prev_mi_grid_base);
cm->prev_mi_grid_base = NULL;
}
static void av1_swap_mi_and_prev_mi(AV1_COMMON *cm) {
// Current mip will be the prev_mip for the next frame.
MODE_INFO **temp_base = cm->prev_mi_grid_base;
MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// Update the upper left visible macroblock ptrs.
cm->mi = cm->mip + cm->mi_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp_base;
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
}
void av1_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
av1_rtcd();
aom_dsp_rtcd();
aom_scale_rtcd();
av1_init_intra_predictors();
av1_init_me_luts();
av1_rc_init_minq_luts();
av1_entropy_mv_init();
av1_encode_token_init();
#if CONFIG_EXT_INTER
av1_init_wedge_masks();
#endif
init_done = 1;
}
}
static void dealloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int i;
aom_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
aom_free(cpi->tile_data);
cpi->tile_data = NULL;
// Delete sementation map
aom_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
aom_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = NULL;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
aom_free(cpi->nmv_costs[i][0]);
aom_free(cpi->nmv_costs[i][1]);
aom_free(cpi->nmv_costs_hp[i][0]);
aom_free(cpi->nmv_costs_hp[i][1]);
cpi->nmv_costs[i][0] = NULL;
cpi->nmv_costs[i][1] = NULL;
cpi->nmv_costs_hp[i][0] = NULL;
cpi->nmv_costs_hp[i][1] = NULL;
}
#endif
aom_free(cpi->nmvcosts[0]);
aom_free(cpi->nmvcosts[1]);
cpi->nmvcosts[0] = NULL;
cpi->nmvcosts[1] = NULL;
aom_free(cpi->nmvcosts_hp[0]);
aom_free(cpi->nmvcosts_hp[1]);
cpi->nmvcosts_hp[0] = NULL;
cpi->nmvcosts_hp[1] = NULL;
aom_free(cpi->nmvsadcosts[0]);
aom_free(cpi->nmvsadcosts[1]);
cpi->nmvsadcosts[0] = NULL;
cpi->nmvsadcosts[1] = NULL;
aom_free(cpi->nmvsadcosts_hp[0]);
aom_free(cpi->nmvsadcosts_hp[1]);
cpi->nmvsadcosts_hp[0] = NULL;
cpi->nmvsadcosts_hp[1] = NULL;
av1_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
aom_free(cpi->active_map.map);
cpi->active_map.map = NULL;
// Free up-sampled reference buffers.
for (i = 0; i < (REF_FRAMES + 1); i++)
aom_free_frame_buffer(&cpi->upsampled_ref_bufs[i].buf);
av1_free_ref_frame_buffers(cm->buffer_pool);
av1_free_context_buffers(cm);
aom_free_frame_buffer(&cpi->last_frame_uf);
#if CONFIG_LOOP_RESTORATION
aom_free_frame_buffer(&cpi->last_frame_db);
av1_free_restoration_buffers(cm);
#endif // CONFIG_LOOP_RESTORATION
aom_free_frame_buffer(&cpi->scaled_source);
aom_free_frame_buffer(&cpi->scaled_last_source);
aom_free_frame_buffer(&cpi->alt_ref_buffer);
av1_lookahead_destroy(cpi->lookahead);
aom_free(cpi->tile_tok[0][0]);
cpi->tile_tok[0][0] = 0;
av1_free_pc_tree(&cpi->td);
av1_free_var_tree(&cpi->td);
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools)
aom_free(cpi->td.mb.palette_buffer);
#endif // CONFIG_PALETTE
if (cpi->source_diff_var != NULL) {
aom_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
#if CONFIG_ANS
aom_buf_ans_free(&cpi->buf_ans);
#endif // CONFIG_ANS
}
static void save_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to av1_restore_coding_context. These functions are
// intended for use in a re-code loop in av1_compress_frame where the
// quantizer value is adjusted between loop iterations.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
av1_copy(cc->nmv_vec_cost[i], cpi->td.mb.nmv_vec_cost[i]);
memcpy(cc->nmv_costs[i][0], cpi->nmv_costs[i][0],
MV_VALS * sizeof(*cpi->nmv_costs[i][0]));
memcpy(cc->nmv_costs[i][1], cpi->nmv_costs[i][1],
MV_VALS * sizeof(*cpi->nmv_costs[i][1]));
memcpy(cc->nmv_costs_hp[i][0], cpi->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][0]));
memcpy(cc->nmv_costs_hp[i][1], cpi->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][1]));
}
#else
av1_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
#endif
memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
MV_VALS * sizeof(*cpi->nmvcosts[0]));
memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
MV_VALS * sizeof(*cpi->nmvcosts[1]));
memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map,
(cm->mi_rows * cm->mi_cols));
av1_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
av1_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
cc->fc = *cm->fc;
}
static void restore_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Restore key state variables to the snapshot state stored in the
// previous call to av1_save_coding_context.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
av1_copy(cpi->td.mb.nmv_vec_cost[i], cc->nmv_vec_cost[i]);
memcpy(cpi->nmv_costs[i][0], cc->nmv_costs[i][0],
MV_VALS * sizeof(*cc->nmv_costs[i][0]));
memcpy(cpi->nmv_costs[i][1], cc->nmv_costs[i][1],
MV_VALS * sizeof(*cc->nmv_costs[i][1]));
memcpy(cpi->nmv_costs_hp[i][0], cc->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][0]));
memcpy(cpi->nmv_costs_hp[i][1], cc->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][1]));
}
#else
av1_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
#endif
memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy,
(cm->mi_rows * cm->mi_cols));
av1_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
av1_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
*cm->fc = cc->fc;
}
static void configure_static_seg_features(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
av1_disable_segmentation(seg);
// Clear down the segment features.
av1_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
av1_disable_segmentation(seg);
av1_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
av1_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
av1_disable_segmentation(seg);
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
av1_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
av1_enable_segfeature(seg, 0, SEG_LVL_SKIP);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void alloc_raw_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (!cpi->lookahead)
cpi->lookahead = av1_lookahead_init(oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
oxcf->lag_in_frames);
if (!cpi->lookahead)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
if (aom_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static void alloc_util_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
if (aom_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
#if CONFIG_LOOP_RESTORATION
if (aom_realloc_frame_buffer(&cpi->last_frame_db, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame deblocked buffer");
#endif // CONFIG_LOOP_RESTORATION
if (aom_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (aom_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
static int alloc_context_buffers_ext(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int mi_size = cm->mi_cols * cm->mi_rows;
cpi->mbmi_ext_base = aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
if (!cpi->mbmi_ext_base) return 1;
return 0;
}
void av1_alloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
av1_alloc_context_buffers(cm, cm->width, cm->height);
alloc_context_buffers_ext(cpi);
aom_free(cpi->tile_tok[0][0]);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
#if CONFIG_ANS
aom_buf_ans_alloc(&cpi->buf_ans, &cm->error, tokens);
#endif // CONFIG_ANS
}
av1_setup_pc_tree(&cpi->common, &cpi->td);
}
void av1_new_framerate(AV1_COMP *cpi, double framerate) {
cpi->framerate = framerate < 0.1 ? 30 : framerate;
av1_rc_update_framerate(cpi);
}
static void set_tile_info(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
#if CONFIG_EXT_TILE
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size != AOM_SUPERBLOCK_SIZE_64X64) {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 32);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 32);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
} else {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2 - 1;
cm->tile_height <<= MAX_MIB_SIZE_LOG2 - 1;
}
#else
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
#endif // CONFIG_EXT_PARTITION
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
assert(cm->tile_width >> MAX_MIB_SIZE <= 32);
assert(cm->tile_height >> MAX_MIB_SIZE <= 32);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
#else
int min_log2_tile_cols, max_log2_tile_cols;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols =
clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
cm->tile_width >>= cm->log2_tile_cols;
cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
cm->tile_height >>= cm->log2_tile_rows;
// round to integer multiples of max superblock size
cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
#endif // CONFIG_EXT_TILE
}
static void update_frame_size(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
av1_set_mb_mi(cm, cm->width, cm->height);
av1_init_context_buffers(cm);
av1_init_macroblockd(cm, xd, NULL);
memset(cpi->mbmi_ext_base, 0,
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_info(cpi);
}
static void init_buffer_indices(AV1_COMP *cpi) {
#if CONFIG_EXT_REFS
int fb_idx;
for (fb_idx = 0; fb_idx < LAST_REF_FRAMES; ++fb_idx)
cpi->lst_fb_idxes[fb_idx] = fb_idx;
cpi->gld_fb_idx = LAST_REF_FRAMES;
cpi->bwd_fb_idx = LAST_REF_FRAMES + 1;
cpi->alt_fb_idx = LAST_REF_FRAMES + 2;
for (fb_idx = 0; fb_idx < MAX_EXT_ARFS + 1; ++fb_idx)
cpi->arf_map[fb_idx] = LAST_REF_FRAMES + 2 + fb_idx;
#else
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
#endif // CONFIG_EXT_REFS
}
static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->framerate = oxcf->init_framerate;
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = oxcf->use_highbitdepth;
#endif
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
cm->width = oxcf->width;
cm->height = oxcf->height;
av1_alloc_compressor_data(cpi);
// Single thread case: use counts in common.
