vpx/vp9/common/vp9_mfqe.c
JackyChen 09673deba9 SSE2 code for the filter in MFQE.
The SSE2 code is from VP8 MFQE, reuse it in VP9. No change on VP8
side. In our testing, we achieve 2X speed by adopting this change.

Change-Id: Ib2b14144ae57c892005c1c4b84e3379d02e56716
2015-01-18 16:07:59 -08:00

394 lines
16 KiB
C

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_postproc.h"
// TODO(jackychen): Replace this function with SSE2 code. There is
// one SSE2 implementation in vp8, so will consider how to share it
// between vp8 and vp9.
static void filter_by_weight(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
int block_size, int src_weight) {
const int dst_weight = (1 << MFQE_PRECISION) - src_weight;
const int rounding_bit = 1 << (MFQE_PRECISION - 1);
int r, c;
for (r = 0; r < block_size; r++) {
for (c = 0; c < block_size; c++) {
dst[c] = (src[c] * src_weight + dst[c] * dst_weight + rounding_bit)
>> MFQE_PRECISION;
}
src += src_stride;
dst += dst_stride;
}
}
void vp9_filter_by_weight8x8_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int src_weight) {
filter_by_weight(src, src_stride, dst, dst_stride, 8, src_weight);
}
void vp9_filter_by_weight16x16_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
int src_weight) {
filter_by_weight(src, src_stride, dst, dst_stride, 16, src_weight);
}
static void filter_by_weight32x32(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int weight) {
vp9_filter_by_weight16x16(src, src_stride, dst, dst_stride, weight);
vp9_filter_by_weight16x16(src + 16, src_stride, dst + 16, dst_stride,
weight);
vp9_filter_by_weight16x16(src + src_stride * 16, src_stride,
dst + dst_stride * 16, dst_stride, weight);
vp9_filter_by_weight16x16(src + src_stride * 16 + 16, src_stride,
dst + dst_stride * 16 + 16, dst_stride, weight);
}
static void filter_by_weight64x64(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int weight) {
filter_by_weight32x32(src, src_stride, dst, dst_stride, weight);
filter_by_weight32x32(src + 32, src_stride, dst + 32,
dst_stride, weight);
filter_by_weight32x32(src + src_stride * 32, src_stride,
dst + dst_stride * 32, dst_stride, weight);
filter_by_weight32x32(src + src_stride * 32 + 32, src_stride,
dst + dst_stride * 32 + 32, dst_stride, weight);
}
static void apply_ifactor(const uint8_t *y, int y_stride, uint8_t *yd,
int yd_stride, const uint8_t *u, const uint8_t *v,
int uv_stride, uint8_t *ud, uint8_t *vd,
int uvd_stride, BLOCK_SIZE block_size,
int weight) {
if (block_size == BLOCK_16X16) {
vp9_filter_by_weight16x16(y, y_stride, yd, yd_stride, weight);
vp9_filter_by_weight8x8(u, uv_stride, ud, uvd_stride, weight);
vp9_filter_by_weight8x8(v, uv_stride, vd, uvd_stride, weight);
} else if (block_size == BLOCK_32X32) {
filter_by_weight32x32(y, y_stride, yd, yd_stride, weight);
vp9_filter_by_weight16x16(u, uv_stride, ud, uvd_stride, weight);
vp9_filter_by_weight16x16(v, uv_stride, vd, uvd_stride, weight);
} else if (block_size == BLOCK_64X64) {
filter_by_weight64x64(y, y_stride, yd, yd_stride, weight);
filter_by_weight32x32(u, uv_stride, ud, uvd_stride, weight);
filter_by_weight32x32(v, uv_stride, vd, uvd_stride, weight);
}
}
// TODO(jackychen): Determine whether replace it with assembly code.
