vpx/vp9/common/vp9_idctllm.c
Ronald S. Bultje aac73df1a7 Use configure checks for various inline keywords.
Change-Id: I8508f1a3d3430f998bb9295f849e88e626a52a24
2013-02-06 16:12:56 -08:00

2423 lines
72 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/****************************************************************************
* Notes:
*
* This implementation makes use of 16 bit fixed point verio of two multiply
* constants:
* 1. sqrt(2) * cos (pi/8)
* 2. sqrt(2) * sin (pi/8)
* Becuase the first constant is bigger than 1, to maintain the same 16 bit
* fixed point precision as the second one, we use a trick of
* x * a = x + x*(a-1)
* so
* x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1).
**************************************************************************/
#include <assert.h>
#include <math.h>
#include "./vpx_config.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
static const int16_t idct_i4[16] = {
8192, 10703, 8192, 4433,
8192, 4433, -8192, -10703,
8192, -4433, -8192, 10703,
8192, -10703, 8192, -4433
};
static const int16_t iadst_i4[16] = {
3736, 9459, 10757, 7021,
7021, 9459, -3736, -10757,
9459, 0, -9459, 9459,
10757, -9459, 7021, -3736
};
static const int16_t idct_i8[64] = {
5793, 8035, 7568, 6811,
5793, 4551, 3135, 1598,
5793, 6811, 3135, -1598,
-5793, -8035, -7568, -4551,
5793, 4551, -3135, -8035,
-5793, 1598, 7568, 6811,
5793, 1598, -7568, -4551,
5793, 6811, -3135, -8035,
5793, -1598, -7568, 4551,
5793, -6811, -3135, 8035,
5793, -4551, -3135, 8035,
-5793, -1598, 7568, -6811,
5793, -6811, 3135, 1598,
-5793, 8035, -7568, 4551,
5793, -8035, 7568, -6811,
5793, -4551, 3135, -1598
};
static const int16_t iadst_i8[64] = {
1460, 4184, 6342, 7644,
7914, 7114, 5354, 2871,
2871, 7114, 7644, 4184,
-1460, -6342, -7914, -5354,
4184, 7914, 2871, -5354,
-7644, -1460, 6342, 7114,
5354, 6342, -4184, -7114,
2871, 7644, -1460, -7914,
6342, 2871, -7914, 1460,
7114, -5354, -4184, 7644,
7114, -1460, -5354, 7914,
-4184, -2871, 7644, -6342,
7644, -5354, 1460, 2871,
-6342, 7914, -7114, 4184,
7914, -7644, 7114, -6342,
5354, -4184, 2871, -1460
};
static const int16_t idct_i16[256] = {
4096, 5765, 5681, 5543, 5352, 5109, 4816, 4478,
4096, 3675, 3218, 2731, 2217, 1682, 1130, 568,
4096, 5543, 4816, 3675, 2217, 568, -1130, -2731,
-4096, -5109, -5681, -5765, -5352, -4478, -3218, -1682,
4096, 5109, 3218, 568, -2217, -4478, -5681, -5543,
-4096, -1682, 1130, 3675, 5352, 5765, 4816, 2731,
4096, 4478, 1130, -2731, -5352, -5543, -3218, 568,
4096, 5765, 4816, 1682, -2217, -5109, -5681, -3675,
4096, 3675, -1130, -5109, -5352, -1682, 3218, 5765,
4096, -568, -4816, -5543, -2217, 2731, 5681, 4478,
4096, 2731, -3218, -5765, -2217, 3675, 5681, 1682,
-4096, -5543, -1130, 4478, 5352, 568, -4816, -5109,
4096, 1682, -4816, -4478, 2217, 5765, 1130, -5109,
-4096, 2731, 5681, 568, -5352, -3675, 3218, 5543,
4096, 568, -5681, -1682, 5352, 2731, -4816, -3675,
4096, 4478, -3218, -5109, 2217, 5543, -1130, -5765,
4096, -568, -5681, 1682, 5352, -2731, -4816, 3675,
4096, -4478, -3218, 5109, 2217, -5543, -1130, 5765,
4096, -1682, -4816, 4478, 2217, -5765, 1130, 5109,
-4096, -2731, 5681, -568, -5352, 3675, 3218, -5543,
4096, -2731, -3218, 5765, -2217, -3675, 5681, -1682,
-4096, 5543, -1130, -4478, 5352, -568, -4816, 5109,
4096, -3675, -1130, 5109, -5352, 1682, 3218, -5765,
4096, 568, -4816, 5543, -2217, -2731, 5681, -4478,
4096, -4478, 1130, 2731, -5352, 5543, -3218, -568,
4096, -5765, 4816, -1682, -2217, 5109, -5681, 3675,
4096, -5109, 3218, -568, -2217, 4478, -5681, 5543,
-4096, 1682, 1130, -3675, 5352, -5765, 4816, -2731,
4096, -5543, 4816, -3675, 2217, -568, -1130, 2731,
-4096, 5109, -5681, 5765, -5352, 4478, -3218, 1682,
4096, -5765, 5681, -5543, 5352, -5109, 4816, -4478,
4096, -3675, 3218, -2731, 2217, -1682, 1130, -568
};
static const int16_t iadst_i16[256] = {
542, 1607, 2614, 3526, 4311, 4940, 5390, 5646,
5698, 5543, 5189, 4646, 3936, 3084, 2120, 1080,
1080, 3084, 4646, 5543, 5646, 4940, 3526, 1607,
-542, -2614, -4311, -5390, -5698, -5189, -3936, -2120,
1607, 4311, 5646, 5189, 3084, 0, -3084, -5189,
-5646, -4311, -1607, 1607, 4311, 5646, 5189, 3084,
2120, 5189, 5390, 2614, -1607, -4940, -5543, -3084,
1080, 4646, 5646, 3526, -542, -4311, -5698, -3936,
2614, 5646, 3936, -1080, -5189, -4940, -542, 4311,
5543, 2120, -3084, -5698, -3526, 1607, 5390, 4646,
3084, 5646, 1607, -4311, -5189, 0, 5189, 4311,
-1607, -5646, -3084, 3084, 5646, 1607, -4311, -5189,
3526, 5189, -1080, -5698, -1607, 4940, 3936, -3084,
-5390, 542, 5646, 2120, -4646, -4311, 2614, 5543,
3936, 4311, -3526, -4646, 3084, 4940, -2614, -5189,
2120, 5390, -1607, -5543, 1080, 5646, -542, -5698,
4311, 3084, -5189, -1607, 5646, 0, -5646, 1607,
5189, -3084, -4311, 4311, 3084, -5189, -1607, 5646,
4646, 1607, -5698, 2120, 4311, -4940, -1080, 5646,
-2614, -3936, 5189, 542, -5543, 3084, 3526, -5390,
4940, 0, -4940, 4940, 0, -4940, 4940, 0,
-4940, 4940, 0, -4940, 4940, 0, -4940, 4940,
5189, -1607, -3084, 5646, -4311, 0, 4311, -5646,
3084, 1607, -5189, 5189, -1607, -3084, 5646, -4311,
5390, -3084, -542, 3936, -5646, 4940, -2120, -1607,
4646, -5698, 4311, -1080, -2614, 5189, -5543, 3526,
5543, -4311, 2120, 542, -3084, 4940, -5698, 5189,
-3526, 1080, 1607, -3936, 5390, -5646, 4646, -2614,
5646, -5189, 4311, -3084, 1607, 0, -1607, 3084,
-4311, 5189, -5646, 5646, -5189, 4311, -3084, 1607,
5698, -5646, 5543, -5390, 5189, -4940, 4646, -4311,
3936, -3526, 3084, -2614, 2120, -1607, 1080, -542
};
/* Converted the transforms to integer form. */
#define HORIZONTAL_SHIFT 14 // 16
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
#define VERTICAL_SHIFT 17 // 15
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
void vp9_ihtllm_c(const int16_t *input, int16_t *output, int pitch,
TX_TYPE tx_type, int tx_dim, uint16_t eobs) {
int i, j, k;
int nz_dim;
int16_t imbuf[256];
const int16_t *ip = input;
int16_t *op = output;
int16_t *im = &imbuf[0];
/* pointers to vertical and horizontal transforms. */
const int16_t *ptv = NULL, *pth = NULL;
int shortpitch = pitch >> 1;
switch (tx_type) {
case ADST_ADST :
ptv = pth = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0]
: &iadst_i16[0]);
break;
case ADST_DCT :
ptv = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
pth = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
break;
case DCT_ADST :
ptv = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
pth = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
break;
case DCT_DCT :
ptv = pth = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0]
: &idct_i16[0]);
break;
default:
assert(0);
break;
}
nz_dim = tx_dim;
if(tx_dim > 4) {
if(eobs < 36) {
vpx_memset(im, 0, 512);
nz_dim = 8;
if(eobs < 3) {
nz_dim = 2;
} else if(eobs < 10) {
nz_dim = 4;
}
}
}
/* 2-D inverse transform X = M1*Z*Transposed_M2 is calculated in 2 steps
* from right to left:
* 1. horizontal transform: Y= Z*Transposed_M2
* 2. vertical transform: X = M1*Y
* In SIMD, doing this way could eliminate the transpose needed if it is
* calculated from left to right.