cpi->td.counts = &cm->counts;
// change includes all joint functionality
av1_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
init_buffer_indices(cpi);
}
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
const AV1EncoderConfig *oxcf) {
const int64_t bandwidth = oxcf->target_bandwidth;
const int64_t starting = oxcf->starting_buffer_level_ms;
const int64_t optimal = oxcf->optimal_buffer_level_ms;
const int64_t maximum = oxcf->maximum_buffer_size_ms;
rc->starting_buffer_level = starting * bandwidth / 1000;
rc->optimal_buffer_level =
(optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
rc->maximum_buffer_size =
(maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
}
#if CONFIG_AOM_HIGHBITDEPTH
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#define MAKE_BFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
}
#define MAKE_BFP_SADAVG_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
4; \
}
#define MAKE_BFP_SAD3_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD8_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad128x128x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad128x128x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad32x32x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad32x32x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad64x64x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad64x64x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x16x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x16x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x8x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x16x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x16x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x8x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x4x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad4x4x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x4x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d)
#if CONFIG_EXT_INTER
#define HIGHBD_MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#define MAKE_MBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \
4; \
}
#if CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x128)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x4)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#define MAKE_OBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk); \
} \
static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4)
#endif // CONFIG_MOTION_VAR
static void highbd_set_var_fns(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case AOM_BITS_8:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8,
aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16,
aom_highbd_8_sub_pixel_variance32x16,
aom_highbd_8_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8,
aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32,
aom_highbd_8_sub_pixel_variance16x32,
aom_highbd_8_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8,
aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32,
aom_highbd_8_sub_pixel_variance64x32,
aom_highbd_8_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits8)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8,
aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64,
aom_highbd_8_sub_pixel_variance32x64,
aom_highbd_8_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits8)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8,
aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32,
aom_highbd_8_sub_pixel_variance32x32,
aom_highbd_8_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits8, aom_highbd_sad32x32x8_bits8,
aom_highbd_sad32x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8,
aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64,
aom_highbd_8_sub_pixel_variance64x64,
aom_highbd_8_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits8, aom_highbd_sad64x64x8_bits8,
aom_highbd_sad64x64x4d_bits8)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8,
aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16,
aom_highbd_8_sub_pixel_variance16x16,
aom_highbd_8_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits8, aom_highbd_sad16x16x8_bits8,
aom_highbd_sad16x16x4d_bits8)
HIGHBD_BFP(
BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8,
aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8,
aom_highbd_8_sub_pixel_avg_variance16x8, aom_highbd_sad16x8x3_bits8,
aom_highbd_sad16x8x8_bits8, aom_highbd_sad16x8x4d_bits8)
HIGHBD_BFP(
BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8,
aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16,
aom_highbd_8_sub_pixel_avg_variance8x16, aom_highbd_sad8x16x3_bits8,
aom_highbd_sad8x16x8_bits8, aom_highbd_sad8x16x4d_bits8)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits8, aom_highbd_sad8x8_avg_bits8,
aom_highbd_8_variance8x8, aom_highbd_8_sub_pixel_variance8x8,
aom_highbd_8_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits8,
aom_highbd_sad8x8x8_bits8, aom_highbd_sad8x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8,
aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4,
aom_highbd_8_sub_pixel_variance8x4,
aom_highbd_8_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits8, aom_highbd_sad8x4x4d_bits8)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8,
aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8,
aom_highbd_8_sub_pixel_variance4x8,
aom_highbd_8_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits8, aom_highbd_sad4x8x4d_bits8)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits8, aom_highbd_sad4x4_avg_bits8,
aom_highbd_8_variance4x4, aom_highbd_8_sub_pixel_variance4x4,
aom_highbd_8_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits8,
aom_highbd_sad4x4x8_bits8, aom_highbd_sad4x4x4d_bits8)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits8,
aom_highbd_sad128x128_avg_bits8,
aom_highbd_8_variance128x128,
aom_highbd_8_sub_pixel_variance128x128,
aom_highbd_8_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits8, aom_highbd_sad128x128x8_bits8,
aom_highbd_sad128x128x4d_bits8)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8,
aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64,
aom_highbd_8_sub_pixel_variance128x64,
aom_highbd_8_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits8)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8,
aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128,
aom_highbd_8_sub_pixel_variance64x128,
aom_highbd_8_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits8)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8,
aom_highbd_masked_variance128x128,
aom_highbd_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8,
aom_highbd_masked_variance128x64,
aom_highbd_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8,
aom_highbd_masked_variance64x128,
aom_highbd_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8,
aom_highbd_masked_variance64x64,
aom_highbd_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8,
aom_highbd_masked_variance64x32,
aom_highbd_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8,
aom_highbd_masked_variance32x64,
aom_highbd_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8,
aom_highbd_masked_variance32x32,
aom_highbd_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8,
aom_highbd_masked_variance32x16,
aom_highbd_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8,
aom_highbd_masked_variance16x32,
aom_highbd_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8,
aom_highbd_masked_variance16x16,
aom_highbd_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8,
aom_highbd_masked_variance8x16,
aom_highbd_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8,
aom_highbd_masked_variance16x8,
aom_highbd_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8,
aom_highbd_masked_variance8x8,
aom_highbd_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8,
aom_highbd_masked_variance4x8,
aom_highbd_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8,
aom_highbd_masked_variance8x4,
aom_highbd_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8,
aom_highbd_masked_variance4x4,
aom_highbd_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8,
aom_highbd_obmc_variance128x128,
aom_highbd_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8,
aom_highbd_obmc_variance128x64,
aom_highbd_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8,
aom_highbd_obmc_variance64x128,
aom_highbd_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8,
aom_highbd_obmc_variance64x64,
aom_highbd_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8,
aom_highbd_obmc_variance64x32,
aom_highbd_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8,
aom_highbd_obmc_variance32x64,
aom_highbd_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8,
aom_highbd_obmc_variance32x32,
aom_highbd_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8,
aom_highbd_obmc_variance32x16,
aom_highbd_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8,
aom_highbd_obmc_variance16x32,
aom_highbd_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8,
aom_highbd_obmc_variance16x16,
aom_highbd_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8,
aom_highbd_obmc_variance8x16,
aom_highbd_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8,
aom_highbd_obmc_variance16x8,
aom_highbd_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8,
aom_highbd_obmc_variance8x8,
aom_highbd_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8,
aom_highbd_obmc_variance4x8,
aom_highbd_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8,
aom_highbd_obmc_variance8x4,
aom_highbd_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8,
aom_highbd_obmc_variance4x4,
aom_highbd_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
case AOM_BITS_10:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10,
aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16,
aom_highbd_10_sub_pixel_variance32x16,
aom_highbd_10_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10,
aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32,
aom_highbd_10_sub_pixel_variance16x32,
aom_highbd_10_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10,
aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32,
aom_highbd_10_sub_pixel_variance64x32,
aom_highbd_10_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits10)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10,
aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64,
aom_highbd_10_sub_pixel_variance32x64,
aom_highbd_10_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits10)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10,
aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32,
aom_highbd_10_sub_pixel_variance32x32,
aom_highbd_10_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits10, aom_highbd_sad32x32x8_bits10,
aom_highbd_sad32x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10,
aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64,
aom_highbd_10_sub_pixel_variance64x64,
aom_highbd_10_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits10, aom_highbd_sad64x64x8_bits10,
aom_highbd_sad64x64x4d_bits10)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10,
aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16,
aom_highbd_10_sub_pixel_variance16x16,
aom_highbd_10_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits10, aom_highbd_sad16x16x8_bits10,
aom_highbd_sad16x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10,
aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8,
aom_highbd_10_sub_pixel_variance16x8,
aom_highbd_10_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x3_bits10, aom_highbd_sad16x8x8_bits10,
aom_highbd_sad16x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10,
aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16,
aom_highbd_10_sub_pixel_variance8x16,
aom_highbd_10_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x3_bits10, aom_highbd_sad8x16x8_bits10,
aom_highbd_sad8x16x4d_bits10)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10,
aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8,
aom_highbd_10_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits10,
aom_highbd_sad8x8x8_bits10, aom_highbd_sad8x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits10,
aom_highbd_sad8x4_avg_bits10, aom_highbd_10_variance8x4,
aom_highbd_10_sub_pixel_variance8x4,
aom_highbd_10_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits10, aom_highbd_sad8x4x4d_bits10)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits10,
aom_highbd_sad4x8_avg_bits10, aom_highbd_10_variance4x8,
aom_highbd_10_sub_pixel_variance4x8,
aom_highbd_10_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits10, aom_highbd_sad4x8x4d_bits10)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10,
aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4,
aom_highbd_10_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits10,
aom_highbd_sad4x4x8_bits10, aom_highbd_sad4x4x4d_bits10)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(
BLOCK_128X128, aom_highbd_sad128x128_bits10,
aom_highbd_sad128x128_avg_bits10, aom_highbd_10_variance128x128,
aom_highbd_10_sub_pixel_variance128x128,
aom_highbd_10_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits10, aom_highbd_sad128x128x8_bits10,
aom_highbd_sad128x128x4d_bits10)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits10,
aom_highbd_sad128x64_avg_bits10,
aom_highbd_10_variance128x64,
aom_highbd_10_sub_pixel_variance128x64,
aom_highbd_10_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits10)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits10,
aom_highbd_sad64x128_avg_bits10,
aom_highbd_10_variance64x128,
aom_highbd_10_sub_pixel_variance64x128,
aom_highbd_10_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits10)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10,
aom_highbd_10_masked_variance128x128,
aom_highbd_10_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10,
aom_highbd_10_masked_variance128x64,
aom_highbd_10_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10,
aom_highbd_10_masked_variance64x128,
aom_highbd_10_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10,
aom_highbd_10_masked_variance64x64,
aom_highbd_10_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10,
aom_highbd_10_masked_variance64x32,
aom_highbd_10_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10,
aom_highbd_10_masked_variance32x64,
aom_highbd_10_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10,
aom_highbd_10_masked_variance32x32,
aom_highbd_10_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10,
aom_highbd_10_masked_variance32x16,
aom_highbd_10_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10,
aom_highbd_10_masked_variance16x32,
aom_highbd_10_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10,
aom_highbd_10_masked_variance16x16,
aom_highbd_10_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10,
aom_highbd_10_masked_variance8x16,
aom_highbd_10_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10,
aom_highbd_10_masked_variance16x8,
aom_highbd_10_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10,
aom_highbd_10_masked_variance8x8,
aom_highbd_10_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10,
aom_highbd_10_masked_variance4x8,
aom_highbd_10_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10,
aom_highbd_10_masked_variance8x4,
aom_highbd_10_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10,
aom_highbd_10_masked_variance4x4,
aom_highbd_10_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10,
aom_highbd_10_obmc_variance128x128,
