vpx/vp9/encoder/vp9_rdopt.c
Dmitry Kovalev b2fc6fa969 Adding update_tx_counts function.
Moving common encoder/decoder code to update_tx_counts. Also renaming
vp9_get_pred_probs_tx_size to get_tx_probs2 and adding get_tx_probs to
call vp9_get_pred_context_tx_size inside read_selected_tx_size only once
(twice before).

Change-Id: Ia50247f3893de88ef8e9041b0d44be44a40aaa4d
2013-07-22 14:57:43 -07:00

4117 lines
153 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
DECLARE_ALIGNED(16, extern const uint8_t,
vp9_pt_energy_class[MAX_ENTROPY_TOKENS]);
#define I4X4_PRED 0x8000
#define SPLITMV 0x10000
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{NEARESTMV, LAST_FRAME, NONE},
{NEARESTMV, ALTREF_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, NONE},
{NEWMV, LAST_FRAME, NONE},
{NEARESTMV, LAST_FRAME, ALTREF_FRAME},
{NEARMV, LAST_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{DC_PRED, INTRA_FRAME, NONE},
{NEWMV, GOLDEN_FRAME, NONE},
{NEWMV, ALTREF_FRAME, NONE},
{NEARMV, ALTREF_FRAME, NONE},
{TM_PRED, INTRA_FRAME, NONE},
{NEARMV, LAST_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, NONE},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, NONE},
{SPLITMV, GOLDEN_FRAME, NONE},
{SPLITMV, ALTREF_FRAME, NONE},
{SPLITMV, LAST_FRAME, ALTREF_FRAME},
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
{ZEROMV, LAST_FRAME, NONE},
{ZEROMV, GOLDEN_FRAME, NONE},
{ZEROMV, ALTREF_FRAME, NONE},
{ZEROMV, LAST_FRAME, ALTREF_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{I4X4_PRED, INTRA_FRAME, NONE},
{H_PRED, INTRA_FRAME, NONE},
{V_PRED, INTRA_FRAME, NONE},
{D135_PRED, INTRA_FRAME, NONE},
{D27_PRED, INTRA_FRAME, NONE},
{D153_PRED, INTRA_FRAME, NONE},
{D63_PRED, INTRA_FRAME, NONE},
{D117_PRED, INTRA_FRAME, NONE},
{D45_PRED, INTRA_FRAME, NONE},
};
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for blocks size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static int rd_thresh_block_size_factor[BLOCK_SIZE_TYPES] =
{2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32};
#define BASE_RD_THRESH_FREQ_FACT 16
#define MAX_RD_THRESH_FREQ_FACT 32
#define MAX_RD_THRESH_FREQ_INC 1
static void fill_token_costs(vp9_coeff_count (*c)[BLOCK_TYPES][2],
vp9_coeff_probs_model (*p)[BLOCK_TYPES]) {
int i, j, k, l;
TX_SIZE t;
for (t = TX_4X4; t <= TX_32X32; t++)
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < REF_TYPES; j++)
for (k = 0; k < COEF_BANDS; k++)
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
vp9_prob probs[ENTROPY_NODES];
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
vp9_cost_tokens((int *)c[t][i][j][0][k][l], probs,
vp9_coef_tree);
#if CONFIG_BALANCED_COEFTREE
// Replace the eob node prob with a very small value so that the
// cost approximately equals the cost without the eob node
probs[1] = 1;
vp9_cost_tokens((int *)c[t][i][j][1][k][l], probs, vp9_coef_tree);
#else
vp9_cost_tokens_skip((int *)c[t][i][j][1][k][l], probs,
vp9_coef_tree);
assert(c[t][i][j][0][k][l][DCT_EOB_TOKEN] ==
c[t][i][j][1][k][l][DCT_EOB_TOKEN]);
#endif
}
}
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, };
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp9_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742);
}
}
static int compute_rd_mult(int qindex) {
const int q = vp9_dc_quant(qindex, 0);
return (11 * q * q) >> 2;
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[qindex];
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
}
void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) {
int q, i, bsize;
vp9_clear_system_state(); // __asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
qindex = clamp(qindex, 0, MAXQ);
cpi->RDMULT = compute_rd_mult(qindex);
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
cpi->mb.errorperbit = cpi->RDMULT >> 6;
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp9_set_speed_features(cpi);
q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25);
q <<= 2;
if (q < 8)
q = 8;
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
for (i = 0; i < MAX_MODES; ++i) {
// Threshold here seem unecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[]
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
// *4 relates to the scaling of rd_thresh_block_size_factor[]
if ((int64_t)cpi->sf.thresh_mult[i] < thresh_max) {
cpi->rd_threshes[bsize][i] =
cpi->sf.thresh_mult[i] * q *
rd_thresh_block_size_factor[bsize] / (4 * 100);
} else {
cpi->rd_threshes[bsize][i] = INT_MAX;
}
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
if (cpi->sf.adaptive_rd_thresh)
cpi->rd_thresh_freq_fact[bsize][i] = MAX_RD_THRESH_FREQ_FACT;
else
cpi->rd_thresh_freq_fact[bsize][i] = BASE_RD_THRESH_FREQ_FACT;
}
}
} else {
cpi->RDDIV = 100;
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
for (i = 0; i < MAX_MODES; i++) {
// Threshold here seem unecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[]
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
if (cpi->sf.thresh_mult[i] < thresh_max) {
cpi->rd_threshes[bsize][i] =
cpi->sf.thresh_mult[i] * q *
rd_thresh_block_size_factor[bsize] / 4;
} else {
cpi->rd_threshes[bsize][i] = INT_MAX;
}
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
if (cpi->sf.adaptive_rd_thresh)
cpi->rd_thresh_freq_fact[bsize][i] = MAX_RD_THRESH_FREQ_FACT;
else
cpi->rd_thresh_freq_fact[bsize][i] = BASE_RD_THRESH_FREQ_FACT;
}
}
}
fill_token_costs(cpi->mb.token_costs, cpi->common.fc.coef_probs);
for (i = 0; i < NUM_PARTITION_CONTEXTS; i++)
vp9_cost_tokens(cpi->mb.partition_cost[i],
cpi->common.fc.partition_prob[cpi->common.frame_type][i],
vp9_partition_tree);
/*rough estimate for costing*/
vp9_init_mode_costs(cpi);
if (cpi->common.frame_type != KEY_FRAME) {
vp9_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
MB_PREDICTION_MODE m;
for (m = NEARESTMV; m < MB_MODE_COUNT; m++)
cpi->mb.inter_mode_cost[i][m - NEARESTMV] =
cost_token(vp9_inter_mode_tree,
cpi->common.fc.inter_mode_probs[i],
vp9_inter_mode_encodings - NEARESTMV + m);
}
}
}
static INLINE BLOCK_SIZE_TYPE get_block_size(int bwl, int bhl) {
return bsize_from_dim_lookup[bwl][bhl];
}
static BLOCK_SIZE_TYPE get_plane_block_size(BLOCK_SIZE_TYPE bsize,
struct macroblockd_plane *pd) {
return get_block_size(plane_block_width_log2by4(bsize, pd),
plane_block_height_log2by4(bsize, pd));
}
static INLINE void linear_interpolate2(double x, int ntab, int inv_step,
const double *tab1, const double *tab2,
double *v1, double *v2) {
double y = x * inv_step;
int d = (int) y;
if (d >= ntab - 1) {
*v1 = tab1[ntab - 1];
*v2 = tab2[ntab - 1];
} else {
double a = y - d;
*v1 = tab1[d] * (1 - a) + tab1[d + 1] * a;
*v2 = tab2[d] * (1 - a) + tab2[d + 1] * a;
}
}
static void model_rd_norm(double x, double *R, double *D) {
static const int inv_tab_step = 8;
static const int tab_size = 120;
// NOTE: The tables below must be of the same size
//
// Normalized rate
// This table models the rate for a Laplacian source
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const double rate_tab[] = {
64.00, 4.944, 3.949, 3.372, 2.966, 2.655, 2.403, 2.194,
2.014, 1.858, 1.720, 1.596, 1.485, 1.384, 1.291, 1.206,
1.127, 1.054, 0.986, 0.923, 0.863, 0.808, 0.756, 0.708,
0.662, 0.619, 0.579, 0.541, 0.506, 0.473, 0.442, 0.412,
0.385, 0.359, 0.335, 0.313, 0.291, 0.272, 0.253, 0.236,
0.220, 0.204, 0.190, 0.177, 0.165, 0.153, 0.142, 0.132,
0.123, 0.114, 0.106, 0.099, 0.091, 0.085, 0.079, 0.073,
0.068, 0.063, 0.058, 0.054, 0.050, 0.047, 0.043, 0.040,
0.037, 0.034, 0.032, 0.029, 0.027, 0.025, 0.023, 0.022,
0.020, 0.019, 0.017, 0.016, 0.015, 0.014, 0.013, 0.012,
0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.007, 0.006,
0.006, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003,
0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000,
};
// Normalized distortion
// This table models the normalized distortion for a Laplacian source
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance)
// Note the actual distortion is Dn * variance.