*/
/* Horizontal transformation */
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < nz_dim; i++) {
int temp = 0;
for (k = 0; k < nz_dim; k++) {
temp += ip[k] * pth[k];
}
/* Calculate im and store it in its transposed position. */
im[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
ip += tx_dim;
}
im += tx_dim;
pth += tx_dim;
ip = input;
}
/* Vertical transformation */
im = &imbuf[0];
for (i = 0; i < tx_dim; i++) {
for (j = 0; j < tx_dim; j++) {
int temp = 0;
for (k = 0; k < nz_dim; k++) {
temp += ptv[k] * im[k];
}
op[j] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
im += tx_dim;
}
im = &imbuf[0];
ptv += tx_dim;
op += shortpitch;
}
}
void vp9_short_inv_walsh4x4_c(int16_t *input, int16_t *output) {
int i;
int a1, b1, c1, d1;
int16_t *ip = input;
int16_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3]));
b1 = ((ip[1] + ip[2]));
c1 = ((ip[1] - ip[2]));
d1 = ((ip[0] - ip[3]));
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
}
void vp9_short_inv_walsh4x4_1_c(int16_t *in, int16_t *out) {
int i;
int16_t tmp[4];
int16_t *ip = in;
int16_t *op = tmp;
op[0] = (ip[0] + 1) >> 1;
op[1] = op[2] = op[3] = (ip[0] >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[0] = (ip[0] + 1) >> 1;
op[4] = op[8] = op[12] = (ip[0] >> 1);
ip++;
op++;
}
}
#if CONFIG_LOSSLESS
void vp9_short_inv_walsh4x4_lossless_c(int16_t *input, int16_t *output) {
int i;
int a1, b1, c1, d1;
int16_t *ip = input;
int16_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
b1 = ((ip[1] + ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
c1 = ((ip[1] - ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
d1 = ((ip[0] - ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[4] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[8] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[12] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
ip++;
op++;
}
}
void vp9_short_inv_walsh4x4_1_lossless_c(int16_t *in, int16_t *out) {
int i;
int16_t tmp[4];
int16_t *ip = in;
int16_t *op = tmp;
op[0] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) + 1) >> 1;
op[1] = op[2] = op[3] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[0] = ((ip[0] + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[4] = op[8] = op[12] = ((ip[0] >> 1)) << Y2_WHT_UPSCALE_FACTOR;
ip++;
op++;
}
}
void vp9_short_inv_walsh4x4_x8_c(int16_t *input, int16_t *output, int pitch) {
int i;
int a1, b1, c1, d1;
int16_t *ip = input;
int16_t *op = output;
int shortpitch = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3])) >> WHT_UPSCALE_FACTOR;
b1 = ((ip[1] + ip[2])) >> WHT_UPSCALE_FACTOR;
c1 = ((ip[1] - ip[2])) >> WHT_UPSCALE_FACTOR;
d1 = ((ip[0] - ip[3])) >> WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += shortpitch;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[shortpitch * 0] + ip[shortpitch * 3];
b1 = ip[shortpitch * 1] + ip[shortpitch * 2];
c1 = ip[shortpitch * 1] - ip[shortpitch * 2];
d1 = ip[shortpitch * 0] - ip[shortpitch * 3];
op[shortpitch * 0] = (a1 + b1 + 1) >> 1;
op[shortpitch * 1] = (c1 + d1) >> 1;
op[shortpitch * 2] = (a1 - b1) >> 1;
op[shortpitch * 3] = (d1 - c1) >> 1;
ip++;
op++;
}
}
void vp9_short_inv_walsh4x4_1_x8_c(int16_t *in, int16_t *out, int pitch) {
int i;
int16_t tmp[4];
int16_t *ip = in;
int16_t *op = tmp;
int shortpitch = pitch >> 1;
op[0] = ((ip[0] >> WHT_UPSCALE_FACTOR) + 1) >> 1;
op[1] = op[2] = op[3] = ((ip[0] >> WHT_UPSCALE_FACTOR) >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[shortpitch * 0] = (ip[0] + 1) >> 1;
op[shortpitch * 1] = op[shortpitch * 2] = op[shortpitch * 3] = ip[0] >> 1;
ip++;
op++;
}
}
void vp9_dc_only_inv_walsh_add_c(short input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr,
int pitch, int stride) {
int r, c;
short tmp[16];
vp9_short_inv_walsh4x4_1_x8_c(&input_dc, tmp, 4 << 1);
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
dst_ptr[c] = clip_pixel(tmp[r * 4 + c] + pred_ptr[c]);
}
dst_ptr += stride;
pred_ptr += pitch;
}
}
#endif
// Constants and Macros used by all idct functions
// TODO(Yaowu): move these to a header file as they shared by DCTs and iDCTs
#define DCT_CONST_BITS 14
#define DCT_CONST_ROUNDING (1 << (DCT_CONST_BITS - 1))
// Constants are 16384 * cos(kPi/64) where k = 1 to 31.