aom_highbd_10_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10,
aom_highbd_10_obmc_variance128x64,
aom_highbd_10_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10,
aom_highbd_10_obmc_variance64x128,
aom_highbd_10_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10,
aom_highbd_10_obmc_variance64x64,
aom_highbd_10_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10,
aom_highbd_10_obmc_variance64x32,
aom_highbd_10_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10,
aom_highbd_10_obmc_variance32x64,
aom_highbd_10_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10,
aom_highbd_10_obmc_variance32x32,
aom_highbd_10_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10,
aom_highbd_10_obmc_variance32x16,
aom_highbd_10_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10,
aom_highbd_10_obmc_variance16x32,
aom_highbd_10_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10,
aom_highbd_10_obmc_variance16x16,
aom_highbd_10_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10,
aom_highbd_10_obmc_variance8x16,
aom_highbd_10_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10,
aom_highbd_10_obmc_variance16x8,
aom_highbd_10_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10,
aom_highbd_10_obmc_variance8x8,
aom_highbd_10_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10,
aom_highbd_10_obmc_variance4x8,
aom_highbd_10_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10,
aom_highbd_10_obmc_variance8x4,
aom_highbd_10_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10,
aom_highbd_10_obmc_variance4x4,
aom_highbd_10_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
case AOM_BITS_12:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12,
aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16,
aom_highbd_12_sub_pixel_variance32x16,
aom_highbd_12_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12,
aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32,
aom_highbd_12_sub_pixel_variance16x32,
aom_highbd_12_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12,
aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32,
aom_highbd_12_sub_pixel_variance64x32,
aom_highbd_12_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits12)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12,
aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64,
aom_highbd_12_sub_pixel_variance32x64,
aom_highbd_12_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits12)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12,
aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32,
aom_highbd_12_sub_pixel_variance32x32,
aom_highbd_12_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits12, aom_highbd_sad32x32x8_bits12,
aom_highbd_sad32x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12,
aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64,
aom_highbd_12_sub_pixel_variance64x64,
aom_highbd_12_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits12, aom_highbd_sad64x64x8_bits12,
aom_highbd_sad64x64x4d_bits12)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12,
aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16,
aom_highbd_12_sub_pixel_variance16x16,
aom_highbd_12_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits12, aom_highbd_sad16x16x8_bits12,
aom_highbd_sad16x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12,
aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8,
aom_highbd_12_sub_pixel_variance16x8,
aom_highbd_12_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x3_bits12, aom_highbd_sad16x8x8_bits12,
aom_highbd_sad16x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12,
aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16,
aom_highbd_12_sub_pixel_variance8x16,
aom_highbd_12_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x3_bits12, aom_highbd_sad8x16x8_bits12,
aom_highbd_sad8x16x4d_bits12)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12,
aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8,
aom_highbd_12_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits12,
aom_highbd_sad8x8x8_bits12, aom_highbd_sad8x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits12,
aom_highbd_sad8x4_avg_bits12, aom_highbd_12_variance8x4,
aom_highbd_12_sub_pixel_variance8x4,
aom_highbd_12_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits12, aom_highbd_sad8x4x4d_bits12)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits12,
aom_highbd_sad4x8_avg_bits12, aom_highbd_12_variance4x8,
aom_highbd_12_sub_pixel_variance4x8,
aom_highbd_12_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits12, aom_highbd_sad4x8x4d_bits12)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12,
aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4,
aom_highbd_12_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits12,
aom_highbd_sad4x4x8_bits12, aom_highbd_sad4x4x4d_bits12)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(
BLOCK_128X128, aom_highbd_sad128x128_bits12,
aom_highbd_sad128x128_avg_bits12, aom_highbd_12_variance128x128,
aom_highbd_12_sub_pixel_variance128x128,
aom_highbd_12_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits12, aom_highbd_sad128x128x8_bits12,
aom_highbd_sad128x128x4d_bits12)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits12,
aom_highbd_sad128x64_avg_bits12,
aom_highbd_12_variance128x64,
aom_highbd_12_sub_pixel_variance128x64,
aom_highbd_12_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits12)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits12,
aom_highbd_sad64x128_avg_bits12,
aom_highbd_12_variance64x128,
aom_highbd_12_sub_pixel_variance64x128,
aom_highbd_12_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits12)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12,
aom_highbd_12_masked_variance128x128,
aom_highbd_12_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12,
aom_highbd_12_masked_variance128x64,
aom_highbd_12_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12,
aom_highbd_12_masked_variance64x128,
aom_highbd_12_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12,
aom_highbd_12_masked_variance64x64,
aom_highbd_12_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12,
aom_highbd_12_masked_variance64x32,
aom_highbd_12_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12,
aom_highbd_12_masked_variance32x64,
aom_highbd_12_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12,
aom_highbd_12_masked_variance32x32,
aom_highbd_12_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12,
aom_highbd_12_masked_variance32x16,
aom_highbd_12_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12,
aom_highbd_12_masked_variance16x32,
aom_highbd_12_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12,
aom_highbd_12_masked_variance16x16,
aom_highbd_12_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12,
aom_highbd_12_masked_variance8x16,
aom_highbd_12_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12,
aom_highbd_12_masked_variance16x8,
aom_highbd_12_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12,
aom_highbd_12_masked_variance8x8,
aom_highbd_12_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12,
aom_highbd_12_masked_variance4x8,
aom_highbd_12_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12,
aom_highbd_12_masked_variance8x4,
aom_highbd_12_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12,
aom_highbd_12_masked_variance4x4,
aom_highbd_12_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12,
aom_highbd_12_obmc_variance128x128,
aom_highbd_12_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12,
aom_highbd_12_obmc_variance128x64,
aom_highbd_12_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12,
aom_highbd_12_obmc_variance64x128,
aom_highbd_12_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12,
aom_highbd_12_obmc_variance64x64,
aom_highbd_12_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12,
aom_highbd_12_obmc_variance64x32,
aom_highbd_12_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12,
aom_highbd_12_obmc_variance32x64,
aom_highbd_12_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12,
aom_highbd_12_obmc_variance32x32,
aom_highbd_12_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12,
aom_highbd_12_obmc_variance32x16,
aom_highbd_12_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12,
aom_highbd_12_obmc_variance16x32,
aom_highbd_12_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12,
aom_highbd_12_obmc_variance16x16,
aom_highbd_12_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12,
aom_highbd_12_obmc_variance8x16,
aom_highbd_12_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12,
aom_highbd_12_obmc_variance16x8,
aom_highbd_12_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12,
aom_highbd_12_obmc_variance8x8,
aom_highbd_12_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12,
aom_highbd_12_obmc_variance4x8,
aom_highbd_12_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12,
aom_highbd_12_obmc_variance8x4,
aom_highbd_12_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12,
aom_highbd_12_obmc_variance4x4,
aom_highbd_12_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
default:
assert(0 &&
"cm->bit_depth should be AOM_BITS_8, "
"AOM_BITS_10 or AOM_BITS_12");
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static void realloc_segmentation_maps(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Create the encoder segmentation map and set all entries to 0
aom_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// Create a map used to mark inactive areas.
aom_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
aom_free(cpi->coding_context.last_frame_seg_map_copy);
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
}
void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
if (cm->profile != oxcf->profile) cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
if (cm->profile <= PROFILE_1)
assert(cm->bit_depth == AOM_BITS_8);
else
assert(cm->bit_depth > AOM_BITS_8);
cpi->oxcf = *oxcf;
#if CONFIG_AOM_HIGHBITDEPTH
cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_GLOBAL_MOTION
cpi->td.mb.e_mbd.global_motion = cm->global_motion;
#endif // CONFIG_GLOBAL_MOTION
if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
}
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame = 0;
#endif // CONFIG_EXT_REFS
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
#if CONFIG_PALETTE
cm->allow_screen_content_tools = (cpi->oxcf.content == AOM_CONTENT_SCREEN);
if (cm->allow_screen_content_tools) {
MACROBLOCK *x = &cpi->td.mb;
if (x->palette_buffer == 0) {
CHECK_MEM_ERROR(cm, x->palette_buffer,
aom_memalign(16, sizeof(*x->palette_buffer)));
}
// Reallocate the pc_tree, as it's contents depends on
// the state of cm->allow_screen_content_tools
av1_free_pc_tree(&cpi->td);
av1_setup_pc_tree(&cpi->common, &cpi->td);
}
#endif // CONFIG_PALETTE
av1_reset_segment_features(cm);
av1_set_high_precision_mv(cpi, 0);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
cpi->encode_breakout = cpi->oxcf.encode_breakout;
set_rc_buffer_sizes(rc, &cpi->oxcf);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
av1_new_framerate(cpi, cpi->framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
cm->interp_filter = cpi->sf.default_interp_filter;
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
cm->render_width = cpi->oxcf.render_width;
cm->render_height = cpi->oxcf.render_height;
} else {
cm->render_width = cpi->oxcf.width;
cm->render_height = cpi->oxcf.height;
}
cm->width = cpi->oxcf.width;
cm->height = cpi->oxcf.height;
if (cpi->initial_width) {
if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) {
av1_free_context_buffers(cm);
av1_alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
}
}
update_frame_size(cpi);
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
#if CONFIG_EXT_REFS
rc->is_bwd_ref_frame = 0;
rc->is_last_bipred_frame = 0;
rc->is_bipred_frame = 0;
#endif // CONFIG_EXT_REFS
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_info(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
#if CONFIG_AOM_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log(x) / (float)M_LOG2_E)
#if !CONFIG_REF_MV
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[3] = 300;
}
#endif
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static INLINE void init_upsampled_ref_frame_bufs(AV1_COMP *cpi) {
int i;
for (i = 0; i < (REF_FRAMES + 1); ++i) {
cpi->upsampled_ref_bufs[i].ref_count = 0;
cpi->upsampled_ref_idx[i] = INVALID_IDX;
}
}
AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool) {
unsigned int i;
AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP));
AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
if (!cm) return NULL;
av1_zero(*cpi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
av1_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
cm->alloc_mi = av1_enc_alloc_mi;
cm->free_mi = av1_enc_free_mi;
cm->setup_mi = av1_enc_setup_mi;
CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)aom_calloc(1, sizeof(*cm->fc)));
CHECK_MEM_ERROR(
cm, cm->frame_contexts,
(FRAME_CONTEXT *)aom_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts)));
cpi->resize_state = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
cpi->common.buffer_pool = pool;
init_config(cpi, oxcf);
av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
cm->current_video_frame = 0;
cpi->partition_search_skippable_frame = 0;
cpi->tile_data = NULL;
cpi->last_show_frame_buf_idx = INVALID_IDX;
realloc_segmentation_maps(cpi);
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][0],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][1],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][1])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][0],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][1],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][1])));
}
#endif
CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
i++) {
CHECK_MEM_ERROR(
cm, cpi->mbgraph_stats[i].mb_stats,
aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder used to store the first pass mb stats in the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
aom_calloc(cm->MBs * sizeof(uint8_t), 1));
} else {
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
cpi->multi_arf_last_grp_enabled = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_blockiness = 1;
cpi->b_calculate_consistency = 1;
cpi->total_inconsistency = 0;
cpi->psnr.worst = 100.0;
cpi->worst_ssim = 100.0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
cpi->fastssim.worst = 100.0;
cpi->psnrhvs.worst = 100.0;
if (cpi->b_calculate_blockiness) {
cpi->total_blockiness = 0;
cpi->worst_blockiness = 0.0;
}
if (cpi->b_calculate_consistency) {
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
aom_malloc(sizeof(*cpi->ssim_vars) * 4 *
cpi->common.mi_rows * cpi->common.mi_cols));
cpi->worst_consistency = 100.0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
cpi->td.mb.nmvcost[i][0] = &cpi->nmv_costs[i][0][MV_MAX];
cpi->td.mb.nmvcost[i][1] = &cpi->nmv_costs[i][1][MV_MAX];
cpi->td.mb.nmvcost_hp[i][0] = &cpi->nmv_costs_hp[i][0][MV_MAX];
cpi->td.mb.nmvcost_hp[i][1] = &cpi->nmv_costs_hp[i][1][MV_MAX];
}
#else
cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
#endif
cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
if (oxcf->pass == 1) {
av1_init_first_pass(cpi);
} else if (oxcf->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
av1_init_second_pass(cpi);
}
init_upsampled_ref_frame_bufs(cpi);
av1_set_speed_features_framesize_independent(cpi);
av1_set_speed_features_framesize_dependent(cpi);
// Allocate memory to store variances for a frame.
