vpx/vp9/encoder/vp9_bitstream.c
James Zern c8ba8c513c cosmetics: strip 'VP9_' from defines in vp9 only code
Change-Id: I481d9bb2fa3ec72b6a83d5f04d545ad8013f295c
2013-08-23 19:16:49 -07:00

1527 lines
49 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[INTRA_MODES]
[INTRA_MODES]
[INTRA_MODES];
vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
extern unsigned int active_section;
#endif
#ifdef MODE_STATS
int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
int64_t switchable_interp_stats[SWITCHABLE_FILTERS+1]
[SWITCHABLE_FILTERS];
void init_tx_count_stats() {
vp9_zero(tx_count_32x32p_stats);
vp9_zero(tx_count_16x16p_stats);
vp9_zero(tx_count_8x8p_stats);
}
void init_switchable_interp_stats() {
vp9_zero(switchable_interp_stats);
}
static void update_tx_count_stats(VP9_COMMON *cm) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (j = 0; j < TX_SIZES; j++) {
tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
}
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (j = 0; j < TX_SIZES - 1; j++) {
tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
}
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (j = 0; j < TX_SIZES - 2; j++) {
tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
}
}
}
static void update_switchable_interp_stats(VP9_COMMON *cm) {
int i, j;
for (i = 0; i < SWITCHABLE_FILTERS+1; ++i)
for (j = 0; j < SWITCHABLE_FILTERS; ++j) {
switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
}
}
void write_tx_count_stats() {
int i, j;
FILE *fp = fopen("tx_count.bin", "wb");
fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
fclose(fp);
printf(
"vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
printf(" { ");
for (j = 0; j < TX_SIZES; j++) {
printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
}
printf("},\n");
}
printf("};\n");
printf(
"vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
printf(" { ");
for (j = 0; j < TX_SIZES - 1; j++) {
printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
}
printf("},\n");
}
printf("};\n");
printf(
"vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
printf(" { ");
for (j = 0; j < TX_SIZES - 2; j++) {
printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
}
printf("},\n");
}
printf("};\n");
}
void write_switchable_interp_stats() {
int i, j;
FILE *fp = fopen("switchable_interp.bin", "wb");
fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
fclose(fp);
printf(
"vp9_default_switchable_filter_count[SWITCHABLE_FILTERS+1]"
"[SWITCHABLE_FILTERS] = {\n");
for (i = 0; i < SWITCHABLE_FILTERS+1; i++) {
printf(" { ");
for (j = 0; j < SWITCHABLE_FILTERS; j++) {
printf("%"PRId64", ", switchable_interp_stats[i][j]);
}
printf("},\n");
}
printf("};\n");
}
#endif
static INLINE void write_be32(uint8_t *p, int value) {
p[0] = value >> 24;
p[1] = value >> 16;
p[2] = value >> 8;
p[3] = value;
}
void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void update_mode(
vp9_writer *w,
int n,
vp9_tree tree,
vp9_prob Pnew[/* n-1 */],
vp9_prob Pcur[/* n-1 */],
unsigned int bct[/* n-1 */] [2],
const unsigned int num_events[/* n */]
) {
int i = 0;
vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
n--;
for (i = 0; i < n; ++i) {
vp9_cond_prob_diff_update(w, &Pcur[i], MODE_UPDATE_PROB, bct[i]);
}
}
static void update_mbintra_mode_probs(VP9_COMP* const cpi,
vp9_writer* const bc) {
VP9_COMMON *const cm = &cpi->common;
int j;
vp9_prob pnew[INTRA_MODES - 1];
unsigned int bct[INTRA_MODES - 1][2];
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, pnew,
cm->fc.y_mode_prob[j], bct,
(unsigned int *)cpi->y_mode_count[j]);
}
static void write_selected_tx_size(const VP9_COMP *cpi, TX_SIZE tx_size,
BLOCK_SIZE_TYPE bsize, vp9_writer *w) {
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs);
vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
if (bsize >= BLOCK_16X16 && tx_size != TX_4X4) {
vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
if (bsize >= BLOCK_32X32 && tx_size != TX_8X8)
vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
}
}