static const double dist_tab[] = {
0.000, 0.001, 0.005, 0.012, 0.021, 0.032, 0.045, 0.061,
0.079, 0.098, 0.119, 0.142, 0.166, 0.190, 0.216, 0.242,
0.269, 0.296, 0.324, 0.351, 0.378, 0.405, 0.432, 0.458,
0.484, 0.509, 0.534, 0.557, 0.580, 0.603, 0.624, 0.645,
0.664, 0.683, 0.702, 0.719, 0.735, 0.751, 0.766, 0.780,
0.794, 0.807, 0.819, 0.830, 0.841, 0.851, 0.861, 0.870,
0.878, 0.886, 0.894, 0.901, 0.907, 0.913, 0.919, 0.925,
0.930, 0.935, 0.939, 0.943, 0.947, 0.951, 0.954, 0.957,
0.960, 0.963, 0.966, 0.968, 0.971, 0.973, 0.975, 0.976,
0.978, 0.980, 0.981, 0.982, 0.984, 0.985, 0.986, 0.987,
0.988, 0.989, 0.990, 0.990, 0.991, 0.992, 0.992, 0.993,
0.993, 0.994, 0.994, 0.995, 0.995, 0.996, 0.996, 0.996,
0.996, 0.997, 0.997, 0.997, 0.997, 0.998, 0.998, 0.998,
0.998, 0.998, 0.998, 0.999, 0.999, 0.999, 0.999, 0.999,
0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 1.000,
};
/*
assert(sizeof(rate_tab) == tab_size * sizeof(rate_tab[0]);
assert(sizeof(dist_tab) == tab_size * sizeof(dist_tab[0]);
assert(sizeof(rate_tab) == sizeof(dist_tab));
*/
assert(x >= 0.0);
linear_interpolate2(x, tab_size, inv_tab_step,
rate_tab, dist_tab, R, D);
}
static void model_rd_from_var_lapndz(int var, int n, int qstep,
int *rate, int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
vp9_clear_system_state();
if (var == 0 || n == 0) {
*rate = 0;
*dist = 0;
} else {
double D, R;
double s2 = (double) var / n;
double x = qstep / sqrt(s2);
model_rd_norm(x, &R, &D);
*rate = ((n << 8) * R + 0.5);
*dist = (var * D + 0.5);
}
vp9_clear_system_state();
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
int i, rate_sum = 0, dist_sum = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
// TODO(dkovalev) the same code in get_plane_block_size
const int bwl = plane_block_width_log2by4(bsize, pd);
const int bhl = plane_block_height_log2by4(bsize, pd);
const BLOCK_SIZE_TYPE bs = get_block_size(bwl, bhl);
unsigned int sse;
int rate;
int64_t dist;
(void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
// sse works better than var, since there is no dc prediction used
model_rd_from_var_lapndz(sse, 16 << (bwl + bhl),
pd->dequant[1] >> 3, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*out_rate_sum = rate_sum;
*out_dist_sum = dist_sum << 4;
}
static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
// TODO(dkovalev) the same code in get_plane_block_size
const int bwl = plane_block_width_log2by4(bsize, pd);
const int bhl = plane_block_height_log2by4(bsize, pd);
const BLOCK_SIZE_TYPE bs = get_block_size(bwl, bhl);
unsigned int sse;
int rate;
int64_t dist;
(void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
// sse works better than var, since there is no dc prediction used
model_rd_from_var_lapndz(sse, 16 << (bwl + bhl),
pd->dequant[1] >> 3, &rate, &dist);
*out_rate_sum = rate;
*out_dist_sum = dist << 4;
}
static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
TX_SIZE tx_size,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
int *out_skip) {
int t = 4, j, k;
BLOCK_SIZE_TYPE bs = BLOCK_SIZE_AB4X4;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int bwl = plane_block_width_log2by4(bsize, pd);
const int bhl = plane_block_height_log2by4(bsize, pd);
const int bw = 4 << bwl;
const int bh = 4 << bhl;
int rate_sum = 0;
int64_t dist_sum = 0;
if (tx_size == TX_4X4) {
bs = BLOCK_4X4;
t = 4;
} else if (tx_size == TX_8X8) {
bs = BLOCK_8X8;
t = 8;
} else if (tx_size == TX_16X16) {
bs = BLOCK_16X16;
t = 16;
} else if (tx_size == TX_32X32) {
bs = BLOCK_32X32;
t = 32;
} else {
assert(0);
}
assert(bs <= get_block_size(bwl, bhl));
*out_skip = 1;
for (j = 0; j < bh; j+=t) {
for (k = 0; k < bw; k+=t) {
int rate;
int64_t dist;
unsigned int sse;
(void) cpi->fn_ptr[bs].vf(p->src.buf + j * p->src.stride + k,
p->src.stride,
pd->dst.buf + j * pd->dst.stride + k,
pd->dst.stride, &sse);
// sse works better than var, since there is no dc prediction used
model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3,
&rate, &dist);
rate_sum += rate;
dist_sum += dist;
*out_skip &= (rate < 1024);
}
}
*out_rate_sum = rate_sum;
*out_dist_sum = (dist_sum << 4);
}
int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += (unsigned)this_diff * this_diff;
sqcoeff += (unsigned) coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb,
int plane, int block, PLANE_TYPE type,
ENTROPY_CONTEXT *A,
ENTROPY_CONTEXT *L,
TX_SIZE tx_size,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int pt;
int c = 0;
int cost = 0;
const int16_t *scan = NULL, *nb;
const int eob = xd->plane[plane].eobs[block];
const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16);
const int ref = mbmi->ref_frame[0] != INTRA_FRAME;
unsigned int (*token_costs)[COEF_BANDS][PREV_COEF_CONTEXTS]
[MAX_ENTROPY_TOKENS] = mb->token_costs[tx_size][type][ref];
ENTROPY_CONTEXT above_ec = 0, left_ec = 0;
TX_TYPE tx_type = DCT_DCT;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
int seg_eob = 0;
uint8_t token_cache[1024];
const uint8_t *band_translate = NULL;
// Check for consistency of tx_size with mode info
assert((!type && !plane) || (type && plane));
if (type == PLANE_TYPE_Y_WITH_DC) {
assert(xd->mode_info_context->mbmi.txfm_size == tx_size);
} else {
assert(tx_size == get_uv_tx_size(mbmi));
}
switch (tx_size) {
case TX_4X4: {
tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_4x4(xd, block) : DCT_DCT;
above_ec = A[0] != 0;
left_ec = L[0] != 0;
seg_eob = 16;
scan = get_scan_4x4(tx_type);
band_translate = vp9_coefband_trans_4x4;
break;
}
case TX_8X8: {
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
get_tx_type_8x8(xd) : DCT_DCT;
above_ec = (A[0] + A[1]) != 0;
left_ec = (L[0] + L[1]) != 0;
scan = get_scan_8x8(tx_type);
seg_eob = 64;
band_translate = vp9_coefband_trans_8x8plus;
break;
}
case TX_16X16: {
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
get_tx_type_16x16(xd) : DCT_DCT;
scan = get_scan_16x16(tx_type);
seg_eob = 256;
above_ec = (A[0] + A[1] + A[2] + A[3]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3]) != 0;
band_translate = vp9_coefband_trans_8x8plus;
break;
}
case TX_32X32:
scan = vp9_default_scan_32x32;
seg_eob = 1024;
above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0;
band_translate = vp9_coefband_trans_8x8plus;
break;
default:
assert(0);
break;
}
assert(eob <= seg_eob);
pt = combine_entropy_contexts(above_ec, left_ec);
nb = vp9_get_coef_neighbors_handle(scan);
if (vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_SKIP))
seg_eob = 0;
/* sanity check to ensure that we do not have spurious non-zero q values */
if (eob < seg_eob)
assert(qcoeff_ptr[scan[eob]] == 0);
if (eob == 0) {
// single eob token
cost += token_costs[0][0][pt][DCT_EOB_TOKEN];
} else {
int v, prev_t;
// dc token
v = qcoeff_ptr[0];
prev_t = vp9_dct_value_tokens_ptr[v].token;
cost += token_costs[0][0][pt][prev_t] + vp9_dct_value_cost_ptr[v];
token_cache[0] = vp9_pt_energy_class[prev_t];
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
const int band = get_coef_band(band_translate, c);
int t;
v = qcoeff_ptr[rc];
t = vp9_dct_value_tokens_ptr[v].token;
pt = get_coef_context(nb, token_cache, c);
cost += token_costs[!prev_t][band][pt][t] + vp9_dct_value_cost_ptr[v];
token_cache[rc] = vp9_pt_energy_class[t];
prev_t = t;
}
// eob token
if (c < seg_eob) {
pt = get_coef_context(nb, token_cache, c);
cost += token_costs[0][get_coef_band(band_translate, c)][pt]
[DCT_EOB_TOKEN];
}
}
// is eob first coefficient;
for (pt = 0; pt < (1 << tx_size); pt++) {
A[pt] = L[pt] = c > 0;
}
return cost;
}
struct rdcost_block_args {
VP9_COMMON *cm;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[16];
ENTROPY_CONTEXT t_left[16];
TX_SIZE tx_size;
int bw;
int bh;
int rate;
int64_t dist;
int64_t sse;
int64_t best_rd;
int skip;
};
static void dist_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct rdcost_block_args* args = arg;
MACROBLOCK* const x = args->x;
MACROBLOCKD* const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
int64_t this_sse;
int shift = args->tx_size == TX_32X32 ? 0 : 2;
int16_t *const coeff = BLOCK_OFFSET(p->coeff, block, 16);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block, 16);
args->dist += vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
&this_sse) >> shift;
args->sse += this_sse >> shift;
if (x->skip_encode &&
xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) {
// TODO(jingning): tune the model to better capture the distortion.
int64_t p = (pd->dequant[1] * pd->dequant[1] *
(1 << ss_txfrm_size)) >> shift;
args->dist += p;
args->sse += p;
}
}
static void rate_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct rdcost_block_args* args = arg;
int x_idx, y_idx;
MACROBLOCKD * const xd = &args->x->e_mbd;
txfrm_block_to_raster_xy(xd, bsize, plane, block, args->tx_size * 2, &x_idx,
&y_idx);
args->rate += cost_coeffs(args->cm, args->x, plane, block,
xd->plane[plane].plane_type, args->t_above + x_idx,
args->t_left + y_idx, args->tx_size,
args->bw * args->bh);
}
// FIXME(jingning): need to make the rd test of chroma components consistent
// with that of luma component. this function should be deprecated afterwards.
