vpx/vp9/common/x86/vp9_subpixel_8t_intrin_ssse3.c
James Zern d73d621e5d vp9_subpixel_8t_intrin_ssse3.c: make some tables static
+ fix formatting

Change-Id: I344d4de089d03e403f0c7b3e64aeb7086cce86ac
2014-02-18 20:42:00 -08:00

491 lines
21 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <tmmintrin.h>
#include "vpx_ports/mem.h"
#include "vpx_ports/emmintrin_compat.h"
// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = {
0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6
};
DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = {
4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10
};
// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};
DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = {
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};
DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = {
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};
DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = {
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
void vp9_filter_block1d4_h8_intrin_ssse3(unsigned char *src_ptr,
unsigned int src_pixels_per_line,
unsigned char *output_ptr,
unsigned int output_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, srcReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 =_mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter into the first lane
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
// duplicate only the third 16 bit in the filter into the first lane
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
// duplicate only the seconds 16 bits in the filter into the second lane
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
// duplicate only the forth 16 bits in the filter into the second lane
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
// loading the local filters
thirdFilters =_mm_load_si128((__m128i const *)filt1_4_h8);
forthFilters = _mm_load_si128((__m128i const *)filt2_4_h8);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3));
// filter the source buffer
srcRegFilt1= _mm_shuffle_epi8(srcReg, thirdFilters);
srcRegFilt2= _mm_shuffle_epi8(srcReg, forthFilters);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// extract the higher half of the lane
srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8);
srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8);
minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);
// add and saturate all the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr+=src_pixels_per_line;
// save only 4 bytes
*((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1);
output_ptr+=output_pitch;
}
}
void vp9_filter_block1d8_h8_intrin_ssse3(unsigned char *src_ptr,
unsigned int src_pixels_per_line,
unsigned char *output_ptr,
unsigned int output_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
__m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 128 bit register
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 128 bit register
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
filt4Reg = _mm_load_si128((__m128i const *)filt4_global);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((__m128i *)(src_ptr-3));
// filter the source buffer
srcRegFilt1= _mm_shuffle_epi8(srcReg, filt1Reg);
srcRegFilt2= _mm_shuffle_epi8(srcReg, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// filter the source buffer
srcRegFilt3= _mm_shuffle_epi8(srcReg, filt3Reg);
srcRegFilt4= _mm_shuffle_epi8(srcReg, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);
// add and saturate all the results together
minReg = _mm_min_epi16(srcRegFilt4, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt4= _mm_max_epi16(srcRegFilt4, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr+=src_pixels_per_line;
// save only 8 bytes
_mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);
output_ptr+=output_pitch;
}
}
void vp9_filter_block1d16_h8_intrin_ssse3(unsigned char *src_ptr,
unsigned int src_pixels_per_line,
unsigned char *output_ptr,
unsigned int output_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i addFilterReg64, filtersReg, srcReg1, srcReg2;
__m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 128 bit register
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 128 bit register
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
filt4Reg = _mm_load_si128((__m128i const *)filt4_global);
for (i = 0; i < output_height; i++) {
srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3));
// filter the source buffer
srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg);
srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt4Reg);
srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
// reading the next 16 bytes.
// (part of it was being read by earlier read)
srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
// filter the source buffer
srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg);
srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt4Reg);
srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64);
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
src_ptr+=src_pixels_per_line;
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
output_ptr+=output_pitch;
}
}
void vp9_filter_block1d8_v8_intrin_ssse3(unsigned char *src_ptr,
unsigned int src_pitch,
unsigned char *output_ptr,
unsigned int out_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i addFilterReg64, filtersReg, minReg, srcRegFilt6;
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4, srcRegFilt5;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits in the filter
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits in the filter
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits in the filter
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
for (i = 0; i < output_height; i++) {
// load the first 8 bytes
srcRegFilt1 = _mm_loadl_epi64((__m128i *)&src_ptr[0]);
// load the next 8 bytes in stride of src_pitch
srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch)[0]);
srcRegFilt3 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*2)[0]);
srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*3)[0]);
// merge the result together
srcRegFilt1 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2);
srcRegFilt3 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4);
// load the next 8 bytes in stride of src_pitch
srcRegFilt2 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*4)[0]);
srcRegFilt4 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*5)[0]);
srcRegFilt5 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*6)[0]);
srcRegFilt6 = _mm_loadl_epi64((__m128i *)&(src_ptr+src_pitch*7)[0]);
// merge the result together
srcRegFilt2 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt4);
srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt5, srcRegFilt6);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);
// add and saturate the results together
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr+=src_pitch;
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);
output_ptr+=out_pitch;
}
}
void vp9_filter_block1d16_v8_intrin_ssse3(unsigned char *src_ptr,
unsigned int src_pitch,
unsigned char *output_ptr,
unsigned int out_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i addFilterReg64, filtersReg, srcRegFilt1, srcRegFilt2, srcRegFilt3;
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt4, srcRegFilt5, srcRegFilt6, srcRegFilt7, srcRegFilt8;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits in the filter
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits in the filter
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits in the filter
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
for (i = 0; i < output_height; i++) {
// load the first 16 bytes
srcRegFilt1 = _mm_loadu_si128((__m128i *)(src_ptr));
// load the next 16 bytes in stride of src_pitch
srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch));
srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6));
srcRegFilt4 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7));
// merge the result together
srcRegFilt5 = _mm_unpacklo_epi8(srcRegFilt1, srcRegFilt2);
srcRegFilt6 = _mm_unpacklo_epi8(srcRegFilt3, srcRegFilt4);
srcRegFilt1 = _mm_unpackhi_epi8(srcRegFilt1, srcRegFilt2);
srcRegFilt3 = _mm_unpackhi_epi8(srcRegFilt3, srcRegFilt4);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, firstFilters);
srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, forthFilters);
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);
// add and saturate the results together
srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, srcRegFilt6);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
// load the next 16 bytes in stride of two/three src_pitch
srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2));
srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3));
// merge the result together
srcRegFilt4 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3);
srcRegFilt6 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, secondFilters);
srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, secondFilters);
// load the next 16 bytes in stride of four/five src_pitch
srcRegFilt2 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4));
srcRegFilt3 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5));
// merge the result together
srcRegFilt7 = _mm_unpacklo_epi8(srcRegFilt2, srcRegFilt3);
srcRegFilt8 = _mm_unpackhi_epi8(srcRegFilt2, srcRegFilt3);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, thirdFilters);
srcRegFilt8 = _mm_maddubs_epi16(srcRegFilt8, thirdFilters);
// add and saturate the results together
srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
_mm_min_epi16(srcRegFilt4, srcRegFilt7));
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_min_epi16(srcRegFilt6, srcRegFilt8));
// add and saturate the results together
srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
_mm_max_epi16(srcRegFilt4, srcRegFilt7));
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_max_epi16(srcRegFilt6, srcRegFilt8));
srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, addFilterReg64);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt5 = _mm_srai_epi16(srcRegFilt5, 7);
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1 = _mm_packus_epi16(srcRegFilt5, srcRegFilt1);
src_ptr+=src_pitch;
// save 16 bytes convolve result
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
output_ptr+=out_pitch;
}
}