static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
vp9_writer *w) {
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip_coeff = m->mbmi.skip_coeff;
vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
return skip_coeff;
}
}
void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
VP9_COMMON *cm = &cpi->common;
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k],
MODE_UPDATE_PROB, cm->counts.mbskip[k]);
}
static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
}
static void update_switchable_interp_probs(VP9_COMP *const cpi,
vp9_writer* const bc) {
VP9_COMMON *const pc = &cpi->common;
unsigned int branch_ct[SWITCHABLE_FILTERS + 1]
[SWITCHABLE_FILTERS - 1][2];
vp9_prob new_prob[SWITCHABLE_FILTERS + 1][SWITCHABLE_FILTERS - 1];
int i, j;
for (j = 0; j <= SWITCHABLE_FILTERS; ++j) {
vp9_tree_probs_from_distribution(
vp9_switchable_interp_tree,
new_prob[j], branch_ct[j],
pc->counts.switchable_interp[j], 0);
}
for (j = 0; j <= SWITCHABLE_FILTERS; ++j) {
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) {
vp9_cond_prob_diff_update(bc, &pc->fc.switchable_interp_prob[j][i],
MODE_UPDATE_PROB, branch_ct[j][i]);
}
}
#ifdef MODE_STATS
if (!cpi->dummy_packing)
update_switchable_interp_stats(pc);
#endif
}
static void update_inter_mode_probs(VP9_COMMON *pc, vp9_writer* const bc) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
unsigned int branch_ct[INTER_MODES - 1][2];
vp9_prob new_prob[INTER_MODES - 1];
vp9_tree_probs_from_distribution(vp9_inter_mode_tree,
new_prob, branch_ct,
pc->counts.inter_mode[i], NEARESTMV);
for (j = 0; j < INTER_MODES - 1; ++j)
vp9_cond_prob_diff_update(bc, &pc->fc.inter_mode_probs[i][j],
MODE_UPDATE_PROB, branch_ct[j]);
}
}
static void pack_mb_tokens(vp9_writer* const bc,
TOKENEXTRA **tp,
const TOKENEXTRA *const stop) {
TOKENEXTRA *p = *tp;
while (p < stop) {
const int t = p->token;
const struct vp9_token *const a = vp9_coef_encodings + t;
const vp9_extra_bit *const b = vp9_extra_bits + t;
int i = 0;
const vp9_prob *pp;
int v = a->value;
int n = a->len;
vp9_prob probs[ENTROPY_NODES];
if (t == EOSB_TOKEN) {
++p;
break;
}
if (t >= TWO_TOKEN) {
vp9_model_to_full_probs(p->context_tree, probs);
pp = probs;
} else {
pp = p->context_tree;
}
assert(pp != 0);
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pp[i >> 1]);
i = vp9_coef_tree[i + bb];
} while (n);
if (b->base_val) {
const int e = p->extra, l = b->len;
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pb[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
vp9_write_bit(bc, e & 1);
}
++p;
}
*tp = p;
}
static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
const vp9_prob *p) {
assert(is_inter_mode(mode));
write_token(w, vp9_inter_mode_tree, p,
&vp9_inter_mode_encodings[mode - NEARESTMV]);
}
static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
int segment_id) {
if (seg->enabled && seg->update_map)
treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
}
// This function encodes the reference frame
static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
VP9_COMMON *const pc = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mi = &xd->mode_info_context->mbmi;
const int segment_id = mi->segment_id;
int seg_ref_active = vp9_segfeature_active(&pc->seg, segment_id,
SEG_LVL_REF_FRAME);
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (!seg_ref_active) {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (pc->comp_pred_mode == HYBRID_PREDICTION) {
vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
vp9_get_pred_prob_comp_inter_inter(pc, xd));
} else {
assert((mi->ref_frame[1] <= INTRA_FRAME) ==
(pc->comp_pred_mode == SINGLE_PREDICTION_ONLY));
}
if (mi->ref_frame[1] > INTRA_FRAME) {
vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
vp9_get_pred_prob_comp_ref_p(pc, xd));
} else {
vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
vp9_get_pred_prob_single_ref_p1(pc, xd));
if (mi->ref_frame[0] != LAST_FRAME)
vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
vp9_get_pred_prob_single_ref_p2(pc, xd));
}
} else {