static int rdcost_plane(VP9_COMMON * const cm, MACROBLOCK *x, int plane,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD * const xd = &x->e_mbd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bw = 1 << bwl, bh = 1 << bhl;
struct rdcost_block_args args = { cm, x, { 0 }, { 0 }, tx_size, bw, bh,
0, 0, 0, INT64_MAX, 0 };
vpx_memcpy(&args.t_above, xd->plane[plane].above_context,
sizeof(ENTROPY_CONTEXT) * bw);
vpx_memcpy(&args.t_left, xd->plane[plane].left_context,
sizeof(ENTROPY_CONTEXT) * bh);
foreach_transformed_block_in_plane(xd, bsize, plane, rate_block, &args);
return args.rate;
}
static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
int cost = 0, plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
cost += rdcost_plane(cm, x, plane, bsize, tx_size);
}
return cost;
}
static int block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
int shift, int64_t *sse) {
struct macroblockd_plane *p = &x->e_mbd.plane[0];
const int bwl = plane_block_width_log2by4(bsize, p);
const int bhl = plane_block_height_log2by4(bsize, p);
int64_t e = vp9_block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff,
16 << (bwl + bhl), sse) >> shift;
*sse >>= shift;
return e;
}
static int64_t block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
int shift, int64_t *sse) {
int64_t sum = 0, this_sse;
int plane;
*sse = 0;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
struct macroblockd_plane *p = &x->e_mbd.plane[plane];
const int bwl = plane_block_width_log2by4(bsize, p);
const int bhl = plane_block_height_log2by4(bsize, p);
sum += vp9_block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
16 << (bwl + bhl), &this_sse);
*sse += this_sse;
}
*sse >>= shift;
return sum >> shift;
}
static void block_yrd_txfm(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct encode_b_args encode_args = {args->cm, x, NULL};
int64_t rd1, rd2, rd;
if (args->skip)
return;
rd1 = RDCOST(x->rdmult, x->rddiv, args->rate, args->dist);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, args->sse);
rd = MIN(rd1, rd2);
if (rd > args->best_rd) {
args->skip = 1;
args->rate = INT_MAX;
args->dist = INT64_MAX;
args->sse = INT64_MAX;
return;
}
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
encode_block_intra(plane, block, bsize, ss_txfrm_size, &encode_args);
else
xform_quant(plane, block, bsize, ss_txfrm_size, &encode_args);
dist_block(plane, block, bsize, ss_txfrm_size, args);
rate_block(plane, block, bsize, ss_txfrm_size, args);
}
static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
const int bwl = b_width_log2(bsize) - xd->plane[0].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[0].subsampling_y;
const int bw = 1 << bwl, bh = 1 << bhl;
struct rdcost_block_args args = { cm, x, { 0 }, { 0 }, tx_size, bw, bh,
0, 0, 0, ref_best_rd, 0 };
xd->mode_info_context->mbmi.txfm_size = tx_size;
vpx_memcpy(&args.t_above, pd->above_context, sizeof(ENTROPY_CONTEXT) * bw);
vpx_memcpy(&args.t_left, pd->left_context, sizeof(ENTROPY_CONTEXT) * bh);
foreach_transformed_block_in_plane(xd, bsize, 0, block_yrd_txfm, &args);
*distortion = args.dist;
*rate = args.rate;
*sse = args.sse;
*skippable = vp9_sby_is_skippable(xd, bsize) && (!args.skip);
}
static void choose_largest_txfm_size(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skip, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE_TYPE bs) {
const TX_SIZE max_txfm_size = TX_32X32
- (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (max_txfm_size == TX_32X32 &&
(cm->tx_mode == ALLOW_32X32 ||
cm->tx_mode == TX_MODE_SELECT)) {
mbmi->txfm_size = TX_32X32;
} else if (max_txfm_size >= TX_16X16 &&
(cm->tx_mode == ALLOW_16X16 ||
cm->tx_mode == ALLOW_32X32 ||
cm->tx_mode == TX_MODE_SELECT)) {
mbmi->txfm_size = TX_16X16;
} else if (cm->tx_mode != ONLY_4X4) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
super_block_yrd_for_txfm(cm, x, rate, distortion, skip,
&sse[mbmi->txfm_size], ref_best_rd, bs,
mbmi->txfm_size);
cpi->txfm_stepdown_count[0]++;
}
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
int (*r)[2], int *rate,
int64_t *d, int64_t *distortion,
int *s, int *skip,
int64_t txfm_cache[NB_TXFM_MODES],
BLOCK_SIZE_TYPE bs) {
const TX_SIZE max_txfm_size = TX_32X32
- (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd);
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
int s0, s1;
const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs);
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
if (r[n][0] == INT_MAX)
continue;
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(tx_probs[m]);
else
r[n][1] += vp9_cost_one(tx_probs[m]);
}
}
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (d[n] == INT64_MAX) {
rd[n][0] = rd[n][1] = INT64_MAX;
continue;
}
if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
if (max_txfm_size == TX_32X32 &&
(cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if (max_txfm_size >= TX_16X16 &&
(cm->tx_mode == ALLOW_16X16 ||
cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->tx_mode == ALLOW_8X8 ||
cm->tx_mode == ALLOW_16X16 ||
cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
*distortion = d[mbmi->txfm_size];
*rate = r[mbmi->txfm_size][cm->tx_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
else if (max_txfm_size >= TX_16X16 &&
rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
else
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
rd[TX_4X4][1] : rd[TX_8X8][1];
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] &&
rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[0]++;
} else if (max_txfm_size >= TX_16X16 &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++;
} else if (rd[TX_8X8][1] < rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++;
} else {
cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++;
}
}
static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
int (*r)[2], int *rate,
int64_t *d, int64_t *distortion,
int *s, int *skip, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE_TYPE bs,
int *model_used) {
const TX_SIZE max_txfm_size = TX_32X32
- (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd);
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
int s0, s1;
double scale_rd[TX_SIZE_MAX_SB] = {1.73, 1.44, 1.20, 1.00};
// double scale_r[TX_SIZE_MAX_SB] = {2.82, 2.00, 1.41, 1.00};
const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs);
// for (n = TX_4X4; n <= max_txfm_size; n++)
// r[n][0] = (r[n][0] * scale_r[n]);
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(tx_probs[m]);
else
r[n][1] += vp9_cost_one(tx_probs[m]);
}
}
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
for (n = TX_4X4; n <= max_txfm_size; n++) {
rd[n][0] = (scale_rd[n] * rd[n][0]);
rd[n][1] = (scale_rd[n] * rd[n][1]);
}
if (max_txfm_size == TX_32X32 &&
(cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] <= rd[TX_16X16][1] &&
rd[TX_32X32][1] <= rd[TX_8X8][1] &&
rd[TX_32X32][1] <= rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if (max_txfm_size >= TX_16X16 &&
(cm->tx_mode == ALLOW_16X16 ||
cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] <= rd[TX_8X8][1] &&
rd[TX_16X16][1] <= rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->tx_mode == ALLOW_8X8 ||
cm->tx_mode == ALLOW_16X16 ||
cm->tx_mode == ALLOW_32X32 ||
(cm->tx_mode == TX_MODE_SELECT &&
rd[TX_8X8][1] <= rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
if (model_used[mbmi->txfm_size]) {
// Actually encode using the chosen mode if a model was used, but do not
// update the r, d costs
super_block_yrd_for_txfm(cm, x, rate, distortion, skip,
&sse[mbmi->txfm_size], ref_best_rd,
bs, mbmi->txfm_size);
} else {
*distortion = d[mbmi->txfm_size];
*rate = r[mbmi->txfm_size][cm->tx_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
}
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] <= rd[TX_16X16][1] &&
rd[TX_32X32][1] <= rd[TX_8X8][1] &&
rd[TX_32X32][1] <= rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[0]++;
} else if (max_txfm_size >= TX_16X16 &&
rd[TX_16X16][1] <= rd[TX_8X8][1] &&
rd[TX_16X16][1] <= rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++;
} else if (rd[TX_8X8][1] <= rd[TX_4X4][1]) {
cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++;
} else {
cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++;
}
}
static void super_block_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int64_t *distortion,
int *skip, int64_t *psse, BLOCK_SIZE_TYPE bs,
int64_t txfm_cache[NB_TXFM_MODES],
int64_t ref_best_rd) {
VP9_COMMON *const cm = &cpi->common;
int r[TX_SIZE_MAX_SB][2], s[TX_SIZE_MAX_SB];
int64_t d[TX_SIZE_MAX_SB], sse[TX_SIZE_MAX_SB];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
assert(bs == mbmi->sb_type);
if (mbmi->ref_frame[0] > INTRA_FRAME)
vp9_subtract_sby(x, bs);
if (cpi->sf.tx_size_search_method == USE_LARGESTALL ||
(cpi->sf.tx_size_search_method != USE_FULL_RD &&
mbmi->ref_frame[0] == INTRA_FRAME)) {
vpx_memset(txfm_cache, 0, NB_TXFM_MODES * sizeof(int64_t));
choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse,
ref_best_rd, bs);
if (psse)
*psse = sse[mbmi->txfm_size];
return;
}
if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER &&
mbmi->ref_frame[0] > INTRA_FRAME) {
int model_used[TX_SIZE_MAX_SB] = {1, 1, 1, 1};
if (bs >= BLOCK_SIZE_SB32X32) {
if (model_used[TX_32X32]) {
model_rd_for_sb_y_tx(cpi, bs, TX_32X32, x, xd,
&r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32]);
} else {
super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32],
&s[TX_32X32], &sse[TX_32X32], INT64_MAX,
bs, TX_32X32);
}
}
if (bs >= BLOCK_SIZE_MB16X16) {
if (model_used[TX_16X16]) {
model_rd_for_sb_y_tx(cpi, bs, TX_16X16, x, xd,
&r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16]);
} else {
super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16],
&s[TX_16X16], &sse[TX_16X16], INT64_MAX,
bs, TX_16X16);
}
}
if (model_used[TX_8X8]) {
model_rd_for_sb_y_tx(cpi, bs, TX_8X8, x, xd,
&r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8]);
} else {
super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
&sse[TX_8X8], INT64_MAX, bs, TX_8X8);
}
if (model_used[TX_4X4]) {
model_rd_for_sb_y_tx(cpi, bs, TX_4X4, x, xd,
&r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4]);
} else {
super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
&sse[TX_4X4], INT64_MAX, bs, TX_4X4);
}
choose_txfm_size_from_modelrd(cpi, x, r, rate, d, distortion, s,
skip, sse, ref_best_rd, bs, model_used);
} else {
if (bs >= BLOCK_SIZE_SB32X32)
super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32],
&s[TX_32X32], &sse[TX_32X32], ref_best_rd,
bs, TX_32X32);
if (bs >= BLOCK_SIZE_MB16X16)
super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16],
&s[TX_16X16], &sse[TX_16X16], ref_best_rd,
bs, TX_16X16);
super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
&sse[TX_8X8], ref_best_rd, bs, TX_8X8);
super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
&sse[TX_4X4], ref_best_rd, bs, TX_4X4);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
skip, txfm_cache, bs);
}
if (psse)
*psse = sse[mbmi->txfm_size];
}
static int conditional_skipintra(MB_PREDICTION_MODE mode,
MB_PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED &&
best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D63_PRED &&
best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D27_PRED &&
best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D153_PRED &&
best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
MB_PREDICTION_MODE *best_mode,
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int64_t *bestdistortion,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int rate = 0;
int64_t distortion;
VP9_COMMON *const cm = &cpi->common;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
uint8_t *src, *dst;
int16_t *src_diff, *coeff;
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
TX_TYPE tx_type = DCT_DCT;
TX_TYPE best_tx_type = DCT_DCT;
int bw = 1 << b_width_log2(bsize);
int bh = 1 << b_height_log2(bsize);
int idx, idy, block;
DECLARE_ALIGNED(16, int16_t, best_dqcoeff[4][16]);
assert(ib < 4);
vpx_memcpy(ta, a, sizeof(ta));
vpx_memcpy(tl, l, sizeof(tl));
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode))
continue;
}
rate = bmode_costs[mode];
distortion = 0;
vpx_memcpy(tempa, ta, sizeof(ta));
vpx_memcpy(templ, tl, sizeof(tl));
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
int64_t ssz;
block = ib + idy * 2 + idx;
xd->mode_info_context->bmi[block].as_mode = mode;
src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
p->src.buf, src_stride);
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, block,
p->src_diff);
coeff = BLOCK_OFFSET(x->plane[0].coeff, block, 16);
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
pd->dst.buf, dst_stride);
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8),
TX_4X4, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride);
vp9_subtract_block(4, 4, src_diff, 8,
src, src_stride,
dst, dst_stride);
tx_type = get_tx_type_4x4(xd, block);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(src_diff, coeff, 8, tx_type);
x->quantize_b_4x4(x, block, tx_type, 16);
} else {
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, block, tx_type, 16);
}
ratey += cost_coeffs(cm, x, 0, block, PLANE_TYPE_Y_WITH_DC,
tempa + idx, templ + idy, TX_4X4, 16);
distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff,
block, 16),
16, &ssz) >> 2;
if (tx_type != DCT_DCT)
vp9_short_iht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block, 16),
dst, pd->dst.stride, tx_type);
else
xd->inv_txm4x4_add(BLOCK_OFFSET(pd->dqcoeff, block, 16),
dst, pd->dst.stride);
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
best_tx_type = tx_type;
vpx_memcpy(a, tempa, sizeof(tempa));
vpx_memcpy(l, templ, sizeof(templ));
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
block = ib + idy * 2 + idx;
vpx_memcpy(best_dqcoeff[idy * 2 + idx],
BLOCK_OFFSET(pd->dqcoeff, block, 16),
sizeof(best_dqcoeff[0]));
}
}
}
}
if (x->skip_encode)
return best_rd;
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
block = ib + idy * 2 + idx;
xd->mode_info_context->bmi[block].as_mode = *best_mode;
src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
p->src.buf, src_stride);
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
pd->dst.buf, dst_stride);
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8), TX_4X4,
*best_mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride);
// inverse transform
if (best_tx_type != DCT_DCT)
vp9_short_iht4x4_add(best_dqcoeff[idy * 2 + idx], dst,
dst_stride, best_tx_type);
else
xd->inv_txm4x4_add(best_dqcoeff[idy * 2 + idx], dst,
dst_stride);
}
}
return best_rd;
}
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int64_t *Distortion, int64_t best_rd) {
int i, j;
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
int bw = 1 << b_width_log2(bsize);
int bh = 1 << b_height_log2(bsize);
int idx, idy;
int cost = 0;
int64_t distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT t_above[4], t_left[4];
int *bmode_costs;
MODE_INFO *const mic = xd->mode_info_context;
vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
bmode_costs = mb->mbmode_cost;
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
const int mis = xd->mode_info_stride;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry);
int64_t UNINITIALIZED_IS_SAFE(d);
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
const MB_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(mic, i) : DC_PRED;
bmode_costs = mb->y_mode_costs[A][L];
}
total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
t_above + idx, t_left + idy,
&r, &ry, &d, bsize);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode = best_mode;
for (j = 1; j < bh; ++j)
mic->bmi[i + j * 2].as_mode = best_mode;
for (j = 1; j < bw; ++j)
mic->bmi[i + j].as_mode = best_mode;
if (total_rd >= best_rd)
return INT64_MAX;
}
}
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
xd->mode_info_context->mbmi.mode = mic->bmi[3].as_mode;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[NB_TXFM_MODES],
int64_t best_rd) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MACROBLOCKD *const xd = &x->e_mbd;
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE UNINITIALIZED_IS_SAFE(best_tx);
int i;
int *bmode_costs = x->mbmode_cost;
if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
}
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_txfm_cache[NB_TXFM_MODES];
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
if (cpi->common.frame_type == KEY_FRAME) {
const MB_PREDICTION_MODE A = above_block_mode(mic, 0, mis);
const MB_PREDICTION_MODE L = xd->left_available ?