// Note: sin(kPi/64) = cos((32-k)Pi/64)
static const int cospi_1_64 = 16364;
static const int cospi_2_64 = 16305;
static const int cospi_3_64 = 16207;
static const int cospi_4_64 = 16069;
static const int cospi_5_64 = 15893;
static const int cospi_6_64 = 15679;
static const int cospi_7_64 = 15426;
static const int cospi_8_64 = 15137;
static const int cospi_9_64 = 14811;
static const int cospi_10_64 = 14449;
static const int cospi_11_64 = 14053;
static const int cospi_12_64 = 13623;
static const int cospi_13_64 = 13160;
static const int cospi_14_64 = 12665;
static const int cospi_15_64 = 12140;
static const int cospi_16_64 = 11585;
static const int cospi_17_64 = 11003;
static const int cospi_18_64 = 10394;
static const int cospi_19_64 = 9760;
static const int cospi_20_64 = 9102;
static const int cospi_21_64 = 8423;
static const int cospi_22_64 = 7723;
static const int cospi_23_64 = 7005;
static const int cospi_24_64 = 6270;
static const int cospi_25_64 = 5520;
static const int cospi_26_64 = 4756;
static const int cospi_27_64 = 3981;
static const int cospi_28_64 = 3196;
static const int cospi_29_64 = 2404;
static const int cospi_30_64 = 1606;
static const int cospi_31_64 = 804;
static INLINE int dct_const_round_shift(int input) {
int rv = (input + DCT_CONST_ROUNDING) >> DCT_CONST_BITS;
assert((rv <= INT16_MAX) && (rv >= INT16_MIN));
return rv;
}
void idct4_1d(int16_t *input, int16_t *output) {
int16_t step[4];
int temp1, temp2;
// stage 1
temp1 = (input[0] + input[2]) * cospi_16_64;
temp2 = (input[0] - input[2]) * cospi_16_64;
step[0] = dct_const_round_shift(temp1);
step[1] = dct_const_round_shift(temp2);
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step[2] = dct_const_round_shift(temp1);
step[3] = dct_const_round_shift(temp2);
// stage 2
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = step[1] - step[2];
output[3] = step[0] - step[3];
}
void vp9_short_idct4x4llm_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[4 * 4];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[4], temp_out[4];
// First transform rows
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = input[j];
idct4_1d(temp_in, outptr);
input += 4;
outptr += 4;
}
// Then transform columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
idct4_1d(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j * short_pitch + i] = (temp_out[j] + 8) >> 4;
}
}
void vp9_short_idct4x4llm_1_c(int16_t *input, int16_t *output, int pitch) {
int i;
int a1;
int16_t *op = output;
int shortpitch = pitch >> 1;
int tmp;
int16_t out;
tmp = input[0] * cospi_16_64;
out = dct_const_round_shift(tmp);
tmp = out * cospi_16_64;
out = dct_const_round_shift(tmp);
a1 = (out + 8) >> 4;
for (i = 0; i < 4; i++) {
op[0] = a1;
op[1] = a1;
op[2] = a1;
op[3] = a1;
op += shortpitch;
}
}
void vp9_dc_only_idct_add_c(int input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr, int pitch, int stride) {
int a1;
int r, c;
int tmp;
int16_t out;
tmp = input_dc * cospi_16_64;
out = dct_const_round_shift(tmp);
tmp = out * cospi_16_64;
out = dct_const_round_shift(tmp);
a1 = (out + 8) >> 4;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
dst_ptr[c] = clip_pixel(a1 + pred_ptr[c]);
}
dst_ptr += stride;
pred_ptr += pitch;
}
}
void idct8_1d(int16_t *input, int16_t *output) {
int16_t step1[8], step2[8];
int temp1, temp2;
// stage 1
step1[0] = input[0];
step1[2] = input[4];
step1[1] = input[2];
step1[3] = input[6];
temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64;
temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64;
temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
// stage 2 & stage 3 - even half
idct4_1d(step1, step1);
// stage 2 - odd half
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
// stage 3 -odd half
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
// stage 4
output[0] = step1[0] + step1[7];
output[1] = step1[1] + step1[6];
output[2] = step1[2] + step1[5];
output[3] = step1[3] + step1[4];
output[4] = step1[3] - step1[4];
output[5] = step1[2] - step1[5];
output[6] = step1[1] - step1[6];
output[7] = step1[0] - step1[7];
}
void vp9_short_idct8x8_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[8 * 8];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[8], temp_out[8];
// First transform rows
for (i = 0; i < 8; ++i) {
idct8_1d(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8_1d(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j * short_pitch + i] = (temp_out[j] + 16) >> 5;
}
}
void vp9_short_idct10_8x8_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[8 * 8];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[8], temp_out[8];
vpx_memset(out, 0, sizeof(out));
// First transform rows
// only first 4 row has non-zero coefs
for (i = 0; i < 4; ++i) {
idct8_1d(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8_1d(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j * short_pitch + i] = (temp_out[j] + 16) >> 5;
}
}
void vp9_short_idct1_8x8_c(int16_t *input, int16_t *output) {
int tmp;
int16_t out;
tmp = input[0] * cospi_16_64;
out = dct_const_round_shift(tmp);
tmp = out * cospi_16_64;
out = dct_const_round_shift(tmp);
*output = (out + 16) >> 5;
}
void vp9_short_ihaar2x2_c(int16_t *input, int16_t *output, int pitch) {
int i;
int16_t *ip = input; // 0, 1, 4, 8
int16_t *op = output;
for (i = 0; i < 16; i++) {
op[i] = 0;
}
op[0] = (ip[0] + ip[1] + ip[4] + ip[8] + 1) >> 1;
op[1] = (ip[0] - ip[1] + ip[4] - ip[8]) >> 1;
op[4] = (ip[0] + ip[1] - ip[4] - ip[8]) >> 1;
op[8] = (ip[0] - ip[1] - ip[4] + ip[8]) >> 1;
}
#if 0
// Keep a really bad float version as reference for now.