assert(mi->ref_frame[1] <= INTRA_FRAME);
assert(vp9_get_segdata(&pc->seg, segment_id, SEG_LVL_REF_FRAME) ==
mi->ref_frame[0]);
}
// if using the prediction mdoel we have nothing further to do because
// the reference frame is fully coded by the segment
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
VP9_COMMON *const pc = &cpi->common;
const nmv_context *nmvc = &pc->fc.nmvc;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct segmentation *seg = &pc->seg;
MB_MODE_INFO *const mi = &m->mbmi;
const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
const MB_PREDICTION_MODE mode = mi->mode;
const int segment_id = mi->segment_id;
int skip_coeff;
const BLOCK_SIZE_TYPE bsize = mi->sb_type;
const int allow_hp = xd->allow_high_precision_mv;
x->partition_info = x->pi + (m - pc->mi);
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mi->seg_id_predicted;
vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
vp9_write(bc, pred_flag, pred_prob);
if (!pred_flag)
write_segment_id(bc, seg, segment_id);
} else {
write_segment_id(bc, seg, segment_id);
}
}
skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vp9_write(bc, rf != INTRA_FRAME,
vp9_get_pred_prob_intra_inter(pc, xd));
if (bsize >= BLOCK_8X8 && pc->tx_mode == TX_MODE_SELECT &&
!(rf != INTRA_FRAME &&
(skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
write_selected_tx_size(cpi, mi->txfm_size, bsize, bc);
}
if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
active_section = 6;
#endif
if (bsize >= BLOCK_8X8) {
write_intra_mode(bc, mode, pc->fc.y_mode_prob[size_group_lookup[bsize]]);
} else {
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
write_intra_mode(bc, bm, pc->fc.y_mode_prob[0]);
}
}
}
write_intra_mode(bc, mi->uv_mode, pc->fc.uv_mode_prob[mode]);
} else {
vp9_prob *mv_ref_p;
encode_ref_frame(cpi, bc);
mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
#ifdef ENTROPY_STATS
active_section = 3;
#endif
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
write_sb_mv_ref(bc, mode, mv_ref_p);
++pc->counts.inter_mode[mi->mode_context[rf]]
[inter_mode_offset(mode)];
}
}
if (pc->mcomp_filter_type == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
write_token(bc, vp9_switchable_interp_tree,
pc->fc.switchable_interp_prob[ctx],
&vp9_switchable_interp_encodings[mi->interp_filter]);
} else {
assert(mi->interp_filter == pc->mcomp_filter_type);
}
if (bsize < BLOCK_8X8) {
int j;
MB_PREDICTION_MODE blockmode;
int_mv blockmv;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
j = idy * 2 + idx;
blockmode = x->partition_info->bmi[j].mode;
blockmv = m->bmi[j].as_mv[0];
write_sb_mv_ref(bc, blockmode, mv_ref_p);
++pc->counts.inter_mode[mi->mode_context[rf]]
[inter_mode_offset(blockmode)];
if (blockmode == NEWMV) {
#ifdef ENTROPY_STATS
active_section = 11;
#endif
vp9_encode_mv(cpi, bc, &blockmv.as_mv, &mi->best_mv.as_mv,
nmvc, allow_hp);
if (mi->ref_frame[1] > INTRA_FRAME)
vp9_encode_mv(cpi, bc,
&m->bmi[j].as_mv[1].as_mv,
&mi->best_second_mv.as_mv,
nmvc, allow_hp);
}
}
}
} else if (mode == NEWMV) {
#ifdef ENTROPY_STATS
active_section = 5;
#endif
vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv.as_mv,
nmvc, allow_hp);
if (mi->ref_frame[1] > INTRA_FRAME)
vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv.as_mv,
nmvc, allow_hp);
}
}
}
static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO *m,
vp9_writer *bc) {
const VP9_COMMON *const c = &cpi->common;
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const struct segmentation *const seg = &c->seg;
const int ym = m->mbmi.mode;
const int mis = c->mode_info_stride;
const int segment_id = m->mbmi.segment_id;
if (seg->update_map)
write_segment_id(bc, seg, m->mbmi.segment_id);
write_skip_coeff(cpi, segment_id, m, bc);
if (m->mbmi.sb_type >= BLOCK_8X8 && c->tx_mode == TX_MODE_SELECT)
write_selected_tx_size(cpi, m->mbmi.txfm_size, m->mbmi.sb_type, bc);
if (m->mbmi.sb_type >= BLOCK_8X8) {
const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis);
const MB_PREDICTION_MODE L = xd->left_available ?
