vpx/vp9/encoder/vp9_denoiser.c
Marco adf8533cee vp9: Move consec_zero_mv from cyclic refresh to cpi struct.
So it can be used even with aq-mode=3 not enabled.
Also cleans up some code in the places where its used.

No change in behavior.

Change-Id: Ib6b265308dbd483f691200da9a0be4da4b380dbc
2016-04-22 08:09:39 -07:00

615 lines
21 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_denoiser.h"
#include "vp9/encoder/vp9_encoder.h"
/* The VP9 denoiser is similar to that of the VP8 denoiser. While
* choosing the motion vectors / reference frames, the denoiser is run, and if
* it did not modify the signal to much, the denoised block is copied to the
* signal.
*/
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
#endif
static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
return 3 + (increase_denoising ? 1 : 0);
}
static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 4;
}
static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 625;
}
static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 60 : 40);
}
static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
int motion_magnitude) {
if (motion_magnitude >
noise_motion_thresh(bs, increase_denoising)) {
return 0;
} else {
return (1 << num_pels_log2_lookup[bs]) * 20;
}
}
static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
}
// TODO(jackychen): If increase_denoising is enabled in the future,
// we might need to update the code for calculating 'total_adj' in
// case the C code is not bit-exact with corresponding sse2 code.
int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg,
int mc_avg_stride,
uint8_t *avg, int avg_stride,
int increase_denoising,
BLOCK_SIZE bs,
int motion_magnitude) {
int r, c;
const uint8_t *sig_start = sig;
const uint8_t *mc_avg_start = mc_avg;
uint8_t *avg_start = avg;
int diff, adj, absdiff, delta;
int adj_val[] = {3, 4, 6};
int total_adj = 0;
int shift_inc = 1;
// If motion_magnitude is small, making the denoiser more aggressive by
// increasing the adjustment for each level. Add another increment for
// blocks that are labeled for increase denoising.
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
if (increase_denoising) {
shift_inc = 2;
}
adj_val[0] += shift_inc;
adj_val[1] += shift_inc;
adj_val[2] += shift_inc;
}
// First attempt to apply a strong temporal denoising filter.
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4: case 5: case 6: case 7:
adj = adj_val[0];
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
adj = adj_val[1];
break;
default:
adj = adj_val[2];
}
if (diff > 0) {
avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = VPXMAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// If the strong filter did not modify the signal too much, we're all set.
if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
// Otherwise, we try to dampen the filter if the delta is not too high.
delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising))
>> num_pels_log2_lookup[bs]) + 1;
if (delta >= delta_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
mc_avg = mc_avg_start;
avg = avg_start;
sig = sig_start;
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
adj = abs(diff);
if (adj > delta) {
adj = delta;
}
if (diff > 0) {
// Diff positive means we made positive adjustment above
// (in first try/attempt), so now make negative adjustment to bring
// denoised signal down.
avg[c] = VPXMAX(0, avg[c] - adj);
total_adj -= adj;
} else {
// Diff negative means we made negative adjustment above
// (in first try/attempt), so now make positive adjustment to bring
// denoised signal up.
avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
total_adj += adj;
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// We can use the filter if it has been sufficiently dampened
if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
return COPY_BLOCK;
}
static uint8_t *block_start(uint8_t *framebuf, int stride,
int mi_row, int mi_col) {
return framebuf + (stride * mi_row << 3) + (mi_col << 3);
}
static VP9_DENOISER_DECISION perform_motion_compensation(VP9_DENOISER *denoiser,
MACROBLOCK *mb,
BLOCK_SIZE bs,
int increase_denoising,
int mi_row,
int mi_col,
PICK_MODE_CONTEXT *ctx,
int motion_magnitude,
int is_skin,
int *zeromv_filter,
int consec_zeromv) {
int sse_diff = ctx->zeromv_sse - ctx->newmv_sse;
MV_REFERENCE_FRAME frame;
MACROBLOCKD *filter_mbd = &mb->e_mbd;
MODE_INFO *mi = filter_mbd->mi[0];
MODE_INFO saved_mi;
int i;
struct buf_2d saved_dst[MAX_MB_PLANE];
struct buf_2d saved_pre[MAX_MB_PLANE];
frame = ctx->best_reference_frame;
saved_mi = *mi;
if (is_skin && (motion_magnitude > 0 || consec_zeromv < 4))
return COPY_BLOCK;
// Avoid denoising for small block (unless motion is small).