void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double x;
const int short_pitch = pitch >> 1;
int i, j, k, l;
for (l = 0; l < 16; ++l) {
for (k = 0; k < 16; ++k) {
double s = 0;
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/32;
if (i != 0)
x *= sqrt(2.0);
if (j != 0)
x *= sqrt(2.0);
s += x;
}
}
output[k*short_pitch+l] = (short)round(s);
}
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#endif
#define TEST_INT_16x16_IDCT 1
#if !TEST_INT_16x16_IDCT
static void butterfly_16x16_idct_1d(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1 and 2
step[ 0] = input[0] + input[8];
step[ 1] = input[0] - input[8];
temp1 = input[4]*C12;
temp2 = input[12]*C4;
temp1 -= temp2;
temp1 *= C8;
step[ 2] = 2*(temp1);
temp1 = input[4]*C4;
temp2 = input[12]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
step[ 3] = 2*(temp1);
temp1 = input[2]*C8;
temp1 = 2*(temp1);
temp2 = input[6] + input[10];
step[ 4] = temp1 + temp2;
step[ 5] = temp1 - temp2;
temp1 = input[14]*C8;
temp1 = 2*(temp1);
temp2 = input[6] - input[10];
step[ 6] = temp2 - temp1;
step[ 7] = temp2 + temp1;
// for odd input
temp1 = input[3]*C12;
temp2 = input[13]*C4;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[ 8] = 2*(temp1);
temp1 = input[3]*C4;
temp2 = input[13]*C12;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[ 9] = 2*(temp2);
intermediate[10] = 2*(input[9]*C8);
intermediate[11] = input[15] - input[1];
intermediate[12] = input[15] + input[1];
intermediate[13] = 2*((input[7]*C8));
temp1 = input[11]*C12;
temp2 = input[5]*C4;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[14] = 2*(temp2);
temp1 = input[11]*C4;
temp2 = input[5]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[15] = 2*(temp1);
step[ 8] = intermediate[ 8] + intermediate[14];
step[ 9] = intermediate[ 9] + intermediate[15];
step[10] = intermediate[10] + intermediate[11];
step[11] = intermediate[10] - intermediate[11];
step[12] = intermediate[12] + intermediate[13];
step[13] = intermediate[12] - intermediate[13];
step[14] = intermediate[ 8] - intermediate[14];
step[15] = intermediate[ 9] - intermediate[15];
// step 3
output[0] = step[ 0] + step[ 3];
output[1] = step[ 1] + step[ 2];
output[2] = step[ 1] - step[ 2];
output[3] = step[ 0] - step[ 3];
temp1 = step[ 4]*C14;
temp2 = step[ 7]*C2;
temp1 -= temp2;
output[4] = (temp1);
temp1 = step[ 4]*C2;
temp2 = step[ 7]*C14;
temp1 += temp2;
output[7] = (temp1);
temp1 = step[ 5]*C10;
temp2 = step[ 6]*C6;
temp1 -= temp2;
output[5] = (temp1);
temp1 = step[ 5]*C6;
temp2 = step[ 6]*C10;
temp1 += temp2;
output[6] = (temp1);
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8]*C7;
temp2 = output[15]*C9;
temp1 -= temp2;
step[ 8] = (temp1);
temp1 = output[9]*C11;
temp2 = output[14]*C5;
temp1 += temp2;
step[ 9] = (temp1);
temp1 = output[10]*C3;
temp2 = output[13]*C13;
temp1 -= temp2;
step[10] = (temp1);
temp1 = output[11]*C15;
temp2 = output[12]*C1;
temp1 += temp2;
step[11] = (temp1);
temp1 = output[11]*C1;
temp2 = output[12]*C15;
temp2 -= temp1;
step[12] = (temp2);
temp1 = output[10]*C13;
temp2 = output[13]*C3;
temp1 += temp2;
step[13] = (temp1);
temp1 = output[9]*C5;
temp2 = output[14]*C11;
temp2 -= temp1;
step[14] = (temp2);
temp1 = output[8]*C9;
temp2 = output[15]*C7;
temp1 += temp2;
step[15] = (temp1);
// step 5
output[0] = (step[0] + step[15]);
output[1] = (step[1] + step[14]);
output[2] = (step[2] + step[13]);
output[3] = (step[3] + step[12]);
output[4] = (step[4] + step[11]);
output[5] = (step[5] + step[10]);
output[6] = (step[6] + step[ 9]);
output[7] = (step[7] + step[ 8]);
output[15] = (step[0] - step[15]);
output[14] = (step[1] - step[14]);
output[13] = (step[2] - step[13]);
output[12] = (step[3] - step[12]);
output[11] = (step[4] - step[11]);
output[10] = (step[5] - step[10]);
output[9] = (step[6] - step[ 9]);
output[8] = (step[7] - step[ 8]);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
// Remove once an int version of iDCT is written
#if 0
void reference_16x16_idct_1d(double input[16], double output[16]) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
const double kPi = 3.141592653589793238462643383279502884;
const double kSqrt2 = 1.414213562373095048801688724209698;
for (int k = 0; k < 16; k++) {
output[k] = 0.0;
for (int n = 0; n < 16; n++) {
output[k] += input[n]*cos(kPi*(2*k+1)*n/32.0);
if (n == 0)
output[k] = output[k]/kSqrt2;
}
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#endif
void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double out[16*16], out2[16*16];
const int short_pitch = pitch >> 1;
int i, j;
// First transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = input[j + i*short_pitch];
butterfly_16x16_idct_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j + i*16] = temp_out[j];
}
// Then transform columns
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
butterfly_16x16_idct_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out2[j*16 + i] = temp_out[j];
}
for (i = 0; i < 16*16; ++i)
output[i] = round(out2[i]/128);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#else
void idct16_1d(int16_t *input, int16_t *output) {
int16_t step1[16], step2[16];
int temp1, temp2;
// stage 1
step1[0] = input[0/2];
step1[1] = input[16/2];
step1[2] = input[8/2];
step1[3] = input[24/2];
step1[4] = input[4/2];
step1[5] = input[20/2];
step1[6] = input[12/2];
step1[7] = input[28/2];
step1[8] = input[2/2];
step1[9] = input[18/2];
step1[10] = input[10/2];
step1[11] = input[26/2];
step1[12] = input[6/2];
step1[13] = input[22/2];
step1[14] = input[14/2];
step1[15] = input[30/2];
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = dct_const_round_shift(temp1);
step2[15] = dct_const_round_shift(temp2);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[8] = step2[8] + step2[9];
step1[9] = step2[8] - step2[9];
step1[10] = -step2[10] + step2[11];
step1[11] = step2[10] + step2[11];
step1[12] = step2[12] + step2[13];
step1[13] = step2[12] - step2[13];
step1[14] = -step2[14] + step2[15];
step1[15] = step2[14] + step2[15];
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = dct_const_round_shift(temp1);
step2[1] = dct_const_round_shift(temp2);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = dct_const_round_shift(temp1);
step2[3] = dct_const_round_shift(temp2);
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
step2[11] = step1[11];
step2[12] = step1[12];
// stage 5
step1[0] = step2[0] + step2[3];
step1[1] = step2[1] + step2[2];
step1[2] = step2[1] - step2[2];
step1[3] = step2[0] - step2[3];
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
step1[8] = step2[8] + step2[11];
step1[9] = step2[9] + step2[10];
step1[10] = step2[9] - step2[10];
step1[11] = step2[8] - step2[11];
step1[12] = -step2[12] + step2[15];
step1[13] = -step2[13] + step2[14];
step1[14] = step2[13] + step2[14];
step1[15] = step2[12] + step2[15];
// stage 6
step2[0] = step1[0] + step1[7];
step2[1] = step1[1] + step1[6];
step2[2] = step1[2] + step1[5];
step2[3] = step1[3] + step1[4];
step2[4] = step1[3] - step1[4];
step2[5] = step1[2] - step1[5];
step2[6] = step1[1] - step1[6];
step2[7] = step1[0] - step1[7];
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[14] = step1[14];
step2[15] = step1[15];
// stage 7
output[0] = step2[0] + step2[15];
output[1] = step2[1] + step2[14];
output[2] = step2[2] + step2[13];
output[3] = step2[3] + step2[12];
output[4] = step2[4] + step2[11];
output[5] = step2[5] + step2[10];
output[6] = step2[6] + step2[9];
output[7] = step2[7] + step2[8];
output[8] = step2[7] - step2[8];
output[9] = step2[6] - step2[9];
output[10] = step2[5] - step2[10];
output[11] = step2[4] - step2[11];
output[12] = step2[3] - step2[12];
output[13] = step2[2] - step2[13];
output[14] = step2[1] - step2[14];
output[15] = step2[0] - step2[15];
}
void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[16 * 16];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[16], temp_out[16];
// First transform rows
for (i = 0; i < 16; ++i) {
idct16_1d(input, outptr);
input += short_pitch;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
idct16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j * 16 + i] = (temp_out[j] + 32) >> 6;
}
}
void vp9_short_idct10_16x16_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[16 * 16];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[16], temp_out[16];
/* First transform rows. Since all non-zero dct coefficients are in
* upper-left 4x4 area, we only need to calculate first 4 rows here.