CHECK_MEM_ERROR(cm, cpi->source_diff_var, aom_calloc(cm->MBs, sizeof(diff)));
cpi->source_var_thresh = 0;
cpi->frames_till_next_var_check = 0;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#if CONFIG_EXT_PARTITION
BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128,
aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128,
aom_sad128x128x3, aom_sad128x128x8, aom_sad128x128x4d)
BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64,
aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, NULL,
NULL, aom_sad128x64x4d)
BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128,
aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, NULL,
NULL, aom_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16,
aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, NULL, NULL,
aom_sad32x16x4d)
BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32,
aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, NULL, NULL,
aom_sad16x32x4d)
BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32,
aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, NULL, NULL,
aom_sad64x32x4d)
BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64,
aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, NULL, NULL,
aom_sad32x64x4d)
BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32,
aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32,
aom_sad32x32x3, aom_sad32x32x8, aom_sad32x32x4d)
BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64,
aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64,
aom_sad64x64x3, aom_sad64x64x8, aom_sad64x64x4d)
BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16,
aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16,
aom_sad16x16x3, aom_sad16x16x8, aom_sad16x16x4d)
BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8,
aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, aom_sad16x8x3,
aom_sad16x8x8, aom_sad16x8x4d)
BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16,
aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, aom_sad8x16x3,
aom_sad8x16x8, aom_sad8x16x4d)
BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8,
aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x3,
aom_sad8x8x8, aom_sad8x8x4d)
BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4,
aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, NULL,
aom_sad8x4x8, aom_sad8x4x4d)
BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8,
aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, NULL,
aom_sad4x8x8, aom_sad4x8x4d)
BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4,
aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x3,
aom_sad4x4x8, aom_sad4x4x4d)
#if CONFIG_MOTION_VAR
#define OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#if CONFIG_EXT_PARTITION
OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128,
aom_obmc_sub_pixel_variance128x128)
OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64,
aom_obmc_sub_pixel_variance128x64)
OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128,
aom_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64,
aom_obmc_sub_pixel_variance64x64)
OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32,
aom_obmc_sub_pixel_variance64x32)
OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64,
aom_obmc_sub_pixel_variance32x64)
OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32,
aom_obmc_sub_pixel_variance32x32)
OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16,
aom_obmc_sub_pixel_variance32x16)
OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32,
aom_obmc_sub_pixel_variance16x32)
OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16,
aom_obmc_sub_pixel_variance16x16)
OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8,
aom_obmc_sub_pixel_variance16x8)
OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16,
aom_obmc_sub_pixel_variance8x16)
OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8,
aom_obmc_sub_pixel_variance8x8)
OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8,
aom_obmc_sub_pixel_variance4x8)
OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4,
aom_obmc_sub_pixel_variance8x4)
OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4,
aom_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
#define MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#if CONFIG_EXT_PARTITION
MBFP(BLOCK_128X128, aom_masked_sad128x128, aom_masked_variance128x128,
aom_masked_sub_pixel_variance128x128)
MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_variance128x64,
aom_masked_sub_pixel_variance128x64)
MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_variance64x128,
aom_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_variance64x64,
aom_masked_sub_pixel_variance64x64)
MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_variance64x32,
aom_masked_sub_pixel_variance64x32)
MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_variance32x64,
aom_masked_sub_pixel_variance32x64)
MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_variance32x32,
aom_masked_sub_pixel_variance32x32)
MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_variance32x16,
aom_masked_sub_pixel_variance32x16)
MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_variance16x32,
aom_masked_sub_pixel_variance16x32)
MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_variance16x16,
aom_masked_sub_pixel_variance16x16)
MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_variance16x8,
aom_masked_sub_pixel_variance16x8)
MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_variance8x16,
aom_masked_sub_pixel_variance8x16)
MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_variance8x8,
aom_masked_sub_pixel_variance8x8)
MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_variance4x8,
aom_masked_sub_pixel_variance4x8)
MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_variance8x4,
aom_masked_sub_pixel_variance8x4)
MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_variance4x4,
aom_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_AOM_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
/* av1_init_quantizer() is first called here. Add check in
* av1_frame_init_quantizer() so that av1_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* av1_init_quantizer() for every frame.
*/
av1_init_quantizer(cpi);
#if CONFIG_AOM_QM
aom_qm_init(cm);
#endif
av1_loop_filter_init(cm);
#if CONFIG_LOOP_RESTORATION
av1_loop_restoration_precal();
#endif // CONFIG_LOOP_RESTORATION
cm->error.setjmp = 0;
return cpi;
}
#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
#define SNPRINT2(H, T, V) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
void av1_remove_compressor(AV1_COMP *cpi) {
AV1_COMMON *cm;
unsigned int i;
int t;
if (!cpi) return;
cm = &cpi->common;
if (cm->current_video_frame > 0) {
#if CONFIG_INTERNAL_STATS
aom_clear_system_state();
if (cpi->oxcf.pass != 1) {
char headings[512] = { 0 };
char results[512] = { 0 };
FILE *f = fopen("opsnr.stt", "a");
double time_encoded =
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
10000000.000;
double total_encode_time =
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
const double dr =
(double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
if (cpi->b_calculate_psnr) {
const double total_psnr = aom_sse_to_psnr(
(double)cpi->total_samples, peak, (double)cpi->total_sq_error);
const double total_ssim =
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
snprintf(headings, sizeof(headings),
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
"WstPsnr\tWstSsim\tWstFast\tWstHVS");
snprintf(results, sizeof(results),
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f",
dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
cpi->psnr.stat[ALL] / cpi->count, total_psnr, total_ssim,
total_ssim, cpi->fastssim.stat[ALL] / cpi->count,
cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst,
cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst);
if (cpi->b_calculate_blockiness) {
SNPRINT(headings, "\t Block\tWstBlck");
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
}
if (cpi->b_calculate_consistency) {
double consistency =
aom_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_inconsistency);
SNPRINT(headings, "\tConsist\tWstCons");
SNPRINT2(results, "\t%7.3f", consistency);
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
}
fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings);
fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time,
rate_err, fabs(rate_err));
}
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
for (t = 0; t < cpi->num_workers; ++t) {
AVxWorker *const worker = &cpi->workers[t];
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
// Deallocate allocated threads.
aom_get_worker_interface()->end(worker);
// Deallocate allocated thread data.
if (t < cpi->num_workers - 1) {
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools)
aom_free(thread_data->td->mb.palette_buffer);
#endif // CONFIG_PALETTE
aom_free(thread_data->td->counts);
av1_free_pc_tree(thread_data->td);
av1_free_var_tree(thread_data->td);
aom_free(thread_data->td);
}
}
aom_free(cpi->tile_thr_data);
aom_free(cpi->workers);
if (cpi->num_workers > 1) av1_loop_filter_dealloc(&cpi->lf_row_sync);
dealloc_compressor_data(cpi);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
++i) {
aom_free(cpi->mbgraph_stats[i].mb_stats);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
aom_free(cpi->twopass.frame_mb_stats_buf);
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
av1_remove_common(cm);
av1_free_ref_frame_buffers(cm->buffer_pool);
aom_free(cpi);
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static void generate_psnr_packet(AV1_COMP *cpi) {
struct aom_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
#if CONFIG_AOM_HIGHBITDEPTH
aom_calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
#else
aom_calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
#endif
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = AOM_CODEC_PSNR_PKT;
aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
void av1_update_reference(AV1_COMP *cpi, int ref_frame_flags) {
cpi->ext_refresh_golden_frame = (ref_frame_flags & AOM_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & AOM_ALT_FLAG) != 0;
cpi->ext_refresh_last_frame = (ref_frame_flags & AOM_LAST_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
}
static YV12_BUFFER_CONFIG *get_av1_ref_frame_buffer(
AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == AOM_LAST_FLAG) ref_frame = LAST_FRAME;
#if CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_LAST2_FLAG)
ref_frame = LAST2_FRAME;
else if (ref_frame_flag == AOM_LAST3_FLAG)
ref_frame = LAST3_FRAME;
#endif // CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
#if CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_BWD_FLAG)
ref_frame = BWDREF_FRAME;
#endif // CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
int av1_copy_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
aom_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
}
int av1_set_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
aom_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int av1_update_entropy(AV1_COMP *cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
#if CONFIG_EXT_REFS
static void check_show_existing_frame(AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
AV1_COMMON *const cm = &cpi->common;
const FRAME_UPDATE_TYPE next_frame_update_type =
gf_group->update_type[gf_group->index];
const int which_arf = gf_group->arf_update_idx[gf_group->index];
if (cm->show_existing_frame == 1) {
cm->show_existing_frame = 0;
} else if (cpi->rc.is_last_bipred_frame) {
// NOTE(zoeliu): If the current frame is a last bi-predictive frame, it is
// needed next to show the BWDREF_FRAME, which is pointed by
// the last_fb_idxes[0] after reference frame buffer update
cpi->rc.is_last_bipred_frame = 0;
cm->show_existing_frame = 1;
cpi->existing_fb_idx_to_show = cpi->lst_fb_idxes[0];
} else if (cpi->is_arf_filter_off[which_arf] &&
(next_frame_update_type == OVERLAY_UPDATE ||
next_frame_update_type == INTNL_OVERLAY_UPDATE)) {
// Other parameters related to OVERLAY_UPDATE will be taken care of
// in av1_rc_get_second_pass_params(cpi)
cm->show_existing_frame = 1;
cpi->rc.is_src_frame_alt_ref = 1;
cpi->existing_fb_idx_to_show = cpi->alt_fb_idx;
cpi->is_arf_filter_off[which_arf] = 0;
}
cpi->rc.is_src_frame_ext_arf = 0;
}
#endif // CONFIG_EXT_REFS
#ifdef OUTPUT_YUV_REC
void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = cm->height;
#if CONFIG_AOM_HIGHBITDEPTH
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
do {
fwrite(src16, s->y_width, 2, yuv_rec_file);
src16 += s->y_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif // OUTPUT_YUV_REC
#if CONFIG_AOM_HIGHBITDEPTH
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
int bd) {
#else
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
#endif // CONFIG_AOM_HIGHBITDEPTH
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t
int i;
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
const int src_widths[3] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int src_heights[3] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width,
dst->uv_crop_width };
const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height,
dst->uv_crop_height };
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_AOM_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
src_strides[i], dsts[i], dst_heights[i],
dst_widths[i], dst_strides[i], bd);
} else {
av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
}
#else
av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
aom_extend_frame_borders(dst);
}
#if CONFIG_AOM_HIGHBITDEPTH
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes,
int bd) {
#else
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes) {
#endif // CONFIG_AOM_HIGHBITDEPTH
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
const InterpFilterParams interp_filter_params =
av1_get_interp_filter_params(EIGHTTAP_REGULAR);
const int16_t *kernel = interp_filter_params.filter_ptr;
const int taps = interp_filter_params.taps;
int x, y, i;
for (y = 0; y < dst_h; y += 16) {
for (x = 0; x < dst_w; x += 16) {
for (i = 0; i < planes; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const int y_q4 = y * (16 / factor) * src_h / dst_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
const uint8_t *src_ptr = srcs[i] +
(y / factor) * src_h / dst_h * src_stride +
(x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
#if CONFIG_AOM_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor, bd);
} else {
aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
#else
aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
}
if (planes == 1)
aom_extend_frame_borders_y(dst);
else
aom_extend_frame_borders(dst);
}
static int scale_down(AV1_COMP *cpi, int q) {
RATE_CONTROL *const rc = &cpi->rc;
GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int scale = 0;
assert(frame_is_kf_gf_arf(cpi));
if (rc->frame_size_selector == UNSCALED &&
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
const int max_size_thresh =
(int)(rate_thresh_mult[SCALE_STEP1] *
AOMMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
}
return scale;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q,
int maxq, int minq) {
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
int force_recode = 0;
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
(cpi->sf.recode_loop == ALLOW_RECODE) ||
(frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) &&
scale_down(cpi, q)) {
// Code this group at a lower resolution.
cpi->resize_pending = 1;
return 1;
}
// TODO(agrange) high_limit could be greater than the scale-down threshold.