left_block_mode(m, 0) : DC_PRED;
write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
} else {
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
const int i = idy * 2 + idx;
const MB_PREDICTION_MODE A = above_block_mode(m, i, mis);
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(m, i) : DC_PRED;
const int bm = m->bmi[i].as_mode;
#ifdef ENTROPY_STATS
++intra_mode_stats[A][L][bm];
#endif
write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
}
}
}
write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
}
static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
if (m->mbmi.sb_type < BLOCK_8X8)
if (xd->ab_index > 0)
return;
xd->mode_info_context = m;
set_mi_row_col(&cpi->common, xd, mi_row,
1 << mi_height_log2(m->mbmi.sb_type),
mi_col, 1 << mi_width_log2(m->mbmi.sb_type));
if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
write_mb_modes_kf(cpi, m, bc);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
} else {
pack_inter_mode_mvs(cpi, m, bc);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
}
assert(*tok < tok_end);
pack_mb_tokens(bc, tok, tok_end);
}
static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bsl = b_width_log2(bsize);
int bs = (1 << bsl) / 4; // mode_info step for subsize
int n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = partition_lookup[bsl][m->mbmi.sb_type];
if (bsize < BLOCK_8X8)
if (xd->ab_index > 0)
return;
if (bsize >= BLOCK_8X8) {
int pl;
const int idx = check_bsize_coverage(bs, cm->mi_rows, cm->mi_cols,
mi_row, mi_col);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
// encode the partition information
if (idx == 0)
write_token(bc, vp9_partition_tree,
cm->fc.partition_prob[cm->frame_type][pl],
vp9_partition_encodings + partition);
else if (idx > 0)
vp9_write(bc, partition == PARTITION_SPLIT,
cm->fc.partition_prob[cm->frame_type][pl][idx]);
}
subsize = get_subsize(bsize, partition);
*(get_sb_index(xd, subsize)) = 0;
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
*(get_sb_index(xd, subsize)) = 1;
if ((mi_row + bs) < cm->mi_rows)
write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
*(get_sb_index(xd, subsize)) = 1;
if ((mi_col + bs) < cm->mi_cols)
write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
*(get_sb_index(xd, subsize)) = n;
write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end,
mi_row + j * bs, mi_col + i * bs, subsize);
}
break;
default:
assert(0);
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
update_partition_context(xd, subsize, bsize);
}
}
static void write_modes(VP9_COMP *cpi, vp9_writer* const bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
VP9_COMMON *const c = &cpi->common;
const int mis = c->mode_info_stride;
MODE_INFO *m, *m_ptr = c->mi;
int mi_row, mi_col;
m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis;
for (mi_row = c->cur_tile_mi_row_start; mi_row < c->cur_tile_mi_row_end;
mi_row += 8, m_ptr += 8 * mis) {
m = m_ptr;
vp9_zero(c->left_seg_context);
for (mi_col = c->cur_tile_mi_col_start; mi_col < c->cur_tile_mi_col_end;
mi_col += MI_BLOCK_SIZE, m += MI_BLOCK_SIZE)
write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
}
}
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) {
/* print coef probability tree */
int i, j, k, l, m;
FILE *f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < block_types; i++) {
fprintf(f, " {\n");
for (j = 0; j < REF_TYPES; ++j) {
fprintf(f, " {\n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3u, ",
(unsigned int)(coef_probs[i][j][k][l][m]));
}
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
vp9_prob full_probs[ENTROPY_NODES];
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(vp9_coef_tree,
full_probs,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l], 0);
vpx_memcpy(coef_probs[i][j][k][l], full_probs,
sizeof(vp9_prob) * UNCONSTRAINED_NODES);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
coef_probs[i][j][k][l][0] =
get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
coef_branch_ct[i][j][k][l][0][1]);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing) {
int t;
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters[tx_size][i][j][k][l][t] +=
coef_counts[i][j][k][l][t];
context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
eob_branch_ct[i][j][k][l];
}
#endif
}
}
}
}
}
static void build_coeff_contexts(VP9_COMP *cpi) {
TX_SIZE t;
for (t = TX_4X4; t <= TX_32X32; t++)
build_tree_distribution(cpi, t);
}
static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
TX_SIZE tx_size) {
vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
vp9_coeff_probs_model *old_frame_coef_probs =
cpi->common.fc.coef_probs[tx_size];
vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
int i, j, k, l, t;
int update[2] = {0, 0};
int savings;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
const int tstart = 0;
/* dry run to see if there is any udpate at all needed */
savings = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
const vp9_prob upd = VP9_COEF_UPDATE_PROB;
int s;
int u = 0;
if (l >= 3 && k == 0)
continue;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
// calc probs and branch cts for this frame only
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
const vp9_prob upd = VP9_COEF_UPDATE_PROB;
int s;
int u = 0;
if (l >= 3 && k == 0)
continue;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++tree_update_hist[tx_size][i][j][k][l][t][u];