static void copy_mem8x8(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
memcpy(dst, src, 8);
src += src_stride;
dst += dst_stride;
}
}
static void copy_mem16x16(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
memcpy(dst, src, 16);
src += src_stride;
dst += dst_stride;
}
}
static void copy_mem32x32(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride) {
copy_mem16x16(src, src_stride, dst, dst_stride);
copy_mem16x16(src + 16, src_stride, dst + 16, dst_stride);
copy_mem16x16(src + src_stride * 16, src_stride,
dst + dst_stride * 16, dst_stride);
copy_mem16x16(src + src_stride * 16 + 16, src_stride,
dst + dst_stride * 16 + 16, dst_stride);
}
void copy_mem64x64(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride) {
copy_mem32x32(src, src_stride, dst, dst_stride);
copy_mem32x32(src + 32, src_stride, dst + 32, dst_stride);
copy_mem32x32(src + src_stride * 32, src_stride,
dst + src_stride * 32, dst_stride);
copy_mem32x32(src + src_stride * 32 + 32, src_stride,
dst + src_stride * 32 + 32, dst_stride);
}
static void copy_block(const uint8_t *y, const uint8_t *u, const uint8_t *v,
int y_stride, int uv_stride, uint8_t *yd, uint8_t *ud,
uint8_t *vd, int yd_stride, int uvd_stride,
BLOCK_SIZE bs) {
if (bs == BLOCK_16X16) {
copy_mem16x16(y, y_stride, yd, yd_stride);
copy_mem8x8(u, uv_stride, ud, uvd_stride);
copy_mem8x8(v, uv_stride, vd, uvd_stride);
} else if (bs == BLOCK_32X32) {
copy_mem32x32(y, y_stride, yd, yd_stride);
copy_mem16x16(u, uv_stride, ud, uvd_stride);
copy_mem16x16(v, uv_stride, vd, uvd_stride);
} else {
copy_mem64x64(y, y_stride, yd, yd_stride);
copy_mem32x32(u, uv_stride, ud, uvd_stride);
copy_mem32x32(v, uv_stride, vd, uvd_stride);
}
}
static void get_thr(BLOCK_SIZE bs, int qdiff, int *sad_thr, int *vdiff_thr) {
const int adj = qdiff >> MFQE_PRECISION;
if (bs == BLOCK_16X16) {
*sad_thr = 7 + adj;
} else if (bs == BLOCK_32X32) {
*sad_thr = 6 + adj;
} else { // BLOCK_64X64
*sad_thr = 5 + adj;
}
*vdiff_thr = 125 + qdiff;
}
static void mfqe_block(BLOCK_SIZE bs, const uint8_t *y, const uint8_t *u,
const uint8_t *v, int y_stride, int uv_stride,
uint8_t *yd, uint8_t *ud, uint8_t *vd, int yd_stride,
int uvd_stride, int qdiff) {
int sad, sad_thr, vdiff, vdiff_thr;
uint32_t sse;
get_thr(bs, qdiff, &sad_thr, &vdiff_thr);
if (bs == BLOCK_16X16) {
vdiff = (vp9_variance16x16(y, y_stride, yd, yd_stride, &sse) + 128) >> 8;
sad = (vp9_sad16x16(y, y_stride, yd, yd_stride) + 128) >> 8;
} else if (bs == BLOCK_32X32) {
vdiff = (vp9_variance32x32(y, y_stride, yd, yd_stride, &sse) + 512) >> 10;
sad = (vp9_sad32x32(y, y_stride, yd, yd_stride) + 512) >> 10;
} else /* if (bs == BLOCK_64X64) */ {
vdiff = (vp9_variance64x64(y, y_stride, yd, yd_stride, &sse) + 2048) >> 12;
sad = (vp9_sad64x64(y, y_stride, yd, yd_stride) + 2048) >> 12;
}
// vdiff > sad * 3 means vdiff should not be too small, otherwise,
// it might be a lighting change in smooth area. When there is a
// lighting change in smooth area, it is dangerous to do MFQE.
if (sad > 1 && vdiff > sad * 3) {
const int weight = 1 << MFQE_PRECISION;
int ifactor = weight * sad * vdiff / (sad_thr * vdiff_thr);
// When ifactor equals weight, no MFQE is done.
if (ifactor > weight) {
ifactor = weight;
}
apply_ifactor(y, y_stride, yd, yd_stride, u, v, uv_stride, ud, vd,
uvd_stride, bs, ifactor);
} else {
// Copy the block from current frame (i.e., no mfqe is done).
copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd,
yd_stride, uvd_stride, bs);
}
}
static int mfqe_decision(MODE_INFO *mi, BLOCK_SIZE cur_bs) {
// Check the motion in current block(for inter frame),
// or check the motion in the correlated block in last frame (for keyframe).