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == AOM_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
static INLINE int get_free_upsampled_ref_buf(EncRefCntBuffer *ubufs) {
int i;
for (i = 0; i < (REF_FRAMES + 1); i++) {
if (!ubufs[i].ref_count) {
return i;
}
}
return INVALID_IDX;
}
// Up-sample 1 reference frame.
static INLINE int upsample_ref_frame(AV1_COMP *cpi,
const YV12_BUFFER_CONFIG *const ref) {
AV1_COMMON *const cm = &cpi->common;
EncRefCntBuffer *ubufs = cpi->upsampled_ref_bufs;
int new_uidx = get_free_upsampled_ref_buf(ubufs);
if (new_uidx == INVALID_IDX) {
return INVALID_IDX;
} else {
YV12_BUFFER_CONFIG *upsampled_ref = &ubufs[new_uidx].buf;
// Can allocate buffer for Y plane only.
if (upsampled_ref->buffer_alloc_sz < (ref->buffer_alloc_sz << 6))
if (aom_realloc_frame_buffer(upsampled_ref, (cm->width << 3),
(cm->height << 3), cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(AOM_BORDER_IN_PIXELS << 3),
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
// Currently, only Y plane is up-sampled, U, V are not used.
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame(ref, upsampled_ref, 1, (int)cm->bit_depth);
#else
scale_and_extend_frame(ref, upsampled_ref, 1);
#endif
return new_uidx;
}
}
#define DUMP_REF_FRAME_IMAGES 0
#if DUMP_REF_FRAME_IMAGES == 1
static int dump_one_image(AV1_COMMON *cm,
const YV12_BUFFER_CONFIG *const ref_buf,
char *file_name) {
int h;
FILE *f_ref = NULL;
if (ref_buf == NULL) {
printf("Frame data buffer is NULL.\n");
return AOM_CODEC_MEM_ERROR;
}
if ((f_ref = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return AOM_CODEC_MEM_ERROR;
}
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
fclose(f_ref);
return AOM_CODEC_OK;
}
static void dump_ref_frame_images(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
char file_name[256] = "";
snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
cm->current_video_frame, ref_frame);
dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name);
}
}
#endif // DUMP_REF_FRAME_IMAGES == 1
#if CONFIG_EXT_REFS
// This function is used to shift the virtual indices of last reference frames
// as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// when the LAST_FRAME is updated.
static INLINE void shift_last_ref_frames(AV1_COMP *cpi) {
int ref_frame;
for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) {
cpi->lst_fb_idxes[ref_frame] = cpi->lst_fb_idxes[ref_frame - 1];
// [0] is allocated to the current coded frame. The statistics for the
// reference frames start at [LAST_FRAME], i.e. [1].
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[ref_frame + LAST_FRAME],
cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME],
sizeof(cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME]));
}
}
}
#endif // CONFIG_EXT_REFS
void av1_update_reference_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
int new_uidx = 0;
// NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
// for the purpose to verify no mismatch between encoder and decoder.
if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx;
if (use_upsampled_ref) {
#if CONFIG_EXT_REFS
if (cm->show_existing_frame) {
new_uidx = cpi->upsampled_ref_idx[cpi->existing_fb_idx_to_show];
// TODO(zoeliu): Once following is confirmed, remove it.
assert(cpi->upsampled_ref_bufs[new_uidx].ref_count > 0);
} else {
#endif // CONFIG_EXT_REFS
// Up-sample the current encoded frame.
RefCntBuffer *bufs = pool->frame_bufs;
const YV12_BUFFER_CONFIG *const ref = &bufs[cm->new_fb_idx].buf;
new_uidx = upsample_ref_frame(cpi, ref);
#if CONFIG_EXT_REFS
assert(new_uidx != INVALID_IDX);
}
#endif // CONFIG_EXT_REFS
}
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
cm->new_fb_idx);
#if CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx],
cm->new_fb_idx);
#endif // CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref) {
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
#if CONFIG_EXT_REFS
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
#endif // CONFIG_EXT_REFS
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
}
} else if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term in function
// av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
// we're updating the GF with the current decoded frame, we save it to the
// ARF slot instead.
// We now have to update the ARF with the current frame and swap gld_fb_idx
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
// slot and, if we're updating the GF, the current frame becomes the new GF.
int tmp;
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
#if CONFIG_EXT_REFS
// We need to modify the mapping accordingly
cpi->arf_map[0] = cpi->alt_fb_idx;
#endif
// TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to
// cpi->interp_filter_selected[GOLDEN_FRAME]?
#if CONFIG_EXT_REFS
} else if (cpi->rc.is_last_bipred_frame) {
// Refresh the LAST_FRAME with the BWDREF_FRAME and retire the LAST3_FRAME
// by updating the virtual indices. Note that the frame BWDREF_FRAME points
// to now should be retired, and it should not be used before refreshed.
int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = cpi->bwd_fb_idx;
cpi->bwd_fb_idx = tmp;
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[BWDREF_FRAME],
sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
} else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) {
// Deal with the special case for showing existing internal ALTREF_FRAME
// Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME
// by updating the virtual indices.
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int which_arf = gf_group->arf_ref_idx[gf_group->index];
int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = cpi->alt_fb_idx;
cpi->alt_fb_idx = tmp;
// We need to modify the mapping accordingly
cpi->arf_map[which_arf] = cpi->alt_fb_idx;
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
sizeof(cpi->interp_filter_selected[ALTREF_FRAME + which_arf]));
#endif // CONFIG_EXT_REFS
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
int which_arf = 0;
#if CONFIG_EXT_REFS
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
which_arf = gf_group->arf_update_idx[gf_group->index];
arf_idx = cpi->arf_map[which_arf];
}
#else
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif // CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[arf_idx],
new_uidx);
memcpy(cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
#if !CONFIG_EXT_REFS
if (!cpi->rc.is_src_frame_alt_ref)
#endif // !CONFIG_EXT_REFS
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#if CONFIG_EXT_REFS
if (cpi->refresh_bwd_ref_frame) {
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
// We have swapped the virtual indices to allow bwd_ref_frame to use
// ALT0 as reference frame. We need to swap them back.
// NOTE: The ALT_REFs' are indexed reversely, and ALT0 refers to the
// farthest ALT_REF from the first frame in the gf group.
int tmp = cpi->arf_map[0];
cpi->arf_map[0] = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->bwd_fb_idx;
cpi->bwd_fb_idx = tmp;
}
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
memcpy(cpi->interp_filter_selected[BWDREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#endif // CONFIG_EXT_REFS
}
if (cpi->refresh_last_frame) {
#if CONFIG_EXT_REFS
// NOTE(zoeliu): We have two layers of mapping (1) from the per-frame
// reference to the reference frame buffer virtual index; and then (2) from
// the virtual index to the reference frame buffer physical index:
//
// LAST_FRAME, ..., LAST3_FRAME, ..., ALTREF_FRAME
// | | |
// v v v
// lst_fb_idxes[0], ..., lst_fb_idxes[2], ..., alt_fb_idx
// | | |
// v v v
// ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[]
//
// When refresh_last_frame is set, it is intended to retire LAST3_FRAME,
// have the other 2 LAST reference frames shifted as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// , and then have LAST_FRAME refreshed by the newly coded frame.
//
// To fulfill it, the decoder will be notified to execute following 2 steps:
//
// (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME
// to point to the newly coded frame, i.e.
// ref_frame_map[lst_fb_idexes[2]] => new_fb_idx;
//
// (b) To change the 1st layer mapping to have LAST_FRAME mapped to the
// original virtual index of LAST3_FRAME and have the other mappings
// shifted as follows:
// LAST_FRAME, LAST2_FRAME, LAST3_FRAME
// | | |
// v v v
// lst_fb_idxes[2], lst_fb_idxes[0], lst_fb_idxes[1]
int ref_frame;
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
// We have swapped the virtual indices to use ALT0 as BWD_REF
// and we need to swap them back.
int tmp = cpi->arf_map[0];
cpi->arf_map[0] = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->bwd_fb_idx;
cpi->bwd_fb_idx = tmp;
}
if (cm->frame_type == KEY_FRAME) {
for (ref_frame = 0; ref_frame < LAST_REF_FRAMES; ++ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[ref_frame]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[ref_frame]],
new_uidx);
}
} else {
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(
cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]],
new_uidx);
tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = tmp;
assert(cm->show_existing_frame == 0);
// NOTE: Currently only LF_UPDATE and INTNL_OVERLAY_UPDATE frames are to
// refresh the LAST_FRAME.
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#else
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idx], new_uidx);
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#endif // CONFIG_EXT_REFS
}
#if DUMP_REF_FRAME_IMAGES == 1
// Dump out all reference frame images.