#endif
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
}
static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
const TX_MODE tx_mode = cpi->common.tx_mode;
vp9_clear_system_state();
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
update_coef_probs_common(bc, cpi, TX_4X4);
// do not do this if not even allowed
if (tx_mode > ONLY_4X4)
update_coef_probs_common(bc, cpi, TX_8X8);
if (tx_mode > ALLOW_8X8)
update_coef_probs_common(bc, cpi, TX_16X16);
if (tx_mode > ALLOW_16X16)
update_coef_probs_common(bc, cpi, TX_32X32);
}
static void encode_loopfilter(struct loopfilter *lf,
struct vp9_write_bit_buffer *wb) {
int i;
// Encode the loop filter level and type
vp9_wb_write_literal(wb, lf->filter_level, 6);
vp9_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
// Do the deltas need to be updated
vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = lf->ref_deltas[i];
// Frame level data
if (delta != lf->last_ref_deltas[i]) {
lf->last_ref_deltas[i] = delta;
vp9_wb_write_bit(wb, 1);
assert(delta != 0);
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
} else {
vp9_wb_write_bit(wb, 0);
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
if (delta != lf->last_mode_deltas[i]) {
lf->last_mode_deltas[i] = delta;
vp9_wb_write_bit(wb, 1);
assert(delta != 0);
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
} else {
vp9_wb_write_bit(wb, 0);
}
}
}
}
}
static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
vp9_wb_write_bit(wb, 1);
vp9_wb_write_literal(wb, abs(delta_q), 4);
vp9_wb_write_bit(wb, delta_q < 0);
} else {
vp9_wb_write_bit(wb, 0);
}
}
static void encode_quantization(VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
}
static void encode_segmentation(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
int i, j;
struct segmentation *seg = &cpi->common.seg;
vp9_wb_write_bit(wb, seg->enabled);
if (!seg->enabled)
return;
// Segmentation map
vp9_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cpi);
// Write out probabilities used to decode unpredicted macro-block segments
for (i = 0; i < SEG_TREE_PROBS; i++) {
const int prob = seg->tree_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
// Write out the chosen coding method.
vp9_wb_write_bit(wb, seg->temporal_update);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = seg->pred_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
}
}
// Segmentation data
vp9_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
vp9_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = vp9_segfeature_active(seg, i, j);
vp9_wb_write_bit(wb, active);
if (active) {
const int data = vp9_get_segdata(seg, i, j);
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_is_segfeature_signed(j)) {
vp9_encode_unsigned_max(wb, abs(data), data_max);
vp9_wb_write_bit(wb, data < 0);
} else {
vp9_encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
// Mode
vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
if (cm->tx_mode >= ALLOW_32X32)
vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
// Probabilities
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
unsigned int ct_8x8p[TX_SIZES - 3][2];
unsigned int ct_16x16p[TX_SIZES - 2][2];
unsigned int ct_32x32p[TX_SIZES - 1][2];
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i],
ct_8x8p);
for (j = 0; j < TX_SIZES - 3; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j],
MODE_UPDATE_PROB, ct_8x8p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i],
ct_16x16p);
for (j = 0; j < TX_SIZES - 2; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
MODE_UPDATE_PROB, ct_16x16p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
for (j = 0; j < TX_SIZES - 1; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
MODE_UPDATE_PROB, ct_32x32p[j]);
}
#ifdef MODE_STATS
if (!cpi->dummy_packing)
update_tx_count_stats(cm);
#endif
}
}
static void write_interp_filter_type(INTERPOLATIONFILTERTYPE type,
struct vp9_write_bit_buffer *wb) {
const int type_to_literal[] = { 1, 0, 2 };
vp9_wb_write_bit(wb, type == SWITCHABLE);
if (type != SWITCHABLE)
vp9_wb_write_literal(wb, type_to_literal[type], 2);
}
static void fix_mcomp_filter_type(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (cm->mcomp_filter_type == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j <= SWITCHABLE_FILTERS; ++j)
count[i] += cm->counts.switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->mcomp_filter_type = i;
break;
}
}
}
}
}
static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
int min_log2_tile_cols, max_log2_tile_cols, ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--)
vp9_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols)
vp9_wb_write_bit(wb, 0);
// rows
vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0)
vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
}
static int get_refresh_mask(VP9_COMP *cpi) {
// Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
#endif
// Preserve the previously existing golden frame and update the frame in
// the alt ref slot instead. This is highly specific to the use of
// alt-ref as a forward reference, and this needs to be generalized as
// other uses are implemented (like RTC/temporal scaling)
//
// gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
// that happens in vp9_onyx_if.c:update_reference_frames() so that it can
// be done outside of the recode loop.