left_block_mode(mic, 0) : DC_PRED;
bmode_costs = x->y_mode_costs[A][L];
}
x->e_mbd.mode_info_context->mbmi.mode = mode;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
bsize, local_txfm_cache, best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly + bmode_costs[mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
if (cpi->sf.tx_size_search_method == USE_FULL_RD && this_rd < INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = this_rd + local_txfm_cache[i] -
local_txfm_cache[cpi->common.tx_mode];
if (adj_rd < txfm_cache[i]) {
txfm_cache[i] = adj_rd;
}
}
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx;
return best_rd;
}
static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
BLOCK_SIZE_TYPE bsize,
TX_SIZE uv_tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
int64_t dummy;
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
vp9_encode_intra_block_uv(cm, x, bsize);
else
vp9_xform_quant_sbuv(cm, x, bsize);
*distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2,
sse ? sse : &dummy);
*rate = rdcost_uv(cm, x, bsize, uv_tx_size);
*skippable = vp9_sbuv_is_skippable(xd, bsize);
}
static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
TX_SIZE uv_txfm_size = get_uv_tx_size(mbmi);
if (mbmi->ref_frame[0] > INTRA_FRAME)
vp9_subtract_sbuv(x, bsize);
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, sse, bsize,
uv_txfm_size);
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion;
MB_PREDICTION_MODE last_mode = bsize <= BLOCK_SIZE_SB8X8 ?
TM_PRED : cpi->sf.last_chroma_intra_mode;
for (mode = DC_PRED; mode <= last_mode; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
super_block_uvrd(&cpi->common, x, &this_rate_tokenonly,
&this_distortion, &s, NULL, bsize);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[cpi->common.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
static int64_t rd_sbuv_dcpred(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
int64_t this_rd;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
super_block_uvrd(&cpi->common, x, rate_tokenonly,
distortion, skippable, NULL, bsize);
*rate = *rate_tokenonly +
x->intra_uv_mode_cost[cpi->common.frame_type][DC_PRED];
this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
return this_rd;
}
static void choose_intra_uv_mode(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
int *rate_uv, int *rate_uv_tokenonly,
int64_t *dist_uv, int *skip_uv,
MB_PREDICTION_MODE *mode_uv) {
MACROBLOCK *const x = &cpi->mb;
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
if (cpi->sf.use_uv_intra_rd_estimate) {
rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 :
bsize);
// Else do a proper rd search for each possible transform size that may
// be considered in the main rd loop.
} else {
rd_pick_intra_sbuv_mode(cpi, x,
rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8
: bsize);
}
*mode_uv = x->e_mbd.mode_info_context->mbmi.uv_mode;
}
static int cost_mv_ref(VP9_COMP *cpi, MB_PREDICTION_MODE mode,
int mode_context) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
// Don't account for mode here if segment skip is enabled.
if (!vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_SKIP)) {
assert(is_inter_mode(mode));
return x->inter_mode_cost[mode_context][mode - NEARESTMV];
} else {
return 0;
}
}
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int_mv *frame_mv,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv);
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv);
static int labels2mode(MACROBLOCK *x, int i,
MB_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int_mv seg_mvs[MAX_REF_FRAMES],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int *mvjcost, int *mvcost[2], VP9_COMP *cpi) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
int cost = 0, thismvcost = 0;
int idx, idy;
int bw = 1 << b_width_log2(mbmi->sb_type);
int bh = 1 << b_height_log2(mbmi->sb_type);
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
MB_PREDICTION_MODE m;
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEWMV:
this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->ref_frame[1] > 0) {
this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvjcost, mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case NEARESTMV:
this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int =
frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int;
break;
case NEARMV:
this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int =
frame_mv[NEARMV][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
this_mv->as_int = 0;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int = 0;
break;
default:
break;
}
cost = cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
mic->bmi[i].as_mv[0].as_int = this_mv->as_int;
if (mbmi->ref_frame[1] > 0)
mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
for (idy = 0; idy < bh; ++idy)
for (idx = 0; idx < bw; ++idx)
vpx_memcpy(&mic->bmi[i + idy * 2 + idx],
&mic->bmi[i], sizeof(mic->bmi[i]));
cost += thismvcost;
return cost;
}
static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
MACROBLOCK *x,
int64_t best_yrd,
int i,
int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int k;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
const int bwl = plane_block_width_log2by4(bsize, &xd->plane[0]);
const int bhl = plane_block_height_log2by4(bsize, &xd->plane[0]);
const int bw = 4 << bwl;
const int bh = 4 << bhl;
int idx, idy;
const int src_stride = x->plane[0].src.stride;
uint8_t* const src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src.buf,
src_stride);
int16_t* src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src_diff);
int16_t* coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i);
uint8_t* const pre = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
uint8_t* const dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0;
vp9_build_inter_predictor(pre,
xd->plane[0].pre[0].stride,
dst,
xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[0],
&xd->scale_factor[0],
bw, bh, 0 /* no avg */, &xd->subpix,
MV_PRECISION_Q3);
if (xd->mode_info_context->mbmi.ref_frame[1] > 0) {
uint8_t* const second_pre =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[1].buf,
xd->plane[0].pre[1].stride);
vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride,
dst, xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[1],
&xd->scale_factor[1], bw, bh, 1,
&xd->subpix, MV_PRECISION_Q3);
}
vp9_subtract_block(bh, bw, src_diff, 8,
src, src_stride,
dst, xd->plane[0].dst.stride);
k = i;
for (idy = 0; idy < bh / 4; ++idy) {
for (idx = 0; idx < bw / 4; ++idx) {
int64_t ssz, rd, rd1, rd2;
k += (idy * 2 + idx);
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, k,
x->plane[0].src_diff);
coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, k);
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, k, DCT_DCT, 16);
thisdistortion += vp9_block_error(coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff,
k, 16), 16, &ssz);
thissse += ssz;
thisrate += cost_coeffs(cm, x, 0, k, PLANE_TYPE_Y_WITH_DC,
ta + (k & 1),
tl + (k >> 1), TX_4X4, 16);
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
rd = MIN(rd1, rd2);
if (rd >= best_yrd)
return INT64_MAX;
}
}
*distortion = thisdistortion >> 2;
*labelyrate = thisrate;
*sse = thissse >> 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int eobs;
int brate;
int byrate;
int64_t bdist;
int64_t bsse;
int64_t brdcost;
int_mv mvs[2];
ENTROPY_CONTEXT ta[2];
ENTROPY_CONTEXT tl[2];
} SEG_RDSTAT;
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int64_t sse;
int segment_yrate;
MB_PREDICTION_MODE modes[4];
SEG_RDSTAT rdstat[4][VP9_INTER_MODES];
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
x->plane[0].src.buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src.buf,
x->plane[0].src.stride);
assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0);
x->e_mbd.plane[0].pre[0].buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->e_mbd.plane[0].pre[0].buf,
x->e_mbd.plane[0].pre[0].stride);
if (mbmi->ref_frame[1])
x->e_mbd.plane[0].pre[1].buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->e_mbd.plane[0].pre[1].buf,
x->e_mbd.plane[0].pre[1].stride);
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (mbmi->ref_frame[1])
x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi_buf, int filter_idx,
int_mv seg_mvs[4][MAX_REF_FRAMES],
int mi_row, int mi_col) {
int i, j, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
MB_PREDICTION_MODE this_mode;
MODE_INFO *mi = x->e_mbd.mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int segmentyrate = 0;
BLOCK_SIZE_TYPE bsize = mbmi->sb_type;
int bwl = b_width_log2(bsize), bw = 1 << bwl;
int bhl = b_height_log2(bsize), bh = 1 << bhl;
vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT t_above[2], t_left[2];
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
int mode_idx;
int subpelmv = 1, have_ref = 0;
vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left));
v_fn_ptr = &cpi->fn_ptr[get_block_size(bwl, bhl)];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
MB_PREDICTION_MODE mode_selected = ZEROMV;
int64_t best_rd = INT64_MAX;
i = idy * 2 + idx;
frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0;
frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0;
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
&frame_mv[NEARESTMV][mbmi->ref_frame[0]],
&frame_mv[NEARMV][mbmi->ref_frame[0]],
i, 0);
if (mbmi->ref_frame[1] > 0)
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
&frame_mv[NEARESTMV][mbmi->ref_frame[1]],
&frame_mv[NEARMV][mbmi->ref_frame[1]],
i, 1);
// search for the best motion vector on this segment
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
mode_idx = inter_mode_offset(this_mode);
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
// if we're near/nearest and mv == 0,0, compare to zeromv
if ((this_mode == NEARMV || this_mode == NEARESTMV ||
this_mode == ZEROMV) &&
frame_mv[this_mode][mbmi->ref_frame[0]].as_int == 0 &&
(mbmi->ref_frame[1] <= 0 ||
frame_mv[this_mode][mbmi->ref_frame[1]].as_int == 0)) {
int rfc = mbmi->mb_mode_context[mbmi->ref_frame[0]];
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
if (this_mode == NEARMV) {
if (c1 > c3)
continue;
} else if (this_mode == NEARESTMV) {
if (c2 > c3)
continue;
} else {
assert(this_mode == ZEROMV);
if (mbmi->ref_frame[1] <= 0) {
if ((c3 >= c2 &&
frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) ||
(c3 >= c1 &&
frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0))
continue;
} else {
if ((c3 >= c2 &&
frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 &&
frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) ||
(c3 >= c1 &&
frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 &&
frame_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0))
continue;
}
}
}
vpx_memcpy(orig_pre, x->e_mbd.plane[0].pre, sizeof(orig_pre));
vpx_memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
sizeof(bsi->rdstat[i][mode_idx].ta));
vpx_memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
sizeof(bsi->rdstat[i][mode_idx].tl));
// motion search for newmv (single predictor case only)
if (mbmi->ref_frame[1] <= 0 && this_mode == NEWMV &&
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) {
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
int sadpb = x->sadperbit4;
int_mv mvp_full;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int;
if (i == 2)