dump_ref_frame_images(cpi);
#endif // DUMP_REF_FRAME_IMAGES
}
static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (is_lossless_requested(&cpi->oxcf)) {
lf->filter_level = 0;
} else {
struct aom_usec_timer timer;
aom_clear_system_state();
aom_usec_timer_start(&timer);
#if CONFIG_LOOP_RESTORATION
av1_pick_filter_restoration(cpi->Source, cpi, cpi->sf.lpf_pick);
#else
av1_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
#endif // CONFIG_LOOP_RESTORATION
aom_usec_timer_mark(&timer);
cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
#if CONFIG_VAR_TX || CONFIG_EXT_PARTITION
av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#else
if (cpi->num_workers > 1)
av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
lf->filter_level, 0, 0, cpi->workers,
cpi->num_workers, &cpi->lf_row_sync);
else
av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#endif
}
#if CONFIG_CLPF
cm->clpf_strength_y = cm->clpf_strength_u = cm->clpf_strength_v = 0;
cm->clpf_size = CLPF_64X64;
// Allocate buffer to hold the status of all filter blocks:
// 1 = On, 0 = off, -1 = implicitly off
{
int size;
cm->clpf_stride = ((cm->frame_to_show->y_crop_width + MIN_FB_SIZE - 1) &
~(MIN_FB_SIZE - 1)) >>
MIN_FB_SIZE_LOG2;
size = cm->clpf_stride *
((cm->frame_to_show->y_crop_height + MIN_FB_SIZE - 1) &
~(MIN_FB_SIZE - 1)) >>
MIN_FB_SIZE_LOG2;
CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(size));
memset(cm->clpf_blocks, CLPF_NOFLAG, size);
}
if (!is_lossless_requested(&cpi->oxcf)) {
const YV12_BUFFER_CONFIG *const frame = cm->frame_to_show;
// Find the best strength and block size for the entire frame
int fb_size_log2, strength_y, strength_u, strength_v;
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_y, &fb_size_log2,
AOM_PLANE_Y);
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_u, 0, AOM_PLANE_U);
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_v, 0, AOM_PLANE_V);
if (strength_y) {
// Apply the filter using the chosen strength
cm->clpf_strength_y = strength_y - (strength_y == 4);
cm->clpf_size =
fb_size_log2 ? fb_size_log2 - MAX_FB_SIZE_LOG2 + 3 : CLPF_NOSIZE;
av1_clpf_frame(frame, cpi->Source, cm, cm->clpf_size != CLPF_NOSIZE,
strength_y, 4 + cm->clpf_size, AOM_PLANE_Y,
av1_clpf_decision);
}
if (strength_u) {
cm->clpf_strength_u = strength_u - (strength_u == 4);
av1_clpf_frame(frame, NULL, cm, 0, strength_u, 4, AOM_PLANE_U, NULL);
}
if (strength_v) {
cm->clpf_strength_v = strength_v - (strength_v == 4);
av1_clpf_frame(frame, NULL, cm, 0, strength_v, 4, AOM_PLANE_V, NULL);
}
}
#endif
#if CONFIG_DERING
if (is_lossless_requested(&cpi->oxcf)) {
cm->dering_level = 0;
} else {
cm->dering_level =
av1_dering_search(cm->frame_to_show, cpi->Source, cm, xd);
av1_dering_frame(cm->frame_to_show, cm, xd, cm->dering_level);
}
#endif // CONFIG_DERING
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info.restoration_type != RESTORE_NONE) {
av1_loop_restoration_init(&cm->rst_internal, &cm->rst_info,
cm->frame_type == KEY_FRAME, cm->width,
cm->height);
av1_loop_restoration_rows(cm->frame_to_show, cm, 0, cm->mi_rows, 0);
}
#endif // CONFIG_LOOP_RESTORATION
aom_extend_frame_inner_borders(cm->frame_to_show);
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) {
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows ||
new_fb_ptr->mi_cols < cm->mi_cols) {
aom_free(new_fb_ptr->mvs);
CHECK_MEM_ERROR(cm, new_fb_ptr->mvs,
(MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*new_fb_ptr->mvs)));
new_fb_ptr->mi_rows = cm->mi_rows;
new_fb_ptr->mi_cols = cm->mi_cols;
}
}
void av1_scale_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = {
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref =
get_ref_frame_buffer(cpi, ref_frame);
if (ref == NULL) {
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
continue;
}
#if CONFIG_AOM_HIGHBITDEPTH
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX) return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(
&new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE,
(int)cm->bit_depth);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#else
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX) return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (cpi->sf.use_upsampled_references &&
(force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height)) {
const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
EncRefCntBuffer *ubuf =
&cpi->upsampled_ref_bufs[cpi->upsampled_ref_idx[map_idx]];
if (aom_realloc_frame_buffer(&ubuf->buf, (cm->width << 3),
(cm->height << 3), cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(AOM_BORDER_IN_PIXELS << 3),
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1,
(int)cm->bit_depth);
#else
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1);
#endif
}
} else {
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
}
static void release_scaled_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int i;
if (cpi->oxcf.pass == 0) {
// Only release scaled references under certain conditions:
// if reference will be updated, or if scaled reference has same resolution.
int refresh[INTER_REFS_PER_FRAME];
refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
#if CONFIG_EXT_REFS
refresh[1] = refresh[2] = 0;
refresh[3] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[4] = (cpi->refresh_bwd_ref_frame) ? 1 : 0;
refresh[5] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#else
refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#endif // CONFIG_EXT_REFS
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i - 1];
RefCntBuffer *const buf =
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
if (buf != NULL &&
(refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width &&
buf->buf.y_crop_height == ref->y_crop_height))) {
--buf->ref_count;
cpi->scaled_ref_idx[i - 1] = INVALID_IDX;
}
}
} else {
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i];
RefCntBuffer *const buf =
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
}
}
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
void av1_full_to_model_counts(av1_coeff_count_model *model_count,
av1_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int64_t recon_err;
aom_clear_system_state();
recon_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10u %dx%d %10d %10d %d %d %10d %10d %10d %10d"
"%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
"%10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10"PRId64" %10d %10d %10d\n",
cpi->common.current_video_frame,
cm->width, cm->height,
cpi->td.rd_counts.m_search_count,
cpi->td.rd_counts.ex_search_count,
cpi->rc.source_alt_ref_pending,
cpi->rc.source_alt_ref_active,
cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.vbr_bits_off_target,
cpi->rc.vbr_bits_off_target_fast,
cpi->twopass.extend_minq,
cpi->twopass.extend_minq_fast,
cpi->rc.total_target_vs_actual,
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
av1_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
(double)av1_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0,
av1_convert_qindex_to_q(cpi->twopass.active_worst_quality,
cm->bit_depth),
cpi->rc.avg_q,
av1_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct,
cpi->twopass.fr_content_type);
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
static void set_mv_search_params(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
const unsigned int max_mv_def = AOMMIN(cm->width, cm->height);
// Default based on max resolution.
cpi->mv_step_param = av1_init_search_range(max_mv_def);
if (cpi->sf.mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame) {
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = av1_init_search_range(
AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
}
cpi->max_mv_magnitude = 0;
}
}
}
static void set_size_independent_vars(AV1_COMP *cpi) {
av1_set_speed_features_framesize_independent(cpi);
av1_set_rd_speed_thresholds(cpi);
av1_set_rd_speed_thresholds_sub8x8(cpi);
cpi->common.interp_filter = cpi->sf.default_interp_filter;
}
static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index,
int *top_index) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Setup variables that depend on the dimensions of the frame.
av1_set_speed_features_framesize_dependent(cpi);
// Decide q and q bounds.
*q = av1_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
if (!frame_is_intra_only(cm)) {
av1_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (oxcf->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
}
static void init_motion_estimation(AV1_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
av1_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void set_frame_size(AV1_COMP *cpi) {
int ref_frame;
AV1_COMMON *const cm = &cpi->common;
AV1EncoderConfig *const oxcf = &cpi->oxcf;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
if (oxcf->pass == 2 && oxcf->rc_mode == AOM_VBR &&
((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
(oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
av1_calculate_coded_size(cpi, &oxcf->scaled_frame_width,
&oxcf->scaled_frame_height);
// There has been a change in frame size.
av1_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
}
if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
oxcf->resize_mode == RESIZE_DYNAMIC) {
if (cpi->resize_pending == 1) {
oxcf->scaled_frame_width =
(cm->width * cpi->resize_scale_num) / cpi->resize_scale_den;
oxcf->scaled_frame_height =
(cm->height * cpi->resize_scale_num) / cpi->resize_scale_den;
} else if (cpi->resize_pending == -1) {
// Go back up to original size.
oxcf->scaled_frame_width = oxcf->width;
oxcf->scaled_frame_height = oxcf->height;
}
if (cpi->resize_pending != 0) {
// There has been a change in frame size.
av1_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
}
}
if (oxcf->pass == 2) {
av1_set_target_rate(cpi);
}
alloc_frame_mvs(cm, cm->new_fb_idx);
// Reset the frame pointers to the current frame size.
if (aom_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME];
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
ref_buf->idx = buf_idx;
if (buf_idx != INVALID_IDX) {
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
ref_buf->buf = buf;
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width,
cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0);
#else
av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
buf->y_crop_height, cm->width,
cm->height);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (av1_is_scaled(&ref_buf->sf)) aom_extend_frame_borders(buf);
} else {
ref_buf->buf = NULL;
}
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
}
static void reset_use_upsampled_references(AV1_COMP *cpi) {
MV_REFERENCE_FRAME ref_frame;
// reset up-sampled reference buffer structure.
init_upsampled_ref_frame_bufs(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, ref_frame);
int new_uidx = upsample_ref_frame(cpi, ref);
// Update the up-sampled reference index.
cpi->upsampled_ref_idx[get_ref_frame_map_idx(cpi, ref_frame)] = new_uidx;
cpi->upsampled_ref_bufs[new_uidx].ref_count++;
}
}
static void encode_without_recode_loop(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
aom_clear_system_state();
set_frame_size(cpi);
// For 1 pass CBR under dynamic resize mode: use faster scaling for source.
// Only for 2x2 scaling for now.
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR &&
cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
cpi->un_scaled_source->y_width == (cm->width << 1) &&
cpi->un_scaled_source->y_height == (cm->height << 1)) {
cpi->Source = av1_scale_if_required_fast(cm, cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required_fast(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source);
} else {
cpi->Source =
av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
}
if (frame_is_intra_only(cm) == 0) {
av1_scale_references(cpi);
}
set_size_independent_vars(cpi);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
av1_set_quantizer(cm, q);
av1_set_variance_partition_thresholds(cpi, q);
setup_frame(cpi);
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs);
cm->coef_probs_update_idx = 0;
av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
suppress_active_map(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_setup(cpi);
}
apply_active_map(cpi);
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR))
av1_cyclic_refresh_check_golden_update(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
}
static void encode_with_recode_loop(AV1_COMP *cpi, size_t *size,
uint8_t *dest) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int bottom_index, top_index;
int loop_count = 0;
int loop_at_this_size = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int q = 0, q_low = 0, q_high = 0;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
set_size_independent_vars(cpi);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
do {
aom_clear_system_state();
set_frame_size(cpi);
if (loop_count == 0 || cpi->resize_pending != 0) {
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
// Reset the loop state for new frame size.
overshoot_seen = 0;
undershoot_seen = 0;
// Reconfiguration for change in frame size has concluded.
cpi->resize_pending = 0;
q_low = bottom_index;
q_high = top_index;
loop_at_this_size = 0;
}
// Decide frame size bounds first time through.
if (loop_count == 0) {
av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
}
cpi->Source =
av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
if (frame_is_intra_only(cm) == 0) {
if (loop_count > 0) {
release_scaled_references(cpi);
}
av1_scale_references(cpi);
}
av1_set_quantizer(cm, q);
if (loop_count == 0) setup_frame(cpi);
#if CONFIG_ENTROPY
// Base q-index may have changed, so we need to assign proper default coef
// probs before every iteration.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
int i;
av1_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc;
} else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
}
#endif // CONFIG_ENTROPY
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
if (loop_count == 0 || frame_is_intra_only(cm) ||
cm->error_resilient_mode) {
av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs);
} else {
if (cm->do_subframe_update) {
av1_copy(cm->fc->coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
av1_copy(cm->starting_coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
av1_zero(cpi->subframe_stats.coef_counts_buf);
av1_zero(cpi->subframe_stats.eob_counts_buf);
}
}
cm->coef_probs_update_idx = 0;
av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
av1_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == AOM_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int64_t kf_err;
int64_t high_err_target = cpi->ambient_err;
int64_t low_err_target = cpi->ambient_err >> 1;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
kf_err = aom_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
kf_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
kf_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_AOM_HIGHBITDEPTH
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (int)((q * high_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (int)((q * low_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(cpi, frame_over_shoot_limit,
frame_under_shoot_limit, q,
AOMMAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
if (cpi->resize_pending == 1) {
// Change in frame size so go back around the recode loop.