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
// Determine which ARF buffer to use to encode this ARF frame.
if (cpi->multi_arf_enabled) {
int sn = cpi->sequence_number;
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
cpi->arf_buffer_idx[sn + 1] :
cpi->arf_buffer_idx[sn];
}
#endif
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
VP9_COMMON *const cm = &cpi->common;
vp9_writer residual_bc;
int tile_row, tile_col;
TOKENEXTRA *tok[4][1 << 6], *tok_end;
size_t total_size = 0;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mi_cols_aligned_to_sb(cm->mi_cols));
tok[0][0] = cpi->tok;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
if (tile_row)
tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
cpi->tok_count[tile_row - 1][tile_cols - 1];
for (tile_col = 1; tile_col < tile_cols; tile_col++)
tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
cpi->tok_count[tile_row][tile_col - 1];
}
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
vp9_get_tile_col_offsets(cm, tile_col);
tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, &residual_bc, &tok[tile_row][tile_col], tok_end);
assert(tok[tile_row][tile_col] == tok_end);
vp9_stop_encode(&residual_bc);
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
// size of this tile
write_be32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
}
return total_size;
}
static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
const int scaling_active = cm->width != cm->display_width ||
cm->height != cm->display_height;
vp9_wb_write_bit(wb, scaling_active);
if (scaling_active) {
vp9_wb_write_literal(wb, cm->display_width - 1, 16);
vp9_wb_write_literal(wb, cm->display_height - 1, 16);
}
}
static void write_frame_size(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
write_display_size(cpi, wb);
}
static void write_frame_size_with_refs(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
cpi->alt_fb_idx};
int i, found = 0;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
vp9_wb_write_bit(wb, found);
if (found)
break;
}
if (!found) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
}
write_display_size(cpi, wb);
}
static void write_sync_code(struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, SYNC_CODE_0, 8);
vp9_wb_write_literal(wb, SYNC_CODE_1, 8);
vp9_wb_write_literal(wb, SYNC_CODE_2, 8);
}
static void write_uncompressed_header(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
// frame marker bits
vp9_wb_write_literal(wb, 0x2, 2);
// bitstream version.