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// adjust src pointer for this block
mi_buf_shift(x, i);
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEWMV]);
// Should we do a full search (best quality only)
if (cpi->compressor_speed == 0) {
/* Check if mvp_full is within the range. */
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, &mvp_full,
sadpb, 16, v_fn_ptr,
x->nmvjointcost, x->mvcost,
bsi->ref_mv, i);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEWMV].as_int =
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int;
} else {
/* The full search result is actually worse so re-instate the
* previous best vector */
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int =
mode_mv[NEWMV].as_int;
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, &mode_mv[NEWMV],
bsi->ref_mv, x->errorperbit, v_fn_ptr,
x->nmvjointcost, x->mvcost,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
if (mbmi->ref_frame[1] > 0 && this_mode == NEWMV &&
mbmi->interp_filter == vp9_switchable_interp[0]) {
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
continue;
// adjust src pointers
mi_buf_shift(x, i);
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
mi_row, mi_col, seg_mvs[i],
&rate_mv);
seg_mvs[i][mbmi->ref_frame[0]].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
seg_mvs[i][mbmi->ref_frame[1]].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
bsi->rdstat[i][mode_idx].brate =
labels2mode(x, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], frame_mv, seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
bsi->rdstat[i][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int;
if (bw > 1)
bsi->rdstat[i + 1][mode_idx].mvs[0].as_int =
mode_mv[this_mode].as_int;
if (bh > 1)
bsi->rdstat[i + 2][mode_idx].mvs[0].as_int =
mode_mv[this_mode].as_int;
if (mbmi->ref_frame[1] > 0) {
bsi->rdstat[i][mode_idx].mvs[1].as_int =
second_mode_mv[this_mode].as_int;
if (bw > 1)
bsi->rdstat[i + 1][mode_idx].mvs[1].as_int =
second_mode_mv[this_mode].as_int;
if (bh > 1)
bsi->rdstat[i + 2][mode_idx].mvs[1].as_int =
second_mode_mv[this_mode].as_int;
}
// Trap vectors that reach beyond the UMV borders
if (mv_check_bounds(x, &mode_mv[this_mode]))
continue;
if (mbmi->ref_frame[1] > 0 &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
subpelmv = (mode_mv[this_mode].as_mv.row & 0x0f) ||
(mode_mv[this_mode].as_mv.col & 0x0f);
have_ref = mode_mv[this_mode].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (mbmi->ref_frame[1] > 0) {
subpelmv |= (second_mode_mv[this_mode].as_mv.row & 0x0f) ||
(second_mode_mv[this_mode].as_mv.col & 0x0f);
have_ref &= second_mode_mv[this_mode].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[1].as_int;
}
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
have_ref = mode_mv[this_mode].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (mbmi->ref_frame[1] > 0) {
have_ref &= second_mode_mv[this_mode].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[1].as_int;
}
}
if (!subpelmv && have_ref &&
ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
vpx_memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
sizeof(SEG_RDSTAT));
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
continue;
}
}
bsi->rdstat[i][mode_idx].brdcost =
encode_inter_mb_segment(cpi, x,
bsi->segment_rd - this_segment_rd, i,
&bsi->rdstat[i][mode_idx].byrate,
&bsi->rdstat[i][mode_idx].bdist,
&bsi->rdstat[i][mode_idx].bsse,
bsi->rdstat[i][mode_idx].ta,
bsi->rdstat[i][mode_idx].tl);
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv,
bsi->rdstat[i][mode_idx].brate, 0);
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].eobs = x->e_mbd.plane[0].eobs[i];
}
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
} /*for each 4x4 mode*/
if (best_rd == INT64_MAX) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < VP9_INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return;
}
mode_idx = inter_mode_offset(mode_selected);
vpx_memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
vpx_memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
labels2mode(x, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], frame_mv, seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
br += bsi->rdstat[i][mode_idx].brate;
bd += bsi->rdstat[i][mode_idx].bdist;
block_sse += bsi->rdstat[i][mode_idx].bsse;
segmentyrate += bsi->rdstat[i][mode_idx].byrate;
this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
if (this_segment_rd > bsi->segment_rd) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < VP9_INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return;
}
for (j = 1; j < bh; ++j)
vpx_memcpy(&x->partition_info->bmi[i + j * 2],
&x->partition_info->bmi[i],
sizeof(x->partition_info->bmi[i]));
for (j = 1; j < bw; ++j)
vpx_memcpy(&x->partition_info->bmi[i + j],
&x->partition_info->bmi[i],
sizeof(x->partition_info->bmi[i]));
}
} /* for each label */
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->sse = block_sse;
// update the coding decisions
for (i = 0; i < 4; ++i)
bsi->modes[i] = x->partition_info->bmi[i].mode;
}
static int64_t rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd,
int *returntotrate,
int *returnyrate,
int64_t *returndistortion,
int *skippable, int64_t *psse,
int mvthresh,
int_mv seg_mvs[4][MAX_REF_FRAMES],
BEST_SEG_INFO *bsi_buf,
int filter_idx,
int mi_row, int mi_col) {
int i;
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int mode_idx;
vpx_memset(bsi, 0, sizeof(*bsi));
bsi->segment_rd = best_rd;
bsi->ref_mv = best_ref_mv;
bsi->second_ref_mv = second_best_ref_mv;
bsi->mvp.as_int = best_ref_mv->as_int;
bsi->mvthresh = mvthresh;
for (i = 0; i < 4; i++)
bsi->modes[i] = ZEROMV;
rd_check_segment_txsize(cpi, x, bsi_buf, filter_idx, seg_mvs, mi_row, mi_col);
if (bsi->segment_rd > best_rd)
return INT64_MAX;
/* set it to the best */
for (i = 0; i < 4; i++) {
mode_idx = inter_mode_offset(bsi->modes[i]);
mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (mbmi->ref_frame[1] > 0)
mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
xd->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
x->partition_info->bmi[i].mode = bsi->modes[i];
}
/*
* used to set mbmi->mv.as_int
*/
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
*skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_SB8X8);
*psse = bsi->sse;
mbmi->mode = bsi->modes[3];
return bsi->segment_rd;
}
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, BLOCK_SIZE_TYPE block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int_mv this_mv;
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
int row_offset, col_offset;
// Get the sad for each candidate reference mv
for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) {
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
// The list is at an end if we see 0 for a second time.
if (!this_mv.as_int && zero_seen)
break;
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
col_offset = this_mv.as_mv.col >> 3;
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride,
0x7fffffff);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
}
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
vp9_prob *comp_mode_p) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int seg_ref_active = vp9_segfeature_active(&xd->seg, segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
vpx_memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
vp9_prob intra_inter_p = vp9_get_pred_prob_intra_inter(cm, xd);
vp9_prob comp_inter_p = 128;
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
comp_inter_p = vp9_get_pred_prob_comp_inter_inter(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
base_cost += vp9_cost_bit(comp_inter_p, 0);
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
} else {
ref_costs_single[LAST_FRAME] = 512;
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) {
vp9_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
base_cost += vp9_cost_bit(comp_inter_p, 1);
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
} else {
ref_costs_comp[LAST_FRAME] = 512;
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
int64_t txfm_size_diff[NB_TXFM_MODES],
int64_t best_filter_diff[VP9_SWITCHABLE_FILTERS + 1]) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mode_info_context;
if (partition)
ctx->partition_info = *partition;
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
// FIXME(rbultje) does this memcpy the whole array? I believe sizeof()
// doesn't actually work this way
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
memcpy(ctx->best_filter_diff, best_filter_diff,
sizeof(*best_filter_diff) * (VP9_SWITCHABLE_FILTERS + 1));
}
static void setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv) {
int i;
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
#if CONFIG_ALPHA
dst[3].buf = src->alpha_buffer;
dst[3].stride = src->alpha_stride;
#endif
// TODO(jkoleszar): Make scale factors per-plane data
for (i = 0; i < MAX_MB_PLANE; i++) {
setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
i ? scale_uv : scale,
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
}
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int idx, MV_REFERENCE_FRAME frame_type,
BLOCK_SIZE_TYPE block_size,
int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[4][MAX_MB_PLANE],
struct scale_factors scale[MAX_REF_FRAMES]) {
VP9_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
// set up scaling factors
scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
scale[frame_type].x_offset_q4 =
ROUND_POWER_OF_TWO(mi_col * MI_SIZE * scale[frame_type].x_scale_fp,
VP9_REF_SCALE_SHIFT) & 0xf;
scale[frame_type].y_offset_q4 =
ROUND_POWER_OF_TWO(mi_row * MI_SIZE * scale[frame_type].y_scale_fp,
VP9_REF_SCALE_SHIFT) & 0xf;
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col,
&scale[frame_type], &scale[frame_type]);
// Gets an initial list of candidate vectors from neighbours and orders them
vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context,
xd->prev_mode_info_context,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (scale[frame_type].x_scale_fp == VP9_REF_NO_SCALE &&
scale[frame_type].y_scale_fp == VP9_REF_NO_SCALE)
mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride,
frame_type, block_size);
}
static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) {
YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
int fb = get_ref_frame_idx(cpi, ref_frame);
if (cpi->scaled_ref_idx[fb] != cpi->common.ref_frame_map[fb])
scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb]];
return scaled_ref_frame;
}
static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const int c = vp9_get_pred_context_switchable_interp(xd);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
int bestsme = INT_MAX;
int further_steps, step_param;
int sadpb = x->sadperbit16;
int_mv mvp_full;
int ref = mbmi->ref_frame[0];
int_mv ref_mv = mbmi->ref_mvs[ref][0];
const BLOCK_SIZE_TYPE block_size = get_plane_block_size(bsize, &xd->plane[0]);
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp9_clamp_mv_min_max(x, &ref_mv);
// Adjust search parameters based on small partitions' result.
if (x->fast_ms) {
// && abs(mvp_full.as_mv.row - x->pred_mv.as_mv.row) < 24 &&
// abs(mvp_full.as_mv.col - x->pred_mv.as_mv.col) < 24) {
// adjust search range
step_param = 6;
if (x->fast_ms > 1)
step_param = 8;
// Get prediction MV.
mvp_full.as_int = x->pred_mv.as_int;
// Adjust MV sign if needed.