cpi->rc.frame_size_selector =
SCALE_STEP1 - cpi->rc.frame_size_selector;
cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
++loop_count;
loop = 1;
continue;
}
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_at_this_size > 1) {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index));
while (q < q_low && retries < 10) {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_at_this_size > 1) {
av1_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low) / 2;
} else {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = (q != last_q);
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (loop) {
++loop_count;
++loop_at_this_size;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
}
} while (loop);
}
static int get_ref_frame_flags(const AV1_COMP *cpi) {
const int *const map = cpi->common.ref_frame_map;
#if CONFIG_EXT_REFS
const int last2_is_last =
map[cpi->lst_fb_idxes[1]] == map[cpi->lst_fb_idxes[0]];
const int last3_is_last =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[0]];
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int bwd_is_last = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int last3_is_last2 =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[1]];
const int gld_is_last2 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int bwd_is_last2 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int gld_is_last3 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int bwd_is_last3 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int bwd_is_gld = map[cpi->bwd_fb_idx] == map[cpi->gld_fb_idx];
const int last2_is_alt = map[cpi->lst_fb_idxes[1]] == map[cpi->alt_fb_idx];
const int last3_is_alt = map[cpi->lst_fb_idxes[2]] == map[cpi->alt_fb_idx];
const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
const int bwd_is_alt = map[cpi->bwd_fb_idx] == map[cpi->alt_fb_idx];
#else
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
#endif // CONFIG_EXT_REFS
int flags = AOM_REFFRAME_ALL;
#if CONFIG_EXT_REFS
// Disable the use of BWDREF_FRAME for non-bipredictive frames.
if (!(cpi->rc.is_bipred_frame || cpi->rc.is_last_bipred_frame ||
(cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs)))
flags &= ~AOM_BWD_FLAG;
#endif // CONFIG_EXT_REFS
if (gld_is_last || gld_is_alt) flags &= ~AOM_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG;
if (alt_is_last) flags &= ~AOM_ALT_FLAG;
#if CONFIG_EXT_REFS
if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG;
if (last3_is_last || last3_is_last2 || last3_is_alt) flags &= ~AOM_LAST3_FLAG;
if (gld_is_last2 || gld_is_last3) flags &= ~AOM_GOLD_FLAG;
if ((bwd_is_last || bwd_is_last2 || bwd_is_last3 || bwd_is_gld ||
bwd_is_alt) &&
(flags & AOM_BWD_FLAG))
flags &= ~AOM_BWD_FLAG;
#endif // CONFIG_EXT_REFS
return flags;
}
static void set_ext_overrides(AV1_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// av1_update_reference() and av1_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
}
YV12_BUFFER_CONFIG *av1_scale_if_required_fast(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
// For 2x2 scaling down.
aom_scale_frame(unscaled, scaled, unscaled->y_buffer, 9, 2, 1, 2, 1, 0);
aom_extend_frame_borders(scaled);
return scaled;
} else {
return unscaled;
}
}
YV12_BUFFER_CONFIG *av1_scale_if_required(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
#else
scale_and_extend_frame_nonnormative(unscaled, scaled);
#endif // CONFIG_AOM_HIGHBITDEPTH
return scaled;
} else {
return unscaled;
}
}
static void set_arf_sign_bias(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int arf_sign_bias;
#if CONFIG_EXT_REFS
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// The arf_sign_bias will be one for internal ARFs'
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
#else
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
} else {
arf_sign_bias =
(cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
}
#endif
cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
#if CONFIG_EXT_REFS
cm->ref_frame_sign_bias[BWDREF_FRAME] = cm->ref_frame_sign_bias[ALTREF_FRAME];
#endif // CONFIG_EXT_REFS
}
static int setup_interp_filter_search_mask(AV1_COMP *cpi) {
InterpFilter ifilter;
int ref_total[TOTAL_REFS_PER_FRAME] = { 0 };
MV_REFERENCE_FRAME ref;
int mask = 0;
int arf_idx = ALTREF_FRAME;
#if CONFIG_EXT_REFS
// Get which arf used as ALTREF_FRAME
if (cpi->oxcf.pass == 2)
arf_idx += cpi->twopass.gf_group.arf_ref_idx[cpi->twopass.gf_group.index];
#endif
if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame)
return mask;
#if CONFIG_EXT_REFS
for (ref = LAST_FRAME; ref < ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[arf_idx][ifilter];
#else
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
#endif
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) {
if ((ref_total[LAST_FRAME] &&
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
#if CONFIG_EXT_REFS
(ref_total[LAST2_FRAME] == 0 ||
cpi->interp_filter_selected[LAST2_FRAME][ifilter] * 50 <
ref_total[LAST2_FRAME]) &&
(ref_total[LAST3_FRAME] == 0 ||
cpi->interp_filter_selected[LAST3_FRAME][ifilter] * 50 <
ref_total[LAST3_FRAME]) &&
#endif // CONFIG_EXT_REFS
(ref_total[GOLDEN_FRAME] == 0 ||
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 <
ref_total[GOLDEN_FRAME]) &&
#if CONFIG_EXT_REFS
(ref_total[BWDREF_FRAME] == 0 ||
cpi->interp_filter_selected[BWDREF_FRAME][ifilter] * 50 <
ref_total[BWDREF_FRAME]) &&
#endif // CONFIG_EXT_REFS
(ref_total[ALTREF_FRAME] == 0 ||
cpi->interp_filter_selected[arf_idx][ifilter] * 50 <
ref_total[ALTREF_FRAME]))
mask |= 1 << ifilter;
}
return mask;
}
#define DUMP_RECON_FRAMES 0
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
static void dump_filtered_recon_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show;
int h;
char file_name[256] = "/tmp/enc_filtered_recon.yuv";
FILE *f_recon = NULL;
if (recon_buf == NULL || !cm->show_frame) {
printf("Frame %d is not ready or no show to dump.\n",
cm->current_video_frame);
return;
}
if (cm->current_video_frame == 0) {
if ((f_recon = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return;
}
} else {
if ((f_recon = fopen(file_name, "ab")) == NULL) {
printf("Unable to open file %s to append.\n", file_name);
return;
}
}
printf(
"\nFrame=%5d, encode_update_type[%5d]=%1d, show_existing_frame=%d, "
"y_stride=%4d, uv_stride=%4d, width=%4d, height=%4d\n",
cm->current_video_frame, cpi->twopass.gf_group.index,
cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index],
cm->show_existing_frame, recon_buf->y_stride, recon_buf->uv_stride,
cm->width, cm->height);
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width,
f_recon);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
fclose(f_recon);
}
#endif // DUMP_RECON_FRAMES
static void encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
struct segmentation *const seg = &cm->seg;
TX_SIZE t;
set_ext_overrides(cpi);
aom_clear_system_state();
// Set the arf sign bias for this frame.
set_arf_sign_bias(cpi);
#if CONFIG_EXT_REFS
// NOTE:
// (1) Move the setup of the ref_frame_flags upfront as it would be
// determined by the current frame properties;
// (2) The setup of the ref_frame_flags applies to both show_existing_frame's
// and the other cases.
if (cm->current_video_frame > 0)
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
if (cm->show_existing_frame) {
// NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current
// BWDREF_FRAME in the reference frame buffer.
cm->frame_type = INTER_FRAME;
cm->show_frame = 1;
cpi->frame_flags = *frame_flags;
// In the case of show_existing frame, we will not send fresh flag
// to decoder. Any change in the reference frame buffer can be done by
// switching the virtual indices.
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bwd_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 0;
cpi->rc.is_bipred_frame = 0;
// Build the bitstream
av1_pack_bitstream(cpi, dest, size);
// Set up frame to show to get ready for stats collection.
cm->frame_to_show = get_frame_new_buffer(cm);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
// Update the LAST_FRAME in the reference frame buffer.
av1_update_reference_frames(cpi);
// Update frame flags
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
// Update the frame type
cm->last_frame_type = cm->frame_type;
#if CONFIG_EXT_REFS
// Since we allocate a spot for the OVERLAY frame in the gf group, we need
// to do post-encoding update accordingly.
if (cpi->rc.is_src_frame_alt_ref) {
av1_set_target_rate(cpi);
av1_rc_postencode_update(cpi, *size);
}
#endif
cm->last_width = cm->width;
cm->last_height = cm->height;
++cm->current_video_frame;
return;
}
#endif // CONFIG_EXT_REFS
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search)
cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi);
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
// Reset the loop filter deltas and segmentation map.
av1_reset_segment_features(cm);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = oxcf->error_resilient_mode;
// By default, encoder assumes decoder can use prev_mi.
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = RESET_FRAME_CONTEXT_CURRENT;
}
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
cm->frame_type != KEY_FRAME) {
if (av1_rc_drop_frame(cpi)) {
av1_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
return;
}
}
aom_clear_system_state();
#if CONFIG_INTERNAL_STATS
memset(cpi->mode_chosen_counts, 0,
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
#endif
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi);
} else {
encode_with_recode_loop(cpi, size, dest);
}
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
av1_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif // OUTPUT_YUV_SKINMAP
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
cpi->ambient_err =
aom_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
cpi->ambient_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
cpi->ambient_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_AOM_HIGHBITDEPTH
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_last_frame = 1;
}
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_to_show->color_space = cm->color_space;
cm->frame_to_show->color_range = cm->color_range;
cm->frame_to_show->render_width = cm->render_width;
cm->frame_to_show->render_height = cm->render_height;
#if CONFIG_EXT_REFS
// TODO(zoeliu): For non-ref frames, loop filtering may need to be turned
// off.
#endif // CONFIG_EXT_REFS
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// Build the bitstream
av1_pack_bitstream(cpi, dest, size);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
if (cm->show_frame) dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
#if CONFIG_CLPF
aom_free(cm->clpf_blocks);
cm->clpf_blocks = 0;
#endif
if (cm->seg.update_map) update_reference_segmentation_map(cpi);
if (frame_is_intra_only(cm) == 0) {
release_scaled_references(cpi);
}
av1_update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
av1_full_to_model_counts(cpi->td.counts->coef[t],
cpi->td.rd_counts.coef_counts[t]);
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
#if CONFIG_ENTROPY
cm->partial_prob_update = 0;
#endif // CONFIG_ENTROPY
av1_adapt_coef_probs(cm);
av1_adapt_intra_frame_probs(cm);
}
if (!frame_is_intra_only(cm)) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
av1_adapt_inter_frame_probs(cm);
av1_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
#if CONFIG_EXT_REFS
if (cpi->refresh_bwd_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_BWDREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
#endif // CONFIG_EXT_REFS
#if !CONFIG_EXT_REFS
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
#endif // !CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
cm->last3_frame_type = cm->last2_frame_type;
cm->last2_frame_type = cm->last_frame_type;
#endif // CONFIG_EXT_REFS
cm->last_frame_type = cm->frame_type;
av1_rc_postencode_update(cpi, *size);
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
#if CONFIG_EXT_REFS
// TODO(zoeliu): We may only swamp mi and prev_mi for those frames that are
// being used as reference.