const int mv_len_square = mi->mbmi.mv[0].as_mv.row *
mi->mbmi.mv[0].as_mv.row +
mi->mbmi.mv[0].as_mv.col *
mi->mbmi.mv[0].as_mv.col;
const int mv_threshold = 100;
return mi->mbmi.mode >= NEARESTMV && // Not an intra block
cur_bs >= BLOCK_16X16 &&
mv_len_square <= mv_threshold;
}
// Process each partiton in a super block, recursively.
static void mfqe_partition(VP9_COMMON *cm, MODE_INFO *mi, BLOCK_SIZE bs,
const uint8_t *y, const uint8_t *u,
const uint8_t *v, int y_stride, int uv_stride,
uint8_t *yd, uint8_t *ud, uint8_t *vd,
int yd_stride, int uvd_stride) {
int mi_offset, y_offset, uv_offset;
const BLOCK_SIZE cur_bs = mi->mbmi.sb_type;
const int qdiff = cm->base_qindex - cm->postproc_state.last_base_qindex;
const int bsl = b_width_log2_lookup[bs];
PARTITION_TYPE partition = partition_lookup[bsl][cur_bs];
const BLOCK_SIZE subsize = get_subsize(bs, partition);
if (cur_bs < BLOCK_8X8) {
// If there are blocks smaller than 8x8, it must be on the boundary.
return;
}
// No MFQE on blocks smaller than 16x16
if (bs == BLOCK_16X16) {
partition = PARTITION_NONE;
}
if (bs == BLOCK_64X64) {
mi_offset = 4;
y_offset = 32;
uv_offset = 16;
} else {
mi_offset = 2;
y_offset = 16;
uv_offset = 8;
}
switch (partition) {
BLOCK_SIZE mfqe_bs, bs_tmp;
case PARTITION_HORZ:
if (bs == BLOCK_64X64) {
mfqe_bs = BLOCK_64X32;
bs_tmp = BLOCK_32X32;
} else {
mfqe_bs = BLOCK_32X16;
bs_tmp = BLOCK_16X16;
}
if (mfqe_decision(mi, mfqe_bs)) {
// Do mfqe on the first square partition.
mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride,
yd, ud, vd, yd_stride, uvd_stride, qdiff);
// Do mfqe on the second square partition.
mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset,
y_stride, uv_stride, yd + y_offset, ud + uv_offset,
vd + uv_offset, yd_stride, uvd_stride, qdiff);
}
if (mfqe_decision(mi + mi_offset * cm->mi_stride, mfqe_bs)) {
// Do mfqe on the first square partition.
mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride,
v + uv_offset * uv_stride, y_stride, uv_stride,
yd + y_offset * yd_stride, ud + uv_offset * uvd_stride,
vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff);
// Do mfqe on the second square partition.
mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset,
u + uv_offset * uv_stride + uv_offset,
v + uv_offset * uv_stride + uv_offset, y_stride,
uv_stride, yd + y_offset * yd_stride + y_offset,
ud + uv_offset * uvd_stride + uv_offset,
vd + uv_offset * uvd_stride + uv_offset,
yd_stride, uvd_stride, qdiff);
}
break;
case PARTITION_VERT:
if (bs == BLOCK_64X64) {
mfqe_bs = BLOCK_32X64;
bs_tmp = BLOCK_32X32;
} else {
mfqe_bs = BLOCK_16X32;
bs_tmp = BLOCK_16X16;
}
if (mfqe_decision(mi, mfqe_bs)) {
// Do mfqe on the first square partition.
mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride,
yd, ud, vd, yd_stride, uvd_stride, qdiff);
// Do mfqe on the second square partition.
mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride,
v + uv_offset * uv_stride, y_stride, uv_stride,
yd + y_offset * yd_stride, ud + uv_offset * uvd_stride,
vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff);
}
if (mfqe_decision(mi + mi_offset, mfqe_bs)) {
// Do mfqe on the first square partition.
mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset,
y_stride, uv_stride, yd + y_offset, ud + uv_offset,
vd + uv_offset, yd_stride, uvd_stride, qdiff);
// Do mfqe on the second square partition.
mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset,
u + uv_offset * uv_stride + uv_offset,
v + uv_offset * uv_stride + uv_offset, y_stride,
uv_stride, yd + y_offset * yd_stride + y_offset,
ud + uv_offset * uvd_stride + uv_offset,
vd + uv_offset * uvd_stride + uv_offset,
yd_stride, uvd_stride, qdiff);
}
break;
case PARTITION_NONE:
if (mfqe_decision(mi, cur_bs)) {
// Do mfqe on this partition.
mfqe_block(cur_bs, y, u, v, y_stride, uv_stride,
yd, ud, vd, yd_stride, uvd_stride, qdiff);
} else {
// Copy the block from current frame(i.e., no mfqe is done).
copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd,
yd_stride, uvd_stride, bs);
}
break;
case PARTITION_SPLIT:
// Recursion on four square partitions, e.g. if bs is 64X64,
// then look into four 32X32 blocks in it.
mfqe_partition(cm, mi, subsize, y, u, v, y_stride, uv_stride, yd, ud, vd,
yd_stride, uvd_stride);
mfqe_partition(cm, mi + mi_offset, subsize, y + y_offset, u + uv_offset,
v + uv_offset, y_stride, uv_stride, yd + y_offset,
ud + uv_offset, vd + uv_offset, yd_stride, uvd_stride);
mfqe_partition(cm, mi + mi_offset * cm->mi_stride, subsize,
y + y_offset * y_stride, u + uv_offset * uv_stride,
v + uv_offset * uv_stride, y_stride, uv_stride,
yd + y_offset * yd_stride, ud + uv_offset * uvd_stride,
vd + uv_offset * uvd_stride, yd_stride, uvd_stride);
mfqe_partition(cm, mi + mi_offset * cm->mi_stride + mi_offset,
subsize, y + y_offset * y_stride + y_offset,
u + uv_offset * uv_stride + uv_offset,
v + uv_offset * uv_stride + uv_offset, y_stride,
uv_stride, yd + y_offset * yd_stride + y_offset,
ud + uv_offset * uvd_stride + uv_offset,
vd + uv_offset * uvd_stride + uv_offset,
yd_stride, uvd_stride);
break;
default:
assert(0);
}
}
void vp9_mfqe(VP9_COMMON *cm) {
int mi_row, mi_col;
// Current decoded frame.
const YV12_BUFFER_CONFIG *show = cm->frame_to_show;
// Last decoded frame and will store the MFQE result.
YV12_BUFFER_CONFIG *dest = &cm->post_proc_buffer;
// Loop through each super block.
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
MODE_INFO *mi;
MODE_INFO *mi_local = cm->mi + (mi_row * cm->mi_stride + mi_col);
// Motion Info in last frame.
MODE_INFO *mi_prev = cm->postproc_state.prev_mi +
(mi_row * cm->mi_stride + mi_col);
const uint32_t y_stride = show->y_stride;
const uint32_t uv_stride = show->uv_stride;
const uint32_t yd_stride = dest->y_stride;
const uint32_t uvd_stride = dest->uv_stride;
const uint32_t row_offset_y = mi_row << 3;
const uint32_t row_offset_uv = mi_row << 2;
const uint32_t col_offset_y = mi_col << 3;
const uint32_t col_offset_uv = mi_col << 2;
const uint8_t *y = show->y_buffer + row_offset_y * y_stride +
col_offset_y;
const uint8_t *u = show->u_buffer + row_offset_uv * uv_stride +
col_offset_uv;
const uint8_t *v = show->v_buffer + row_offset_uv * uv_stride +
col_offset_uv;
uint8_t *yd = dest->y_buffer + row_offset_y * yd_stride + col_offset_y;
uint8_t *ud = dest->u_buffer + row_offset_uv * uvd_stride +
col_offset_uv;
uint8_t *vd = dest->v_buffer + row_offset_uv * uvd_stride +
col_offset_uv;
if (frame_is_intra_only(cm)) {
mi = mi_prev;
} else {
mi = mi_local;
}
mfqe_partition(cm, mi, BLOCK_64X64, y, u, v, y_stride, uv_stride, yd, ud,
vd, yd_stride, uvd_stride);
}
}
}