if (cm->ref_frame_sign_bias[ref]) {
mvp_full.as_mv.col *= -1;
mvp_full.as_mv.row *= -1;
}
} else {
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) {
step_param = vp9_init_search_range(cpi, cpi->max_mv_magnitude);
} else {
step_param = vp9_init_search_range(
cpi, MIN(cpi->common.width, cpi->common.height));
}
// mvp_full.as_int = ref_mv[0].as_int;
mvp_full.as_int =
mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int;
}
mvp_full.as_mv.col >>= 3;
mvp_full.as_mv.row >>= 3;
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[block_size],
&ref_mv, tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse);
}
*rate_mv = vp9_mv_bit_cost(tmp_mv, &ref_mv,
x->nmvjointcost, x->mvcost,
96, xd->allow_high_precision_mv);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
}
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int_mv *frame_mv,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv) {
int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv ref_mv[2];
const BLOCK_SIZE_TYPE block_size = get_plane_block_size(bsize, &xd->plane[0]);
int ite;
// Prediction buffer from second frame.
uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t));
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}};
struct buf_2d scaled_first_yv12;
int last_besterr[2] = {INT_MAX, INT_MAX};
YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL};
scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]);
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
if (scaled_ref_frame[0]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
setup_pre_planes(xd, 0, scaled_ref_frame[0], mi_row, mi_col, NULL);
}
if (scaled_ref_frame[1]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
backup_second_yv12[i] = xd->plane[i].pre[1];
setup_pre_planes(xd, 0, scaled_ref_frame[1], mi_row, mi_col, NULL);
}
xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0],
mi_row, mi_col);
xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1],
mi_row, mi_col);
scaled_first_yv12 = xd->plane[0].pre[0];
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
// Allow joint search multiple times iteratively for each ref frame
// and break out the search loop if it couldn't find better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
int_mv tmp_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int id = ite % 2;
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
// Get pred block from second frame.
vp9_build_inter_predictor(ref_yv12[!id].buf,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]],
&xd->scale_factor[!id],
pw, ph, 0,
&xd->subpix, MV_PRECISION_Q3);
// Compound motion search on first ref frame.
if (id)
xd->plane[0].pre[0] = ref_yv12[id];
vp9_clamp_mv_min_max(x, &ref_mv[id]);
// Use mv result from single mode as mvp.
tmp_mv.as_int = frame_mv[refs[id]].as_int;
tmp_mv.as_mv.col >>= 3;
tmp_mv.as_mv.row >>= 3;
// Small-range full-pixel motion search
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
search_range,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&ref_mv[id], second_pred,
pw, ph);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
bestsme = vp9_find_best_sub_pixel_comp(x, &tmp_mv,
&ref_mv[id],
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred,
pw, ph);
}
if (id)
xd->plane[0].pre[0] = scaled_first_yv12;
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_int = tmp_mv.as_int;
last_besterr[id] = bestsme;
} else {
break;
}
}
// restore the predictor
if (scaled_ref_frame[0]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
if (scaled_ref_frame[1]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[1] = backup_second_yv12[i];
}
*rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
&mbmi->ref_mvs[refs[0]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
*rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
&mbmi->ref_mvs[refs[1]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
vpx_free(second_pred);
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[],
int *rate2, int64_t *distortion,
int *skippable,
int *rate_y, int64_t *distortion_y,
int *rate_uv, int64_t *distortion_uv,
int *mode_excluded, int *disable_skip,
INTERPOLATIONFILTERTYPE *best_filter,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int64_t *psse, int64_t ref_best_rd) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const int is_comp_pred = (mbmi->ref_frame[1] > 0);
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
int_mv *frame_mv = mode_mv[this_mode];
int i;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv cur_mv[2];
int64_t this_rd = 0;
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, MAX_MB_PLANE * 64 * 64);
int pred_exists = 0;
int interpolating_intpel_seen = 0;
int intpel_mv;
int64_t rd, best_rd = INT64_MAX;
int best_needs_copy = 0;
uint8_t *orig_dst[MAX_MB_PLANE];
int orig_dst_stride[MAX_MB_PLANE];
int rs = 0;
switch (this_mode) {
int rate_mv;
case NEWMV:
if (is_comp_pred) {
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv,
mi_row, mi_col, single_newmv, &rate_mv);
} else {
rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
&mbmi->ref_mvs[refs[0]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
&mbmi->ref_mvs[refs[1]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
}
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV)
return INT64_MAX;
*rate2 += rate_mv;
} else {
int_mv tmp_mv;
single_motion_search(cpi, x, bsize, mi_row, mi_col,
&tmp_mv, &rate_mv);
*rate2 += rate_mv;
frame_mv[refs[0]].as_int =
xd->mode_info_context->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
single_newmv[refs[0]].as_int = tmp_mv.as_int;
}
break;
case NEARMV:
case NEARESTMV:
case ZEROMV:
default:
break;
}
// if we're near/nearest and mv == 0,0, compare to zeromv
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
frame_mv[refs[0]].as_int == 0 &&
!vp9_segfeature_active(&xd->seg, mbmi->segment_id, SEG_LVL_SKIP) &&
(num_refs == 1 || frame_mv[refs[1]].as_int == 0)) {
int rfc = mbmi->mb_mode_context[mbmi->ref_frame[0]];
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
if (this_mode == NEARMV) {
if (c1 > c3)
return INT64_MAX;
} else if (this_mode == NEARESTMV) {
if (c2 > c3)
return INT64_MAX;
} else {
assert(this_mode == ZEROMV);
if (num_refs == 1) {
if ((c3 >= c2 &&
mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) ||
(c3 >= c1 &&
mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0))
return INT64_MAX;
} else {
if ((c3 >= c2 &&
mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 &&
mode_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) ||
(c3 >= c1 &&
mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 &&
mode_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0))
return INT64_MAX;
}
}
}
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode == NEWMV)
assert(!clamp_mv2(&cur_mv[i], xd));
else
clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
// do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
for (i = 0; i < MAX_MB_PLANE; i++) {
orig_dst[i] = xd->plane[i].dst.buf;
orig_dst_stride[i] = xd->plane[i].dst.stride;
}
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
*rate2 += cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
if (!(*mode_excluded)) {
if (is_comp_pred) {
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
} else {
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
}
}
pred_exists = 0;
interpolating_intpel_seen = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
(mbmi->mv[0].as_mv.col & 15) == 0;
if (is_comp_pred)
intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
(mbmi->mv[1].as_mv.col & 15) == 0;
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
*best_filter = EIGHTTAP;
if (cpi->sf.use_8tap_always) {
*best_filter = EIGHTTAP;
vp9_zero(cpi->rd_filter_cache);
} else {
int i, newbest;
int tmp_rate_sum = 0;
int64_t tmp_dist_sum = 0;
cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS] = INT64_MAX;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
int j;
int64_t rs_rd;
const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i];
const int is_intpel_interp = intpel_mv &&
vp9_is_interpolating_filter[filter];
mbmi->interp_filter = filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
rs = get_switchable_rate(cm, x);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (interpolating_intpel_seen && is_intpel_interp) {
cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv,
tmp_rate_sum, tmp_dist_sum);
cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS] =
MIN(cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS],
cpi->rd_filter_cache[i] + rs_rd);
rd = cpi->rd_filter_cache[i];
if (cm->mcomp_filter_type == SWITCHABLE)
rd += rs_rd;
} else {
int rate_sum = 0;
int64_t dist_sum = 0;
if ((cm->mcomp_filter_type == SWITCHABLE &&
(!i || best_needs_copy)) ||
(cm->mcomp_filter_type != SWITCHABLE &&
(cm->mcomp_filter_type == mbmi->interp_filter ||
(!interpolating_intpel_seen && is_intpel_interp)))) {
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = orig_dst[j];
xd->plane[j].dst.stride = orig_dst_stride[j];
}
} else {
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
xd->plane[j].dst.stride = 64;
}
}
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv,
rate_sum, dist_sum);
cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS] =
MIN(cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS],
cpi->rd_filter_cache[i] + rs_rd);
rd = cpi->rd_filter_cache[i];
if (cm->mcomp_filter_type == SWITCHABLE)
rd += rs_rd;
if (!interpolating_intpel_seen && is_intpel_interp) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
if (rd / 2 > ref_best_rd) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
return INT64_MAX;
}
}
newbest = i == 0 || rd < best_rd;
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
if (cm->mcomp_filter_type == SWITCHABLE && i &&
!(interpolating_intpel_seen && is_intpel_interp))
best_needs_copy = !best_needs_copy;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
pred_exists = 1;
}
interpolating_intpel_seen |= is_intpel_interp;
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
}
// Set the appripriate filter
mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
cm->mcomp_filter_type : *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
rs = (cm->mcomp_filter_type == SWITCHABLE ? get_switchable_rate(cm, x) : 0);
if (pred_exists) {
if (best_needs_copy) {
// again temporarily set the buffers to local memory to prevent a memcpy
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf + i * 64 * 64;
xd->plane[i].dst.stride = 64;
}
}
} else {
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear, 6-tap) is indicated at the frame level
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
int tmp_rate;
int64_t tmp_dist;
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
return INT64_MAX;
}
}
if (cpi->common.mcomp_filter_type == SWITCHABLE)
*rate2 += get_switchable_rate(cm, x);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
const BLOCK_SIZE_TYPE y_size = get_plane_block_size(bsize, &xd->plane[0]);
const BLOCK_SIZE_TYPE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var, sse;
int threshold = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = cpi->fn_ptr[y_size].vf(x->plane[0].src.buf, x->plane[0].src.stride,
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
&sse);
if ((int)sse < threshold) {
unsigned int q2dc = xd->plane[0].dequant[0];
// If there is no codeable 2nd order dc
// or a very small uniform pixel change change
if ((sse - var < q2dc * q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2;
unsigned int sse2u, sse2v;
var = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse2u);
var = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
x->plane[2].src.stride,
xd->plane[2].dst.buf,
xd->plane[2].dst.stride, &sse2v);
sse2 = sse2u + sse2v;
if (sse2 * 2 < threshold) {
x->skip = 1;
*distortion = sse + sse2;
*rate2 = 500;
// for best yrd calculation
*rate_uv = 0;
*distortion_uv = sse2;
*disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
}
}
}
}
if (!x->skip) {
int skippable_y, skippable_uv;
int64_t sseuv = INT_MAX;
// Y cost and distortion
super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, psse,
bsize, txfm_cache, ref_best_rd);
if (*rate_y == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
return INT64_MAX;
}
*rate2 += *rate_y;
*distortion += *distortion_y;
super_block_uvrd(cm, x, rate_uv, distortion_uv,
&skippable_uv, &sseuv, bsize);
*psse += sseuv;
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
return this_rd; // if 0, this will be re-calculated by caller
}
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int64_t *returndist,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip;
int64_t dist_y = 0, dist_uv = 0, txfm_cache[NB_TXFM_MODES];
x->skip_encode = 0;
vpx_memset(&txfm_cache, 0, sizeof(txfm_cache));
ctx->skip = 0;
xd->mode_info_context->mbmi.ref_frame[0] = INTRA_FRAME;
if (bsize >= BLOCK_SIZE_SB8X8) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize, txfm_cache,
best_rd) >= best_rd) {
*returnrate = INT_MAX;
return;
}
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip, bsize);
} else {
y_skip = 0;
if (rd_pick_intra4x4mby_modes(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, best_rd) >= best_rd) {
*returnrate = INT_MAX;
return;
}
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip, BLOCK_SIZE_SB8X8);
}
if (y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1);
*returndist = dist_y + (dist_uv >> 2);
memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
} else {
int i;
*returnrate = rate_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0);
*returndist = dist_y + (dist_uv >> 2);
if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
for (i = 0; i < NB_TXFM_MODES; i++) {
ctx->txfm_rd_diff[i] = txfm_cache[i] - txfm_cache[cm->tx_mode];
}
}
}
ctx->mic = *xd->mode_info_context;
}
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
int *returnrate,
int64_t *returndistortion,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const BLOCK_SIZE_TYPE block_size = get_plane_block_size(bsize, &xd->plane[0]);
MB_PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
int_mv single_newmv[MAX_REF_FRAMES];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int idx_list[4] = {0,
cpi->lst_fb_idx,
cpi->gld_fb_idx,
cpi->alt_fb_idx};
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
int64_t best_filter_rd[VP9_SWITCHABLE_FILTERS + 1];
int64_t best_filter_diff[VP9_SWITCHABLE_FILTERS + 1];
MB_MODE_INFO best_mbmode;
int j;
int mode_index, best_mode_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vp9_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
int64_t best_inter_rd = INT64_MAX;
MB_PREDICTION_MODE best_intra_mode = DC_PRED;
// MB_PREDICTION_MODE best_inter_mode = ZEROMV;
MV_REFERENCE_FRAME best_inter_ref_frame = LAST_FRAME;
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB];
int64_t dist_uv[TX_SIZE_MAX_SB];
int skip_uv[TX_SIZE_MAX_SB];
MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB];
struct scale_factors scale_factor[4];
unsigned int ref_frame_mask = 0;
unsigned int mode_mask = 0;
int64_t mode_distortions[MB_MODE_COUNT] = {-1};
int64_t frame_distortions[MAX_REF_FRAMES] = {-1};
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
cpi->common.y_dc_delta_q);
int_mv seg_mvs[4][MAX_REF_FRAMES];
union b_mode_info best_bmodes[4];
PARTITION_INFO best_partition;
int bwsl = b_width_log2(bsize);
int bws = (1 << bwsl) / 4; // mode_info step for subsize
int bhsl = b_height_log2(bsize);
int bhs = (1 << bhsl) / 4; // mode_info step for subsize
int best_skip2 = 0;
x->skip_encode = (cpi->sf.skip_encode_frame &&
xd->q_index < QIDX_SKIP_THRESH);
for (i = 0; i < 4; i++) {
int j;
for (j = 0; j < MAX_REF_FRAMES; j++)
seg_mvs[i][j].as_int = INVALID_MV;
}
// Everywhere the flag is set the error is much higher than its neighbors.