*/
vpx_memset(out, 0, sizeof(out));
for (i = 0; i < 4; ++i) {
idct16_1d(input, outptr);
input += short_pitch;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
idct16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j*16 + i] = (temp_out[j] + 32) >> 6;
}
}
void vp9_short_idct1_16x16_c(int16_t *input, int16_t *output) {
int tmp;
int16_t out;
tmp = input[0] * cospi_16_64;
out = dct_const_round_shift(tmp);
tmp = out * cospi_16_64;
out = dct_const_round_shift(tmp);
*output = (out + 32) >> 6;
}
#endif
#if !CONFIG_DWTDCTHYBRID
void idct32_1d(int16_t *input, int16_t *output) {
int16_t step1[32], step2[32];
int temp1, temp2;
// stage 1
step1[0] = input[0];
step1[1] = input[16];
step1[2] = input[8];
step1[3] = input[24];
step1[4] = input[4];
step1[5] = input[20];
step1[6] = input[12];
step1[7] = input[28];
step1[8] = input[2];
step1[9] = input[18];
step1[10] = input[10];
step1[11] = input[26];
step1[12] = input[6];
step1[13] = input[22];
step1[14] = input[14];
step1[15] = input[30];
temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64;
temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64;
step1[16] = dct_const_round_shift(temp1);
step1[31] = dct_const_round_shift(temp2);
temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64;
temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64;
step1[17] = dct_const_round_shift(temp1);
step1[30] = dct_const_round_shift(temp2);
temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64;
temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64;
temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64;
step1[19] = dct_const_round_shift(temp1);
step1[28] = dct_const_round_shift(temp2);
temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64;
temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64;
temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64;
temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64;
temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64;
step1[23] = dct_const_round_shift(temp1);
step1[24] = dct_const_round_shift(temp2);
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = dct_const_round_shift(temp1);
step2[15] = dct_const_round_shift(temp2);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[16] = step1[16] + step1[17];
step2[17] = step1[16] - step1[17];
step2[18] = -step1[18] + step1[19];
step2[19] = step1[18] + step1[19];
step2[20] = step1[20] + step1[21];
step2[21] = step1[20] - step1[21];
step2[22] = -step1[22] + step1[23];
step2[23] = step1[22] + step1[23];
step2[24] = step1[24] + step1[25];
step2[25] = step1[24] - step1[25];
step2[26] = -step1[26] + step1[27];
step2[27] = step1[26] + step1[27];
step2[28] = step1[28] + step1[29];
step2[29] = step1[28] - step1[29];
step2[30] = -step1[30] + step1[31];
step2[31] = step1[30] + step1[31];
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[8] = step2[8] + step2[9];
step1[9] = step2[8] - step2[9];
step1[10] = -step2[10] + step2[11];
step1[11] = step2[10] + step2[11];
step1[12] = step2[12] + step2[13];
step1[13] = step2[12] - step2[13];
step1[14] = -step2[14] + step2[15];
step1[15] = step2[14] + step2[15];
step1[16] = step2[16];
step1[31] = step2[31];
temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64;
temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64;
step1[17] = dct_const_round_shift(temp1);
step1[30] = dct_const_round_shift(temp2);
temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64;
temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
step1[19] = step2[19];
step1[20] = step2[20];
temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64;
temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64;
temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
step1[23] = step2[23];
step1[24] = step2[24];
step1[27] = step2[27];
step1[28] = step2[28];
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = dct_const_round_shift(temp1);
step2[1] = dct_const_round_shift(temp2);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = dct_const_round_shift(temp1);
step2[3] = dct_const_round_shift(temp2);
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
step2[11] = step1[11];
step2[12] = step1[12];
step2[16] = step1[16] + step1[19];
step2[17] = step1[17] + step1[18];
step2[18] = step1[17] - step1[18];
step2[19] = step1[16] - step1[19];
step2[20] = -step1[20] + step1[23];
step2[21] = -step1[21] + step1[22];
step2[22] = step1[21] + step1[22];
step2[23] = step1[20] + step1[23];
step2[24] = step1[24] + step1[27];
step2[25] = step1[25] + step1[26];
step2[26] = step1[25] - step1[26];
step2[27] = step1[24] - step1[27];
step2[28] = -step1[28] + step1[31];
step2[29] = -step1[29] + step1[30];
step2[30] = step1[29] + step1[30];
step2[31] = step1[28] + step1[31];
// stage 5
step1[0] = step2[0] + step2[3];
step1[1] = step2[1] + step2[2];
step1[2] = step2[1] - step2[2];
step1[3] = step2[0] - step2[3];
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
step1[8] = step2[8] + step2[11];
step1[9] = step2[9] + step2[10];
step1[10] = step2[9] - step2[10];
step1[11] = step2[8] - step2[11];
step1[12] = -step2[12] + step2[15];
step1[13] = -step2[13] + step2[14];
step1[14] = step2[13] + step2[14];
step1[15] = step2[12] + step2[15];
step1[16] = step2[16];
step1[17] = step2[17];
temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64;
temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64;
temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64;
step1[19] = dct_const_round_shift(temp1);
step1[28] = dct_const_round_shift(temp2);
temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64;
temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64;
temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
step1[22] = step2[22];
step1[23] = step2[23];
step1[24] = step2[24];
step1[25] = step2[25];
step1[30] = step2[30];
step1[31] = step2[31];
// stage 6
step2[0] = step1[0] + step1[7];
step2[1] = step1[1] + step1[6];
step2[2] = step1[2] + step1[5];
step2[3] = step1[3] + step1[4];
step2[4] = step1[3] - step1[4];
step2[5] = step1[2] - step1[5];
step2[6] = step1[1] - step1[6];
step2[7] = step1[0] - step1[7];
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[14] = step1[14];
step2[15] = step1[15];
step2[16] = step1[16] + step1[23];
step2[17] = step1[17] + step1[22];
step2[18] = step1[18] + step1[21];