#endif // CONFIG_EXT_REFS
av1_swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
}
#if CONFIG_EXT_REFS
// NOTE: Shall not refer to any frame not used as reference.
if (cm->is_reference_frame)
#endif // CONFIG_EXT_REFS
cm->prev_frame = cm->cur_frame;
}
static void Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == AOM_CBR) {
av1_rc_get_one_pass_cbr_params(cpi);
} else {
av1_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
#if CONFIG_EXT_REFS
// Do not do post-encoding update for those frames that do not have a spot in
// a gf group, but note that an OVERLAY frame always has a spot in a gf group,
// even when show_existing_frame is used.
if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref) {
av1_twopass_postencode_update(cpi);
}
check_show_existing_frame(cpi);
#else
av1_twopass_postencode_update(cpi);
#endif // CONFIG_EXT_REFS
}
static void init_ref_frame_bufs(AV1_COMMON *cm) {
int i;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = INVALID_IDX;
pool->frame_bufs[i].ref_count = 0;
}
}
static void check_initial_width(AV1_COMP *cpi,
#if CONFIG_AOM_HIGHBITDEPTH
int use_highbitdepth,
#endif
int subsampling_x, int subsampling_y) {
AV1_COMMON *const cm = &cpi->common;
if (!cpi->initial_width ||
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth != use_highbitdepth ||
#endif
cm->subsampling_x != subsampling_x ||
cm->subsampling_y != subsampling_y) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = use_highbitdepth;
#endif
alloc_raw_frame_buffers(cpi);
init_ref_frame_bufs(cm);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
cpi->initial_mbs = cm->MBs;
}
}
int av1_receive_raw_frame(AV1_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
AV1_COMMON *const cm = &cpi->common;
struct aom_usec_timer timer;
int res = 0;
const int subsampling_x = sd->subsampling_x;
const int subsampling_y = sd->subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
#endif
#if CONFIG_AOM_HIGHBITDEPTH
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
#else
check_initial_width(cpi, subsampling_x, subsampling_y);
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_usec_timer_start(&timer);
if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
#if CONFIG_AOM_HIGHBITDEPTH
use_highbitdepth,
#endif // CONFIG_AOM_HIGHBITDEPTH
frame_flags))
res = -1;
aom_usec_timer_mark(&timer);
cpi->time_receive_data += aom_usec_timer_elapsed(&timer);
if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
(subsampling_x != 1 || subsampling_y != 1)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Non-4:2:0 color format requires profile 1 or 3");
res = -1;
}
if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
(subsampling_x == 1 && subsampling_y == 1)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"4:2:0 color format requires profile 0 or 2");
res = -1;
}
return res;
}
static int frame_is_reference(const AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame ||
#endif // CONFIG_EXT_REFS
cpi->refresh_alt_ref_frame || !cm->error_resilient_mode ||
cm->lf.mode_ref_delta_update || cm->seg.update_map ||
cm->seg.update_data;
}
static void adjust_frame_rate(AV1_COMP *cpi,
const struct lookahead_entry *source) {
int64_t this_duration;
int step = 0;
if (source->ts_start == cpi->first_time_stamp_ever) {
this_duration = source->ts_end - source->ts_start;
step = 1;
} else {
int64_t last_duration =
cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
av1_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = AOMMIN(
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
av1_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(cpi)) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
#if CONFIG_EXT_REFS
static int get_brf_src_index(AV1_COMP *cpi) {
int brf_src_index = 0;
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// TODO(zoeliu): We need to add the check on the -bwd_ref command line setup
// flag.
if (gf_group->bidir_pred_enabled[gf_group->index]) {
if (cpi->oxcf.pass == 2) {
if (gf_group->update_type[gf_group->index] == BRF_UPDATE)
brf_src_index = gf_group->brf_src_offset[gf_group->index];
} else {
// TODO(zoeliu): To re-visit the setup for this scenario
brf_src_index = cpi->rc.bipred_group_interval - 1;
}
}
return brf_src_index;
}
#endif // CONFIG_EXT_REFS
static void check_src_altref(AV1_COMP *cpi,
const struct lookahead_entry *source) {
RATE_CONTROL *const rc = &cpi->rc;
// If pass == 2, the parameters set here will be reset in
// av1_rc_get_second_pass_params()
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
#if CONFIG_EXT_REFS
(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) ||
#endif
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref =
cpi->alt_ref_source && (source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
#if CONFIG_INTERNAL_STATS
extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch,
const unsigned char *img2, int img2_pitch,
int width, int height);
static void adjust_image_stat(double y, double u, double v, double all,
ImageStat *s) {
s->stat[Y] += y;
s->stat[U] += u;
s->stat[V] += v;
s->stat[ALL] += all;
s->worst = AOMMIN(s->worst, all);
}
static void compute_internal_stats(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
double samples = 0.0;
uint32_t in_bit_depth = 8;
uint32_t bit_depth = 8;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
in_bit_depth = cpi->oxcf.input_bit_depth;
bit_depth = cm->bit_depth;
}
#endif
if (cm->show_frame) {
const YV12_BUFFER_CONFIG *orig = cpi->Source;
const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
double y, u, v, frame_all;
cpi->count++;
if (cpi->b_calculate_psnr) {
PSNR_STATS psnr;
double frame_ssim2 = 0.0, weight = 0.0;
aom_clear_system_state();
// TODO(yaowu): unify these two versions into one.
#if CONFIG_AOM_HIGHBITDEPTH
aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
#else
aom_calc_psnr(orig, recon, &psnr);
#endif // CONFIG_AOM_HIGHBITDEPTH
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0],
&cpi->psnr);
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
samples = psnr.samples[0];
// TODO(yaowu): unify these two versions into one.
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth)
frame_ssim2 =
aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth);
else
frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
#else
frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
#endif // CONFIG_AOM_HIGHBITDEPTH
cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
if (cpi->b_calculate_blockiness) {
#if CONFIG_AOM_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double frame_blockiness =
av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, orig->y_width, orig->y_height);
cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness);
cpi->total_blockiness += frame_blockiness;
}
if (cpi->b_calculate_consistency) {
#if CONFIG_AOM_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double this_inconsistency = aom_get_ssim_metrics(
orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1);
const double peak = (double)((1 << in_bit_depth) - 1);
const double consistency =
aom_sse_to_psnr(samples, peak, cpi->total_inconsistency);
if (consistency > 0.0)
cpi->worst_consistency =
AOMMIN(cpi->worst_consistency, consistency);
cpi->total_inconsistency += this_inconsistency;
}
}
}
frame_all =
aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
}
}
#endif // CONFIG_INTERNAL_STATS
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
AV1_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
RATE_CONTROL *const rc = &cpi->rc;
struct aom_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
struct lookahead_entry *last_source = NULL;
struct lookahead_entry *source = NULL;
int arf_src_index;
#if CONFIG_EXT_REFS
int brf_src_index;
#endif // CONFIG_EXT_REFS
int i;
#if CONFIG_BITSTREAM_DEBUG
assert(cpi->oxcf.max_threads == 0 &&
"bitstream debug tool does not support multithreading");
bitstream_queue_record_write();
bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame);
#endif
aom_usec_timer_start(&cmptimer);
av1_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR
if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
// Normal defaults
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame = 0;
#endif // CONFIG_EXT_REFS
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_EXT_REFS
if (oxcf->pass == 2 && cm->show_existing_frame) {
// Manage the source buffer and flush out the source frame that has been
// coded already; Also get prepared for PSNR calculation if needed.
if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) {
*size = 0;
return -1;
}
cpi->Source = &source->img;
// TODO(zoeliu): To track down to determine whether it's needed to adjust
// the frame rate.
*time_stamp = source->ts_start;
*time_end = source->ts_end;
// We need to adjust frame rate for an overlay frame
if (cpi->rc.is_src_frame_alt_ref) {
adjust_frame_rate(cpi, source);
}
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
// Clear down mmx registers
aom_clear_system_state();
// Start with a 0 size frame.
*size = 0;
// We need to update the gf_group for show_existing overlay frame
if (cpi->rc.is_src_frame_alt_ref) {
av1_rc_get_second_pass_params(cpi);
}
Pass2Encode(cpi, size, dest, frame_flags);
if (cpi->b_calculate_psnr) generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
#endif // CONFIG_INTERNAL_STATS
// Clear down mmx registers
aom_clear_system_state();
cm->show_existing_frame = 0;
return 0;
}
#endif // CONFIG_EXT_REFS
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == AOM_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cpi->alt_ref_source = source;
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
av1_temporal_filter(cpi, arf_src_index);
aom_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
}
rc->source_alt_ref_pending = 0;
}
#if CONFIG_EXT_REFS
rc->is_bwd_ref_frame = 0;
brf_src_index = get_brf_src_index(cpi);
if (brf_src_index) {
assert(brf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) {
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 1;
}
}
#endif // CONFIG_EXT_REFS
if (!source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL)
return -1;
}
// Read in the source frame.
source = av1_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
}
}
if (source) {
cpi->un_scaled_source = cpi->Source =
force_src_buffer ? force_src_buffer : &source->img;
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
*frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
av1_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_start;
}
// Clear down mmx registers
aom_clear_system_state();
// adjust frame rates based on timestamps given
if (cm->show_frame) adjust_frame_rate(cpi, source);
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
#if CONFIG_EXT_REFS
if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = cpi->arf_map[gf_group->arf_ref_idx[gf_group->index]];
}
#else
if (cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
#endif
// Start with a 0 size frame.
*size = 0;
cpi->frame_flags = *frame_flags;
if (oxcf->pass == 2) {
av1_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
set_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i)
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
#if CONFIG_AOM_QM
cm->using_qmatrix = cpi->oxcf.using_qm;
cm->min_qmlevel = cpi->oxcf.qm_minlevel;
cm->max_qmlevel = cpi->oxcf.qm_maxlevel;
#endif
if (oxcf->pass == 1) {
cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
av1_first_pass(cpi, source);
} else if (oxcf->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
if (!cm->error_resilient_mode)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
// No frame encoded, or frame was dropped, release scaled references.
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
aom_usec_timer_mark(&cmptimer);
cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (oxcf->pass != 1) {
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
}
#endif // CONFIG_INTERNAL_STATS
aom_clear_system_state();
return 0;
}
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
AV1_COMMON *cm = &cpi->common;
if (!cm->show_frame) {
return -1;
} else {
int ret;
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
}
aom_clear_system_state();
return ret;
}
}
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1;
*frame =
cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf;
return 0;
}
int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode,
AOM_SCALING vert_mode) {
AV1_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int av1_set_size_literal(AV1_COMP *cpi, unsigned int width,
unsigned int height) {
AV1_COMMON *cm = &cpi->common;
#if CONFIG_AOM_HIGHBITDEPTH
check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
#else
check_initial_width(cpi, 1, 1);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (width) {
cm->width = width;
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d\n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d\n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; }
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) {
if (flags &
(AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF)) {
int ref = AOM_REFFRAME_ALL;
if (flags & AOM_EFLAG_NO_REF_LAST) {
ref ^= AOM_LAST_FLAG;
#if CONFIG_EXT_REFS
ref ^= AOM_LAST2_FLAG;
ref ^= AOM_LAST3_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_REF_ARF) ref ^= AOM_ALT_FLAG;
av1_use_as_reference(cpi, ref);
}
if (flags &
(AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF |
AOM_EFLAG_FORCE_GF | AOM_EFLAG_FORCE_ARF)) {
int upd = AOM_REFFRAME_ALL;
if (flags & AOM_EFLAG_NO_UPD_LAST) {
upd ^= AOM_LAST_FLAG;
#if CONFIG_EXT_REFS
upd ^= AOM_LAST2_FLAG;
upd ^= AOM_LAST3_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_UPD_ARF) upd ^= AOM_ALT_FLAG;
av1_update_reference(cpi, upd);
}
if (flags & AOM_EFLAG_NO_UPD_ENTROPY) {
av1_update_entropy(cpi, 0);
}
}