ctx->frames_with_high_error = 0;
ctx->modes_with_high_error = 0;
xd->mode_info_context->mbmi.segment_id = segment_id;
estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&single_newmv, 0, sizeof(single_newmv));
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
for (i = 0; i <= VP9_SWITCHABLE_FILTERS; i++)
best_filter_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZE_MAX_SB; i++)
rate_uv_intra[i] = INT_MAX;
*returnrate = INT_MAX;
// Create a mask set to 1 for each frame used by a smaller resolution.
if (cpi->sf.use_avoid_tested_higherror) {
switch (block_size) {
case BLOCK_64X64:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
ref_frame_mask |= x->mb_context[i][j].frames_with_high_error;
mode_mask |= x->mb_context[i][j].modes_with_high_error;
}
}
for (i = 0; i < 4; i++) {
ref_frame_mask |= x->sb32_context[i].frames_with_high_error;
mode_mask |= x->sb32_context[i].modes_with_high_error;
}
break;
case BLOCK_32X32:
for (i = 0; i < 4; i++) {
ref_frame_mask |=
x->mb_context[xd->sb_index][i].frames_with_high_error;
mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error;
}
break;
default:
// Until we handle all block sizes set it to present;
ref_frame_mask = 0;
mode_mask = 0;
break;
}
ref_frame_mask = ~ref_frame_mask;
mode_mask = ~mode_mask;
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV],
yv12_mb, scale_factor);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable;
int64_t txfm_cache[NB_TXFM_MODES];
int i;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
int early_term = 0;
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = INT64_MAX;
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame;
// Slip modes that have been masked off but always consider first mode.
if ( mode_index && (bsize > cpi->sf.unused_mode_skip_lvl) &&
(cpi->unused_mode_skip_mask & (1 << mode_index)) )
continue;
// Skip if the current refernce frame has been masked off
if (cpi->sf.reference_masking && !cpi->set_ref_frame_mask &&
(cpi->ref_frame_mask & (1 << ref_frame)))
continue;
// Test best rd so far against threshold for trying this mode.
if ((best_rd < ((cpi->rd_threshes[bsize][mode_index] *
cpi->rd_thresh_freq_fact[bsize][mode_index]) >> 4)) ||
cpi->rd_threshes[bsize][mode_index] == INT_MAX)
continue;
// Do not allow compound prediction if the segment level reference
// frame feature is in use as in this case there can only be one reference.
if ((vp9_mode_order[mode_index].second_ref_frame > INTRA_FRAME) &&
vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_REF_FRAME))
continue;
x->skip = 0;
// Skip some checking based on small partitions' result.
if (x->fast_ms > 1 && !ref_frame)
continue;
if (x->fast_ms > 2 && ref_frame != x->subblock_ref)
continue;
if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_SIZE_SB8X8) {
if (!(ref_frame_mask & (1 << ref_frame))) {
continue;
}
if (!(mode_mask & (1 << this_mode))) {
continue;
}
if (vp9_mode_order[mode_index].second_ref_frame != NONE
&& !(ref_frame_mask
& (1 << vp9_mode_order[mode_index].second_ref_frame))) {
continue;
}
}
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = vp9_mode_order[mode_index].second_ref_frame;
if (!(ref_frame == INTRA_FRAME
|| (cpi->ref_frame_flags & flag_list[ref_frame]))) {
continue;
}
if (!(mbmi->ref_frame[1] == NONE
|| (cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))) {
continue;
}
comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
if (comp_pred) {
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA)
if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME)
continue;
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH)
if (vp9_mode_order[mode_index].ref_frame != best_inter_ref_frame &&
vp9_mode_order[mode_index].second_ref_frame != best_inter_ref_frame)
continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// SPLITMV.
if (mbmi->ref_frame[0] > 0 &&
(scale_factor[mbmi->ref_frame[0]].x_scale_fp != VP9_REF_NO_SCALE ||
scale_factor[mbmi->ref_frame[0]].y_scale_fp != VP9_REF_NO_SCALE) &&
this_mode == SPLITMV)
continue;
if (mbmi->ref_frame[1] > 0 &&
(scale_factor[mbmi->ref_frame[1]].x_scale_fp != VP9_REF_NO_SCALE ||
scale_factor[mbmi->ref_frame[1]].y_scale_fp != VP9_REF_NO_SCALE) &&
this_mode == SPLITMV)
continue;
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter = cm->mcomp_filter_type;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (bsize >= BLOCK_SIZE_SB8X8 &&
(this_mode == I4X4_PRED || this_mode == SPLITMV))
continue;
if (bsize < BLOCK_SIZE_SB8X8 &&
!(this_mode == I4X4_PRED || this_mode == SPLITMV))
continue;
if (comp_pred) {
if (!(cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))
continue;
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
mode_excluded = mode_excluded
? mode_excluded
: cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
// mbmi->ref_frame[1] = vp9_mode_order[mode_index].ref_frame[1];
if (ref_frame != INTRA_FRAME) {
if (mbmi->ref_frame[1] != INTRA_FRAME)
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
}
// Select predictors
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred)
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_REF_FRAME) &&
vp9_get_segdata(&xd->seg, segment_id, SEG_LVL_REF_FRAME) !=
(int)ref_frame) {
continue;
// If the segment skip feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_SKIP) &&
(this_mode != ZEROMV && ref_frame != INTRA_FRAME)) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!vp9_segfeature_active(&xd->seg, segment_id,
SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if ((this_mode != ZEROMV &&
!(this_mode == NEARMV &&
frame_mv[NEARMV][ALTREF_FRAME].as_int == 0) &&
!(this_mode == NEARESTMV &&
frame_mv[NEARESTMV][ALTREF_FRAME].as_int == 0)) ||
ref_frame != ALTREF_FRAME) {
continue;
}
}
}
// TODO(JBB): This is to make up for the fact that we don't have sad
// functions that work when the block size reads outside the umv. We
// should fix this either by making the motion search just work on
// a representative block in the boundary ( first ) and then implement a
// function that does sads when inside the border..
if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) &&
this_mode == NEWMV) {
continue;
}
if (this_mode == I4X4_PRED) {
int rate;
/*
if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME))
continue;
*/
mbmi->txfm_size = TX_4X4;
rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
&distortion_y, INT64_MAX);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
if (rate_uv_intra[TX_4X4] == INT_MAX) {
choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[TX_4X4],
&rate_uv_tokenonly[TX_4X4],
&dist_uv[TX_4X4], &skip_uv[TX_4X4],
&mode_uv[TX_4X4]);
}
rate2 += rate_uv_intra[TX_4X4];
rate_uv = rate_uv_tokenonly[TX_4X4];
distortion2 += dist_uv[TX_4X4];
distortion_uv = dist_uv[TX_4X4];
mbmi->uv_mode = mode_uv[TX_4X4];
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = txfm_cache[ONLY_4X4];
} else if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
if (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME)
continue;
}
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mbmi->mode, best_intra_mode))
continue;
}
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL,
bsize, txfm_cache, best_rd);
if (rate_y == INT_MAX)
continue;
uv_tx = MIN(mbmi->txfm_size, max_uv_txsize_lookup[bsize]);
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx],
&dist_uv[uv_tx], &skip_uv[uv_tx],
&mode_uv[uv_tx]);
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
} else if (this_mode == SPLITMV) {
const int is_comp_pred = mbmi->ref_frame[1] > 0;
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref = is_comp_pred ?