// Small blocks are selected in variance partition (before encoding) and
// will typically lie on moving areas.
if (motion_magnitude > 16 && bs <= BLOCK_8X8)
return COPY_BLOCK;
// If the best reference frame uses inter-prediction and there is enough of a
// difference in sum-squared-error, use it.
if (frame != INTRA_FRAME &&
sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
mi->ref_frame[0] = ctx->best_reference_frame;
mi->mode = ctx->best_sse_inter_mode;
mi->mv[0] = ctx->best_sse_mv;
} else {
// Otherwise, use the zero reference frame.
frame = ctx->best_zeromv_reference_frame;
ctx->newmv_sse = ctx->zeromv_sse;
// Bias to last reference.
if (frame != LAST_FRAME &&
((ctx->zeromv_lastref_sse < (5 * ctx->zeromv_sse) >> 2) ||
denoiser->denoising_level >= kDenHigh)) {
frame = LAST_FRAME;
ctx->newmv_sse = ctx->zeromv_lastref_sse;
}
mi->ref_frame[0] = frame;
mi->mode = ZEROMV;
mi->mv[0].as_int = 0;
ctx->best_sse_inter_mode = ZEROMV;
ctx->best_sse_mv.as_int = 0;
*zeromv_filter = 1;
}
if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
if (motion_magnitude >
(noise_motion_thresh(bs, increase_denoising) << 3)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
// We will restore these after motion compensation.
for (i = 0; i < MAX_MB_PLANE; ++i) {
saved_pre[i] = filter_mbd->plane[i].pre[0];
saved_dst[i] = filter_mbd->plane[i].dst;
}
// Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
// struct.
filter_mbd->plane[0].pre[0].buf =
block_start(denoiser->running_avg_y[frame].y_buffer,
denoiser->running_avg_y[frame].y_stride,
mi_row, mi_col);
filter_mbd->plane[0].pre[0].stride =
denoiser->running_avg_y[frame].y_stride;
filter_mbd->plane[1].pre[0].buf =
block_start(denoiser->running_avg_y[frame].u_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].pre[0].stride =
denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[2].pre[0].buf =
block_start(denoiser->running_avg_y[frame].v_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].pre[0].stride =
denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[0].dst.buf =
block_start(denoiser->mc_running_avg_y.y_buffer,
denoiser->mc_running_avg_y.y_stride,
mi_row, mi_col);
filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride;
filter_mbd->plane[1].dst.buf =
block_start(denoiser->mc_running_avg_y.u_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride;
filter_mbd->plane[2].dst.buf =
block_start(denoiser->mc_running_avg_y.v_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride;
vp9_build_inter_predictors_sby(filter_mbd, mi_row, mi_col, bs);
// Restore everything to its original state
*mi = saved_mi;
for (i = 0; i < MAX_MB_PLANE; ++i) {
filter_mbd->plane[i].pre[0] = saved_pre[i];
filter_mbd->plane[i].dst = saved_dst[i];
}
return FILTER_BLOCK;
}
void vp9_denoiser_denoise(VP9_COMP *cpi, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs,
PICK_MODE_CONTEXT *ctx,
VP9_DENOISER_DECISION *denoiser_decision) {
int mv_col, mv_row;
int motion_magnitude = 0;
int zeromv_filter = 0;
VP9_DENOISER *denoiser = &cpi->denoiser;
VP9_DENOISER_DECISION decision = COPY_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
int is_skin = 0;
int consec_zeromv = 0;
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
motion_magnitude = mv_row * mv_row + mv_col * mv_col;
if (cpi->use_skin_detection &&
bs <= BLOCK_32X32 &&
denoiser->denoising_level >= kDenLow) {
int motion_level = (motion_magnitude < 16) ? 0 : 1;
// If motion for current block is small/zero, compute consec_zeromv for
// skin detection (early exit in skin detection is done for large
// consec_zeromv when current block has small/zero motion).
consec_zeromv = 0;
if (motion_level == 0) {
VP9_COMMON * const cm = &cpi->common;
int j, i;
// Loop through the 8x8 sub-blocks.
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
const int block_index = mi_row * cm->mi_cols + mi_col;
consec_zeromv = 100;
for (i = 0; i < ymis; i++) {
for (j = 0; j < xmis; j++) {
int bl_index = block_index + i * cm->mi_cols + j;
consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], consec_zeromv);
// No need to keep checking 8x8 blocks if any of the sub-blocks
// has small consec_zeromv (since threshold for no_skin based on
// zero/small motion in skin detection is high, i.e, > 4).
if (consec_zeromv < 4) {
i = ymis;
j = xmis;
}
}
}
}
// TODO(marpan): Compute skin detection over sub-blocks.