// 00 - profile 0. 4:2:0 only
// 10 - profile 1. adds 4:4:4, 4:2:2, alpha
vp9_wb_write_bit(wb, cm->version);
vp9_wb_write_bit(wb, 0);
vp9_wb_write_bit(wb, 0);
vp9_wb_write_bit(wb, cm->frame_type);
vp9_wb_write_bit(wb, cm->show_frame);
vp9_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
// colorspaces
// 000 - Unknown
// 001 - BT.601
// 010 - BT.709
// 011 - SMPTE-170
// 100 - SMPTE-240
// 101 - Reserved
// 110 - Reserved
// 111 - sRGB (RGB)
vp9_wb_write_literal(wb, 0, 3);
if (1 /* colorspace != sRGB */) {
vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
if (cm->version == 1) {
vp9_wb_write_bit(wb, cm->subsampling_x);
vp9_wb_write_bit(wb, cm->subsampling_y);
vp9_wb_write_bit(wb, 0); // has extra plane
}
} else {
assert(cm->version == 1);
vp9_wb_write_bit(wb, 0); // has extra plane
}
write_frame_size(cpi, wb);
} else {
const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
cpi->alt_fb_idx};
if (!cm->show_frame)
vp9_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode)
vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
if (cm->intra_only) {
write_sync_code(wb);
vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
write_frame_size(cpi, wb);
} else {
int i;
vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
}
write_frame_size_with_refs(cpi, wb);
vp9_wb_write_bit(wb, xd->allow_high_precision_mv);
fix_mcomp_filter_type(cpi);
write_interp_filter_type(cm->mcomp_filter_type, wb);
}
}
if (!cm->error_resilient_mode) {
vp9_wb_write_bit(wb, cm->refresh_frame_context);
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
}
vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
encode_loopfilter(&cm->lf, wb);
encode_quantization(cm, wb);
encode_segmentation(cpi, wb);
write_tile_info(cm, wb);
}
static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
FRAME_CONTEXT *const fc = &cm->fc;
vp9_writer header_bc;
vp9_start_encode(&header_bc, data);
if (xd->lossless)
cm->tx_mode = ONLY_4X4;
else
encode_txfm_probs(cpi, &header_bc);
update_coef_probs(cpi, &header_bc);
#ifdef ENTROPY_STATS
active_section = 2;
#endif
vp9_update_skip_probs(cpi, &header_bc);
if (cm->frame_type != KEY_FRAME) {
int i;
#ifdef ENTROPY_STATS
active_section = 1;
#endif
update_inter_mode_probs(cm, &header_bc);
vp9_zero(cm->counts.inter_mode);
if (cm->mcomp_filter_type == SWITCHABLE)
update_switchable_interp_probs(cpi, &header_bc);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
MODE_UPDATE_PROB,
cpi->intra_inter_count[i]);
if (cm->allow_comp_inter_inter) {
const int comp_pred_mode = cpi->common.comp_pred_mode;
const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
vp9_write_bit(&header_bc, use_hybrid_pred);
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
MODE_UPDATE_PROB,
cpi->comp_inter_count[i]);
}
}
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
for (i = 0; i < REF_CONTEXTS; i++) {
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
MODE_UPDATE_PROB,
cpi->single_ref_count[i][0]);
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
MODE_UPDATE_PROB,
cpi->single_ref_count[i][1]);
}
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
MODE_UPDATE_PROB,
cpi->comp_ref_count[i]);
update_mbintra_mode_probs(cpi, &header_bc);
for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) {
vp9_prob pnew[PARTITION_TYPES - 1];
unsigned int bct[PARTITION_TYPES - 1][2];
update_mode(&header_bc, PARTITION_TYPES,
vp9_partition_tree, pnew,
fc->partition_prob[cm->frame_type][i], bct,
(unsigned int *)cpi->partition_count[i]);
}
vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
}
vp9_stop_encode(&header_bc);
assert(header_bc.pos <= 0xffff);
return header_bc.pos;
}
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
uint8_t *data = dest;
size_t first_part_size;
struct vp9_write_bit_buffer wb = {data, 0};
struct vp9_write_bit_buffer saved_wb;
write_uncompressed_header(cpi, &wb);
saved_wb = wb;
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
data += vp9_rb_bytes_written(&wb);
vp9_compute_update_table();
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
vp9_clear_system_state(); // __asm emms;
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
vp9_wb_write_literal(&saved_wb, first_part_size, 16);
data += encode_tiles(cpi, data);
*size = data - dest;
}
#ifdef ENTROPY_STATS
static void print_tree_update_for_type(FILE *f,
vp9_coeff_stats *tree_update_hist,
int block_types, const char *header) {
int i, j, k, l, m;
fprintf(f, "const vp9_coeff_prob %s = {\n", header);
for (i = 0; i < block_types; i++) {
fprintf(f, " { \n");
for (j = 0; j < REF_TYPES; j++) {
fprintf(f, " { \n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3d, ",
get_binary_prob(tree_update_hist[i][j][k][l][m][0],
tree_update_hist[i][j][k][l][m][1]));
}
fprintf(f, "},\n");
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
}
void print_tree_update_probs() {
FILE *f = fopen("coefupdprob.h", "w");
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES,
"vp9_coef_update_probs_4x4[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES,
"vp9_coef_update_probs_8x8[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
"vp9_coef_update_probs_16x16[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
"vp9_coef_update_probs_32x32[BLOCK_TYPES]");
fclose(f);
f = fopen("treeupdate.bin", "wb");
fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
fclose(f);
}
#endif