&mbmi->ref_mvs[mbmi->ref_frame[1]][0] : NULL;
union b_mode_info tmp_best_bmodes[16];
MB_MODE_INFO tmp_best_mbmode;
PARTITION_INFO tmp_best_partition;
BEST_SEG_INFO bsi[VP9_SWITCHABLE_FILTERS];
int pred_exists = 0;
int uv_skippable;
if (is_comp_pred) {
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA)
if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME)
continue;
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH)
if (vp9_mode_order[mode_index].ref_frame != best_inter_ref_frame &&
vp9_mode_order[mode_index].second_ref_frame !=
best_inter_ref_frame)
continue;
}
this_rd_thresh = (mbmi->ref_frame[0] == LAST_FRAME) ?
cpi->rd_threshes[bsize][THR_NEWMV] :
cpi->rd_threshes[bsize][THR_NEWA];
this_rd_thresh = (mbmi->ref_frame[0] == GOLDEN_FRAME) ?
cpi->rd_threshes[bsize][THR_NEWG] : this_rd_thresh;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS] = INT64_MAX;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest, rs;
int64_t rs_rd;
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
second_ref,
best_yrd,
&rate, &rate_y, &distortion,
&skippable, &total_sse,
(int)this_rd_thresh, seg_mvs,
bsi, switchable_filter_index,
mi_row, mi_col);
if (tmp_rd == INT64_MAX)
continue;
cpi->rd_filter_cache[switchable_filter_index] = tmp_rd;
rs = get_switchable_rate(cm, x);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS] =
MIN(cpi->rd_filter_cache[VP9_SWITCHABLE_FILTERS], tmp_rd + rs_rd);
if (cm->mcomp_filter_type == SWITCHABLE)
tmp_rd += rs_rd;
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
(mbmi->interp_filter == cm->mcomp_filter_type &&
cm->mcomp_filter_type != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_sse = total_sse;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
tmp_best_partition = *x->partition_info;
for (i = 0; i < 4; i++)
tmp_best_bmodes[i] = xd->mode_info_context->bmi[i];
pred_exists = 1;
if (switchable_filter_index == 0 &&
cpi->sf.use_rd_breakout &&
best_rd < INT64_MAX) {
if (tmp_best_rdu / 2 > best_rd) {
// skip searching the other filters if the first is
// already substantially larger than the best so far
tmp_best_filter = mbmi->interp_filter;
tmp_best_rdu = INT64_MAX;
break;
}
}
}
} // switchable_filter_index loop
if (tmp_best_rdu == INT64_MAX)
continue;
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
tmp_best_filter : cm->mcomp_filter_type);
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
second_ref,
best_yrd,
&rate, &rate_y, &distortion,
&skippable, &total_sse,
(int)this_rd_thresh, seg_mvs,
bsi, 0,
mi_row, mi_col);
if (tmp_rd == INT64_MAX)
continue;
} else {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
int rs = get_switchable_rate(cm, x);
tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
}
tmp_rd = tmp_best_rdu;
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
*x->partition_info = tmp_best_partition;
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i] = tmp_best_bmodes[i];
}
rate2 += rate;
distortion2 += distortion;
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += get_switchable_rate(cm, x);
if (!mode_excluded) {
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
compmode_cost = vp9_cost_bit(comp_mode_p, is_comp_pred);
if (RDCOST(x->rdmult, x->rddiv, rate2, distortion2) <
best_rd) {
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
BLOCK_SIZE_SB8X8);
vp9_subtract_sbuv(x, BLOCK_SIZE_SB8X8);
super_block_uvrd_for_txfm(cm, x, &rate_uv, &distortion_uv,
&uv_skippable, &uv_sse,
BLOCK_SIZE_SB8X8, TX_4X4);
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = txfm_cache[ONLY_4X4];
}
} else {
compmode_cost = vp9_cost_bit(comp_mode_p,
mbmi->ref_frame[1] > INTRA_FRAME);
this_rd = handle_inter_mode(cpi, x, bsize,
txfm_cache,
&rate2, &distortion2, &skippable,
&rate_y, &distortion_y,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip,
&tmp_best_filter, frame_mv,
mi_row, mi_col,
single_newmv, &total_sse, best_rd);
if (this_rd == INT64_MAX)
continue;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (mbmi->ref_frame[1] > INTRA_FRAME) {
rate2 += ref_costs_comp[mbmi->ref_frame[0]];
} else {
rate2 += ref_costs_single[mbmi->ref_frame[0]];
}
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
// Is Mb level skip allowed (i.e. not coded at segment level).
const int mb_skip_allowed = !vp9_segfeature_active(&xd->seg, segment_id,
SEG_LVL_SKIP);
if (skippable && bsize >= BLOCK_SIZE_SB8X8) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob_mbskip(cm, xd);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
}
}
} else if (mb_skip_allowed && ref_frame != INTRA_FRAME &&
!xd->lossless) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
0);
rate2 += prob_skip_cost;
} else {
// FIXME(rbultje) make this work for splitmv also
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
1);
rate2 += prob_skip_cost;
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
this_skip2 = 1;
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
0);
rate2 += prob_skip_cost;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Keep record of best intra rd
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME &&
is_intra_mode(xd->mode_info_context->mbmi.mode) &&
this_rd < best_intra_rd) {
best_intra_rd = this_rd;
best_intra_mode = xd->mode_info_context->mbmi.mode;
}
// Keep record of best inter rd with single reference
if (xd->mode_info_context->mbmi.ref_frame[0] > INTRA_FRAME &&
xd->mode_info_context->mbmi.ref_frame[1] == NONE &&
!mode_excluded &&
this_rd < best_inter_rd) {
best_inter_rd = this_rd;
best_inter_ref_frame = ref_frame;
// best_inter_mode = xd->mode_info_context->mbmi.mode;
}
if (!disable_skip && mbmi->ref_frame[0] == INTRA_FRAME) {
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
for (i = 0; i <= VP9_SWITCHABLE_FILTERS; i++)
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
}
if (this_mode != I4X4_PRED && this_mode != SPLITMV) {
// Store the respective mode distortions for later use.
if (mode_distortions[this_mode] == -1
|| distortion2 < mode_distortions[this_mode]) {
mode_distortions[this_mode] = distortion2;
}
if (frame_distortions[mbmi->ref_frame[0]] == -1
|| distortion2 < frame_distortions[mbmi->ref_frame[0]]) {
frame_distortions[mbmi->ref_frame[0]] = distortion2;
}
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
const int qstep = xd->plane[0].dequant[1];
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
best_yrd = best_rd -
RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mbmi;
best_skip2 = this_skip2;
best_partition = *x->partition_info;
if (this_mode == I4X4_PRED || this_mode == SPLITMV)
for (i = 0; i < 4; i++)
best_bmodes[i] = xd->mode_info_context->bmi[i];
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if (cpi->sf.mode_search_skip_flags & FLAG_EARLY_TERMINATE)
if (ref_frame > INTRA_FRAME && distortion2 * 4 < qstep * qstep)
early_term = 1;
}
#if 0
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
} else {
// If the mode did not help improve the best error case then
// raise the threshold for testing that mode next time around.
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame[0] != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->ref_frame[1] <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->ref_frame[1] > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best filter type */
if (!mode_excluded && !disable_skip && mbmi->ref_frame[0] != INTRA_FRAME &&
cm->mcomp_filter_type != BILINEAR) {
int64_t ref = cpi->rd_filter_cache[cm->mcomp_filter_type == SWITCHABLE ?
VP9_SWITCHABLE_FILTERS :
vp9_switchable_interp_map[cm->mcomp_filter_type]];
for (i = 0; i <= VP9_SWITCHABLE_FILTERS; i++) {
int64_t adj_rd;
// In cases of poor prediction, filter_cache[] can contain really big
// values, which actually are bigger than this_rd itself. This can
// cause negative best_filter_rd[] values, which is obviously silly.
// Therefore, if filter_cache < ref, we do an adjusted calculation.
if (cpi->rd_filter_cache[i] >= ref)
adj_rd = this_rd + cpi->rd_filter_cache[i] - ref;
else // FIXME(rbultje) do this for comppred also
adj_rd = this_rd - (ref - cpi->rd_filter_cache[i]) * this_rd / ref;
best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
}
}
/* keep record of best txfm size */
if (bsize < BLOCK_SIZE_SB32X32) {
if (bsize < BLOCK_SIZE_MB16X16) {
if (this_mode == SPLITMV || this_mode == I4X4_PRED)
txfm_cache[ALLOW_8X8] = txfm_cache[ONLY_4X4];
txfm_cache[ALLOW_16X16] = txfm_cache[ALLOW_8X8];
}
txfm_cache[ALLOW_32X32] = txfm_cache[ALLOW_16X16];
}
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = INT64_MAX;
if (this_mode != I4X4_PRED) {
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->tx_mode];
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (early_term)
break;
if (x->skip && !mode_excluded)
break;
}
if (best_rd >= best_rd_so_far)
return INT64_MAX;
// If we used an estimate for the uv intra rd in the loop above...
if (cpi->sf.use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx_size = get_uv_tx_size(mbmi);
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size],
&rate_uv_tokenonly[uv_tx_size],
&dist_uv[uv_tx_size],
&skip_uv[uv_tx_size],
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8
: bsize);
}
}
// If indicated then mark the index of the chosen mode to be inspected at
// other block sizes.
if (bsize <= cpi->sf.unused_mode_skip_lvl) {
cpi->unused_mode_skip_mask = cpi->unused_mode_skip_mask &
(~((int64_t)1 << best_mode_index));
}
// If we are using reference masking and the set mask flag is set then
// create the reference frame mask.
if (cpi->sf.reference_masking && cpi->set_ref_frame_mask)
cpi->ref_frame_mask = ~(1 << vp9_mode_order[best_mode_index].ref_frame);
// Flag all modes that have a distortion thats > 2x the best we found at
// this level.
for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) {
if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV)
continue;
if (mode_distortions[mode_index] > 2 * *returndistortion) {
ctx->modes_with_high_error |= (1 << mode_index);
}
}
// Flag all ref frames that have a distortion thats > 2x the best we found at
// this level.
for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (frame_distortions[ref_frame] > 2 * *returndistortion) {
ctx->frames_with_high_error |= (1 << ref_frame);
}
}
if (best_rd == INT64_MAX && bsize < BLOCK_SIZE_SB8X8) {
*returnrate = INT_MAX;
*returndistortion = INT_MAX;
return best_rd;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.ref_frame[0] == INTRA_FRAME));
// Updating rd_thresh_freq_fact[] here means that the differnt
// partition/block sizes are handled independently based on the best
// choice for the current partition. It may well be better to keep a scaled
// best rd so far value and update rd_thresh_freq_fact based on the mode/size
// combination that wins out.
if (cpi->sf.adaptive_rd_thresh) {
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
if (mode_index == best_mode_index) {
cpi->rd_thresh_freq_fact[bsize][mode_index] = BASE_RD_THRESH_FREQ_FACT;
} else {
cpi->rd_thresh_freq_fact[bsize][mode_index] += MAX_RD_THRESH_FREQ_INC;
if (cpi->rd_thresh_freq_fact[bsize][mode_index] >
(cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FREQ_FACT)) {
cpi->rd_thresh_freq_fact[bsize][mode_index] =
cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FREQ_FACT;
}
}
}
}
// TODO(rbultje) integrate with RD trd_thresh_freq_facthresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
if (best_mbmode.ref_frame[0] == INTRA_FRAME &&
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
}
if (best_mbmode.ref_frame[0] != INTRA_FRAME &&
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[0].as_int =
best_bmodes[i].as_mv[0].as_int;
if (mbmi->ref_frame[1] > 0)
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[1].as_int =
best_bmodes[i].as_mv[1].as_int;
*x->partition_info = best_partition;
mbmi->mv[0].as_int = xd->mode_info_context->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = xd->mode_info_context->bmi[3].as_mv[1].as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i <= VP9_SWITCHABLE_FILTERS; i++) {
if (best_filter_rd[i] == INT64_MAX)
best_filter_diff[i] = 0;
else
best_filter_diff[i] = best_rd - best_filter_rd[i];
}
if (cm->mcomp_filter_type == SWITCHABLE)
assert(best_filter_diff[VP9_SWITCHABLE_FILTERS] == 0);
} else {
vpx_memset(best_filter_diff, 0, sizeof(best_filter_diff));
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = 0;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
store_coding_context(x, ctx, best_mode_index,
&best_partition,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
&mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 :
mbmi->ref_frame[1]][0],
best_pred_diff, best_txfm_diff, best_filter_diff);
return best_rd;
}