step2[19] = step1[19] + step1[20];
step2[20] = step1[19] - step1[20];
step2[21] = step1[18] - step1[21];
step2[22] = step1[17] - step1[22];
step2[23] = step1[16] - step1[23];
step2[24] = -step1[24] + step1[31];
step2[25] = -step1[25] + step1[30];
step2[26] = -step1[26] + step1[29];
step2[27] = -step1[27] + step1[28];
step2[28] = step1[27] + step1[28];
step2[29] = step1[26] + step1[29];
step2[30] = step1[25] + step1[30];
step2[31] = step1[24] + step1[31];
// stage 7
step1[0] = step2[0] + step2[15];
step1[1] = step2[1] + step2[14];
step1[2] = step2[2] + step2[13];
step1[3] = step2[3] + step2[12];
step1[4] = step2[4] + step2[11];
step1[5] = step2[5] + step2[10];
step1[6] = step2[6] + step2[9];
step1[7] = step2[7] + step2[8];
step1[8] = step2[7] - step2[8];
step1[9] = step2[6] - step2[9];
step1[10] = step2[5] - step2[10];
step1[11] = step2[4] - step2[11];
step1[12] = step2[3] - step2[12];
step1[13] = step2[2] - step2[13];
step1[14] = step2[1] - step2[14];
step1[15] = step2[0] - step2[15];
step1[16] = step2[16];
step1[17] = step2[17];
step1[18] = step2[18];
step1[19] = step2[19];
temp1 = (-step2[20] + step2[27]) * cospi_16_64;
temp2 = (step2[20] + step2[27]) * cospi_16_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = (-step2[21] + step2[26]) * cospi_16_64;
temp2 = (step2[21] + step2[26]) * cospi_16_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = (-step2[22] + step2[25]) * cospi_16_64;
temp2 = (step2[22] + step2[25]) * cospi_16_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
temp1 = (-step2[23] + step2[24]) * cospi_16_64;
temp2 = (step2[23] + step2[24]) * cospi_16_64;
step1[23] = dct_const_round_shift(temp1);
step1[24] = dct_const_round_shift(temp2);
step1[28] = step2[28];
step1[29] = step2[29];
step1[30] = step2[30];
step1[31] = step2[31];
// final stage
output[0] = step1[0] + step1[31];
output[1] = step1[1] + step1[30];
output[2] = step1[2] + step1[29];
output[3] = step1[3] + step1[28];
output[4] = step1[4] + step1[27];
output[5] = step1[5] + step1[26];
output[6] = step1[6] + step1[25];
output[7] = step1[7] + step1[24];
output[8] = step1[8] + step1[23];
output[9] = step1[9] + step1[22];
output[10] = step1[10] + step1[21];
output[11] = step1[11] + step1[20];
output[12] = step1[12] + step1[19];
output[13] = step1[13] + step1[18];
output[14] = step1[14] + step1[17];
output[15] = step1[15] + step1[16];
output[16] = step1[15] - step1[16];
output[17] = step1[14] - step1[17];
output[18] = step1[13] - step1[18];
output[19] = step1[12] - step1[19];
output[20] = step1[11] - step1[20];
output[21] = step1[10] - step1[21];
output[22] = step1[9] - step1[22];
output[23] = step1[8] - step1[23];
output[24] = step1[7] - step1[24];
output[25] = step1[6] - step1[25];
output[26] = step1[5] - step1[26];
output[27] = step1[4] - step1[27];
output[28] = step1[3] - step1[28];
output[29] = step1[2] - step1[29];
output[30] = step1[1] - step1[30];
output[31] = step1[0] - step1[31];
}
void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[32 * 32];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[32], temp_out[32];
// First transform rows
for (i = 0; i < 32; ++i) {
idct32_1d(input, outptr);
input += short_pitch;
outptr += 32;
}
// Then transform columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
idct32_1d(temp_in, temp_out);
for (j = 0; j < 32; ++j)
output[j * 32 + i] = (temp_out[j] + 32) >> 6;
}
}
void vp9_short_idct1_32x32_c(int16_t *input, int16_t *output) {
int tmp;
int16_t out;
tmp = input[0] * cospi_16_64;
out = dct_const_round_shift(tmp);
tmp = out * cospi_16_64;
out = dct_const_round_shift(tmp);
*output = (out + 32) >> 6;
}
#else // !CONFIG_DWTDCTHYBRID
#if DWT_TYPE == 53
// Note: block length must be even for this implementation
static void synthesis_53_row(int length, int16_t *lowpass, int16_t *highpass,
int16_t *x) {
int16_t r, *a, *b;
int n;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ -= (r + (*b) + 1) >> 1;
r = *b++;
}
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
*x++ = ((r = *a++) + 1) >> 1;
*x++ = *b++ + ((r + (*a) + 2) >> 2);
}
*x++ = ((r = *a) + 1) >> 1;
*x++ = *b + ((r + 1) >> 1);
}
static void synthesis_53_col(int length, int16_t *lowpass, int16_t *highpass,
int16_t *x) {
int16_t r, *a, *b;
int n;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ -= (r + (*b) + 1) >> 1;
r = *b++;
}
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
r = *a++;
*x++ = r;
*x++ = ((*b++) << 1) + ((r + (*a) + 1) >> 1);
}
*x++ = *a;
*x++ = ((*b) << 1) + *a;
}
static void dyadic_synthesize_53(int levels, int width, int height, int16_t *c,
int pitch_c, int16_t *x, int pitch_x) {
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
short buffer[2 * DWT_MAX_LENGTH];
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_53_col(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer));
synthesis_53_row(nw, buffer, buffer + hw, &c[i * pitch_c]);
}
}
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ?
((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) :
-((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS);
}
}
}
#elif DWT_TYPE == 26
// Note: block length must be even for this implementation
static void synthesis_26_row(int length, int16_t *lowpass, int16_t *highpass,
int16_t *x) {
int16_t r, s, *a, *b;
int i, n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ += (r - a[1] + 4) >> 3;
r = *a++;
}
*b += (r - *a + 4) >> 3;
}
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
s = *b++;
r = *a++;
*x++ = (r + s + 1) >> 1;
*x++ = (r - s + 1) >> 1;
}
}
static void synthesis_26_col(int length, int16_t *lowpass, int16_t *highpass,
int16_t *x) {
int16_t r, s, *a, *b;
int i, n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ += (r - a[1] + 4) >> 3;
r = *a++;
}
*b += (r - *a + 4) >> 3;
}
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
s = *b++;
r = *a++;
*x++ = r + s;
*x++ = r - s;
}
}
static void dyadic_synthesize_26(int levels, int width, int height, int16_t *c,
int pitch_c, int16_t *x, int pitch_x) {
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
int16_t buffer[2 * DWT_MAX_LENGTH];
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_26_col(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer));
synthesis_26_row(nw, buffer, buffer + hw, &c[i * pitch_c]);
}
}
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ?