is_skin = vp9_compute_skin_block(mb->plane[0].src.buf,
mb->plane[1].src.buf,
mb->plane[2].src.buf,
mb->plane[0].src.stride,
mb->plane[1].src.stride,
bs,
consec_zeromv,
motion_level);
}
if (!is_skin &&
denoiser->denoising_level == kDenHigh &&
motion_magnitude < 16) {
denoiser->increase_denoising = 1;
} else {
denoiser->increase_denoising = 0;
}
if (denoiser->denoising_level >= kDenLow)
decision = perform_motion_compensation(denoiser, mb, bs,
denoiser->increase_denoising,
mi_row, mi_col, ctx,
motion_magnitude,
is_skin,
&zeromv_filter,
consec_zeromv);
if (decision == FILTER_BLOCK) {
decision = vp9_denoiser_filter(src.buf, src.stride,
mc_avg_start, mc_avg.y_stride,
avg_start, avg.y_stride,
denoiser->increase_denoising,
bs, motion_magnitude);
}
if (decision == FILTER_BLOCK) {
vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
NULL, 0, NULL, 0,
num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
} else { // COPY_BLOCK
vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
NULL, 0, NULL, 0,
num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
}
*denoiser_decision = decision;
if (decision == FILTER_BLOCK && zeromv_filter == 1)
*denoiser_decision = FILTER_ZEROMV_BLOCK;
}
static void copy_frame(YV12_BUFFER_CONFIG * const dest,
const YV12_BUFFER_CONFIG * const src) {
int r;
const uint8_t *srcbuf = src->y_buffer;
uint8_t *destbuf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
for (r = 0; r < dest->y_height; ++r) {
memcpy(destbuf, srcbuf, dest->y_width);
destbuf += dest->y_stride;
srcbuf += src->y_stride;
}
}
static void swap_frame_buffer(YV12_BUFFER_CONFIG * const dest,
YV12_BUFFER_CONFIG * const src) {
uint8_t *tmp_buf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
dest->y_buffer = src->y_buffer;
src->y_buffer = tmp_buf;
}
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame,
int resized) {
// Copy source into denoised reference buffers on KEY_FRAME or
// if the just encoded frame was resized.
if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset) {
int i;
// Start at 1 so as not to overwrite the INTRA_FRAME
for (i = 1; i < MAX_REF_FRAMES; ++i)
copy_frame(&denoiser->running_avg_y[i], &src);
denoiser->reset = 0;
return;
}
// If more than one refresh occurs, must copy frame buffer.
if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame)
> 1) {
if (refresh_alt_ref_frame) {
copy_frame(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
} else {
if (refresh_alt_ref_frame) {
swap_frame_buffer(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
swap_frame_buffer(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
swap_frame_buffer(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
ctx->zeromv_sse = UINT_MAX;
ctx->newmv_sse = UINT_MAX;
ctx->zeromv_lastref_sse = UINT_MAX;
}
void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse,
PREDICTION_MODE mode,
PICK_MODE_CONTEXT *ctx) {
// TODO(tkopp): Use both MVs if possible
if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
ctx->zeromv_sse = sse;
ctx->best_zeromv_reference_frame = mi->ref_frame[0];
if (mi->ref_frame[0] == LAST_FRAME)
ctx->zeromv_lastref_sse = sse;
}
if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
ctx->newmv_sse = sse;
ctx->best_sse_inter_mode = mode;
ctx->best_sse_mv = mi->mv[0];
ctx->best_reference_frame = mi->ref_frame[0];
}
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int ssx, int ssy,
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth,
#endif
int border) {
int i, fail;
const int legacy_byte_alignment = 0;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vpx_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
}
fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
denoiser->increase_denoising = 0;
denoiser->frame_buffer_initialized = 1;
denoiser->denoising_level = kDenLow;
denoiser->prev_denoising_level = kDenLow;
denoiser->reset = 0;
return 0;
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
int i;
denoiser->frame_buffer_initialized = 0;
if (denoiser == NULL) {
return;
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
vpx_free_frame_buffer(&denoiser->running_avg_y[i]);
}
vpx_free_frame_buffer(&denoiser->mc_running_avg_y);
vpx_free_frame_buffer(&denoiser->last_source);
}
void vp9_denoiser_set_noise_level(VP9_DENOISER *denoiser,
int noise_level) {
denoiser->denoising_level = noise_level;
if (denoiser->denoising_level > kDenLowLow &&
denoiser->prev_denoising_level == kDenLowLow)
denoiser->reset = 1;
else
denoiser->reset = 0;
denoiser->prev_denoising_level = denoiser->denoising_level;
}
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
int r, c;
uint8_t *u = yuv->u_buffer;
uint8_t *v = yuv->v_buffer;
for (r = 0; r < yuv->uv_height; ++r) {
for (c = 0; c < yuv->uv_width; ++c) {
u[c] = UINT8_MAX / 2;
v[c] = UINT8_MAX / 2;
}
u += yuv->uv_stride;
v += yuv->uv_stride;
}
}
#endif