((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) :
-((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS);
}
}
}
#elif DWT_TYPE == 97
static void synthesis_97(int length, double *lowpass, double *highpass,
double *x) {
static const double a_predict1 = -1.586134342;
static const double a_update1 = -0.05298011854;
static const double a_predict2 = 0.8829110762;
static const double a_update2 = 0.4435068522;
static const double s_low = 1.149604398;
static const double s_high = 1/1.149604398;
static const double inv_s_low = 1 / s_low;
static const double inv_s_high = 1 / s_high;
int i;
double y[DWT_MAX_LENGTH];
// Undo pack and scale
for (i = 0; i < length / 2; i++) {
y[i * 2] = lowpass[i] * inv_s_low;
y[i * 2 + 1] = highpass[i] * inv_s_high;
}
memcpy(x, y, sizeof(*y) * length);
// Undo update 2
for (i = 2; i < length; i += 2) {
x[i] -= a_update2 * (x[i-1] + x[i+1]);
}
x[0] -= 2 * a_update2 * x[1];
// Undo predict 2
for (i = 1; i < length - 2; i += 2) {
x[i] -= a_predict2 * (x[i - 1] + x[i + 1]);
}
x[length - 1] -= 2 * a_predict2 * x[length - 2];
// Undo update 1
for (i = 2; i < length; i += 2) {
x[i] -= a_update1 * (x[i - 1] + x[i + 1]);
}
x[0] -= 2 * a_update1 * x[1];
// Undo predict 1
for (i = 1; i < length - 2; i += 2) {
x[i] -= a_predict1 * (x[i - 1] + x[i + 1]);
}
x[length - 1] -= 2 * a_predict1 * x[length - 2];
}
static void dyadic_synthesize_97(int levels, int width, int height, int16_t *c,
int pitch_c, int16_t *x, int pitch_x) {
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
double buffer[2 * DWT_MAX_LENGTH];
double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH];
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_97(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
y[i * DWT_MAX_LENGTH + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer));
synthesis_97(nw, buffer, buffer + hw, &y[i * DWT_MAX_LENGTH]);
}
}
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
x[i * pitch_x + j] = round(y[i * DWT_MAX_LENGTH + j] /
(1 << DWT_PRECISION_BITS));
}
#endif // DWT_TYPE
// TODO(debargha): Implement scaling differently so as not to have to use the
// floating point 16x16 dct
static void butterfly_16x16_idct_1d_f(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1 and 2
step[ 0] = input[0] + input[8];
step[ 1] = input[0] - input[8];
temp1 = input[4]*C12;
temp2 = input[12]*C4;
temp1 -= temp2;
temp1 *= C8;
step[ 2] = 2*(temp1);
temp1 = input[4]*C4;
temp2 = input[12]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
step[ 3] = 2*(temp1);
temp1 = input[2]*C8;
temp1 = 2*(temp1);
temp2 = input[6] + input[10];
step[ 4] = temp1 + temp2;
step[ 5] = temp1 - temp2;
temp1 = input[14]*C8;
temp1 = 2*(temp1);
temp2 = input[6] - input[10];
step[ 6] = temp2 - temp1;
step[ 7] = temp2 + temp1;
// for odd input
temp1 = input[3]*C12;
temp2 = input[13]*C4;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[ 8] = 2*(temp1);
temp1 = input[3]*C4;
temp2 = input[13]*C12;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[ 9] = 2*(temp2);
intermediate[10] = 2*(input[9]*C8);
intermediate[11] = input[15] - input[1];
intermediate[12] = input[15] + input[1];
intermediate[13] = 2*((input[7]*C8));
temp1 = input[11]*C12;
temp2 = input[5]*C4;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[14] = 2*(temp2);
temp1 = input[11]*C4;
temp2 = input[5]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[15] = 2*(temp1);
step[ 8] = intermediate[ 8] + intermediate[14];
step[ 9] = intermediate[ 9] + intermediate[15];
step[10] = intermediate[10] + intermediate[11];
step[11] = intermediate[10] - intermediate[11];
step[12] = intermediate[12] + intermediate[13];
step[13] = intermediate[12] - intermediate[13];
step[14] = intermediate[ 8] - intermediate[14];
step[15] = intermediate[ 9] - intermediate[15];
// step 3
output[0] = step[ 0] + step[ 3];
output[1] = step[ 1] + step[ 2];
output[2] = step[ 1] - step[ 2];
output[3] = step[ 0] - step[ 3];
temp1 = step[ 4]*C14;
temp2 = step[ 7]*C2;
temp1 -= temp2;
output[4] = (temp1);
temp1 = step[ 4]*C2;
temp2 = step[ 7]*C14;
temp1 += temp2;
output[7] = (temp1);
temp1 = step[ 5]*C10;
temp2 = step[ 6]*C6;
temp1 -= temp2;
output[5] = (temp1);
temp1 = step[ 5]*C6;
temp2 = step[ 6]*C10;
temp1 += temp2;
output[6] = (temp1);
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8]*C7;
temp2 = output[15]*C9;
temp1 -= temp2;
step[ 8] = (temp1);
temp1 = output[9]*C11;
temp2 = output[14]*C5;
temp1 += temp2;
step[ 9] = (temp1);
temp1 = output[10]*C3;
temp2 = output[13]*C13;
temp1 -= temp2;
step[10] = (temp1);
temp1 = output[11]*C15;
temp2 = output[12]*C1;
temp1 += temp2;
step[11] = (temp1);
temp1 = output[11]*C1;
temp2 = output[12]*C15;
temp2 -= temp1;
step[12] = (temp2);
temp1 = output[10]*C13;
temp2 = output[13]*C3;
temp1 += temp2;
step[13] = (temp1);
temp1 = output[9]*C5;
temp2 = output[14]*C11;
temp2 -= temp1;
step[14] = (temp2);
temp1 = output[8]*C9;
temp2 = output[15]*C7;
temp1 += temp2;
step[15] = (temp1);
// step 5
output[0] = (step[0] + step[15]);
output[1] = (step[1] + step[14]);
output[2] = (step[2] + step[13]);
output[3] = (step[3] + step[12]);
output[4] = (step[4] + step[11]);
output[5] = (step[5] + step[10]);
output[6] = (step[6] + step[ 9]);
output[7] = (step[7] + step[ 8]);
output[15] = (step[0] - step[15]);
output[14] = (step[1] - step[14]);
output[13] = (step[2] - step[13]);
output[12] = (step[3] - step[12]);
output[11] = (step[4] - step[11]);
output[10] = (step[5] - step[10]);
output[9] = (step[6] - step[ 9]);
output[8] = (step[7] - step[ 8]);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
static void vp9_short_idct16x16_c_f(int16_t *input, int16_t *output, int pitch,
int scale) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double out[16*16], out2[16*16];
const int short_pitch = pitch >> 1;
int i, j;
// First transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = input[j + i*short_pitch];
butterfly_16x16_idct_1d_f(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j + i*16] = temp_out[j];
}
// Then transform columns
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
butterfly_16x16_idct_1d_f(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out2[j*16 + i] = temp_out[j];
}
for (i = 0; i < 16*16; ++i)
output[i] = round(out2[i] / (128 >> scale));
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
static void idct8_1d_f(double *x) {
int i, j;
double t[8];
static const double idctmat[64] = {
0.35355339059327, 0.49039264020162, 0.46193976625564, 0.41573480615127,
0.35355339059327, 0.2777851165098, 0.19134171618254, 0.097545161008064,
0.35355339059327, 0.41573480615127, 0.19134171618254, -0.097545161008064,
-0.35355339059327, -0.49039264020161, -0.46193976625564, -0.2777851165098,
0.35355339059327, 0.2777851165098, -0.19134171618254, -0.49039264020162,
-0.35355339059327, 0.097545161008064, 0.46193976625564, 0.41573480615127,
0.35355339059327, 0.097545161008063, -0.46193976625564, -0.2777851165098,
0.35355339059327, 0.41573480615127, -0.19134171618254, -0.49039264020162,
0.35355339059327, -0.097545161008063, -0.46193976625564, 0.2777851165098,
0.35355339059327, -0.41573480615127, -0.19134171618255, 0.49039264020162,
0.35355339059327, -0.2777851165098, -0.19134171618254, 0.49039264020161,
-0.35355339059327, -0.097545161008064, 0.46193976625564, -0.41573480615127,
0.35355339059327, -0.41573480615127, 0.19134171618254, 0.097545161008065,
-0.35355339059327, 0.49039264020162, -0.46193976625564, 0.2777851165098,
0.35355339059327, -0.49039264020162, 0.46193976625564, -0.41573480615127,
0.35355339059327, -0.2777851165098, 0.19134171618255, -0.097545161008064
};
for (i = 0; i < 8; ++i) {
t[i] = 0;
for (j = 0; j < 8; ++j)
t[i] += idctmat[i * 8 + j] * x[j];
}
for (i = 0; i < 8; ++i) {
x[i] = t[i];
}
}
static void vp9_short_idct8x8_c_f(int16_t *coefs, int16_t *block, int pitch,
int scale) {
double X[8 * 8], Y[8];
int i, j;
int shortpitch = pitch >> 1;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
X[i * 8 + j] = (double)coefs[i * shortpitch + j];
}
}
for (i = 0; i < 8; i++)
idct8_1d_f(X + 8 * i);
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; ++j)
Y[j] = X[i + 8 * j];
idct8_1d_f(Y);
for (j = 0; j < 8; ++j)
X[i + 8 * j] = Y[j];
}
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
block[i * 8 + j] = (int16_t)round(X[i * 8 + j] / (8 >> scale));
}
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#define multiply_bits(d, n) ((n) < 0 ? (d) >> (n) : (d) << (n))
#if DWTDCT_TYPE == DWTDCT16X16_LEAN
void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) {
// assume output is a 32x32 buffer
// Temporary buffer to hold a 16x16 block for 16x16 inverse dct
int16_t buffer[16 * 16];
// Temporary buffer to hold a 32x32 block for inverse 32x32 dwt
int16_t buffer2[32 * 32];
// Note: pitch is in bytes, short_pitch is in short units
const int short_pitch = pitch >> 1;
int i, j;
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the idct16x16 function
vp9_short_idct16x16_c_f(input, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(*buffer2) * 16);
}
for (i = 0; i < 16; ++i) {
for (j = 16; j < 32; ++j) {
buffer2[i * 32 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2);
}
}
for (i = 16; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
buffer2[i * 32 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2);
}
}
#if DWT_TYPE == 26
dyadic_synthesize_26(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 97
dyadic_synthesize_97(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 53
dyadic_synthesize_53(1, 32, 32, buffer2, 32, output, 32);
#endif
}
#elif DWTDCT_TYPE == DWTDCT16X16
void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) {
// assume output is a 32x32 buffer
// Temporary buffer to hold a 16x16 block for 16x16 inverse dct
int16_t buffer[16 * 16];
// Temporary buffer to hold a 32x32 block for inverse 32x32 dwt
int16_t buffer2[32 * 32];
// Note: pitch is in bytes, short_pitch is in short units
const int short_pitch = pitch >> 1;
int i, j;
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the idct16x16 function
vp9_short_idct16x16_c_f(input, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16, buffer + i * 16, sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16 * 32, buffer + i * 16,
sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch + 16, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16 * 33, buffer + i * 16,
sizeof(*buffer2) * 16);
}
#if DWT_TYPE == 26
dyadic_synthesize_26(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 97
dyadic_synthesize_97(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 53
dyadic_synthesize_53(1, 32, 32, buffer2, 32, output, 32);
#endif
}
#elif DWTDCT_TYPE == DWTDCT8X8
void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) {
// assume output is a 32x32 buffer
// Temporary buffer to hold a 16x16 block for 16x16 inverse dct
int16_t buffer[8 * 8];
// Temporary buffer to hold a 32x32 block for inverse 32x32 dwt
int16_t buffer2[32 * 32];
// Note: pitch is in bytes, short_pitch is in short units
const int short_pitch = pitch >> 1;
int i, j;
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the idct16x16 function
vp9_short_idct8x8_c_f(input, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 8; ++i) {
vpx_memcpy(buffer2 + i * 32, buffer + i * 8, sizeof(*buffer2) * 8);
}
vp9_short_idct8x8_c_f(input + 8, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 8; ++i) {
vpx_memcpy(buffer2 + i * 32 + 8, buffer + i * 8, sizeof(*buffer2) * 8);
}
vp9_short_idct8x8_c_f(input + 8 * short_pitch, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 8; ++i) {
vpx_memcpy(buffer2 + i * 32 + 8 * 32, buffer + i * 8,
sizeof(*buffer2) * 8);
}
vp9_short_idct8x8_c_f(input + 8 * short_pitch + 8, buffer, pitch,
1 + DWT_PRECISION_BITS);
for (i = 0; i < 8; ++i) {
vpx_memcpy(buffer2 + i * 32 + 8 * 33, buffer + i * 8,
sizeof(*buffer2) * 8);
}
for (i = 0; i < 16; ++i) {
for (j = 16; j < 32; ++j) {
buffer2[i * 32 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2);
}
}
for (i = 16; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
buffer2[i * 32 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2);
}
}
#if DWT_TYPE == 26
dyadic_synthesize_26(2, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 97
dyadic_synthesize_97(2, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 53
dyadic_synthesize_53(2, 32, 32, buffer2, 32, output, 32);
#endif
}
#endif
#if CONFIG_TX64X64
void vp9_short_idct64x64_c(int16_t *input, int16_t *output, int pitch) {
// assume output is a 64x64 buffer
// Temporary buffer to hold a 16x16 block for 16x16 inverse dct
int16_t buffer[16 * 16];
// Temporary buffer to hold a 32x32 block for inverse 32x32 dwt
int16_t buffer2[64 * 64];
// Note: pitch is in bytes, short_pitch is in short units
const int short_pitch = pitch >> 1;
int i, j;
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the idct16x16 function
vp9_short_idct16x16_c_f(input, buffer, pitch,
2 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 64, buffer + i * 16, sizeof(*buffer2) * 16);
}
#if DWTDCT_TYPE == DWTDCT16X16_LEAN
for (i = 0; i < 16; ++i) {
for (j = 16; j < 64; ++j) {
buffer2[i * 64 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1);
}
}
for (i = 16; i < 64; ++i) {
for (j = 0; j < 64; ++j) {
buffer2[i * 64 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1);
}
}
#elif DWTDCT_TYPE == DWTDCT16X16
vp9_short_idct16x16_c_f(input + 16, buffer, pitch,
2 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 64 + 16, buffer + i * 16, sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch, buffer, pitch,
2 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 64 + 16 * 64, buffer + i * 16,
sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch + 16, buffer, pitch,
2 + DWT_PRECISION_BITS);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 64 + 16 * 65, buffer + i * 16,
sizeof(*buffer2) * 16);
}
// Copying and scaling highest bands into buffer2
for (i = 0; i < 32; ++i) {
for (j = 32; j < 64; ++j) {
buffer2[i * 64 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1);
}
}
for (i = 32; i < 64; ++i) {
for (j = 0; j < 64; ++j) {
buffer2[i * 64 + j] =
multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1);
}
}
#endif // DWTDCT_TYPE
#if DWT_TYPE == 26
dyadic_synthesize_26(2, 64, 64, buffer2, 64, output, 64);
#elif DWT_TYPE == 97
dyadic_synthesize_97(2, 64, 64, buffer2, 64, output, 64);
#elif DWT_TYPE == 53
dyadic_synthesize_53(2, 64, 64, buffer2, 64, output, 64);
#endif
}
#endif // CONFIG_TX64X64
#endif // !CONFIG_DWTDCTHYBRID