vpx/vp9/decoder/vp9_decodeframe.c
Scott LaVarnway 7203100127 VP9: Refactor dec_build_inter_predictors_sb()
Change-Id: I336fe2006288214977b5ee854124ee7b5bba5796
2016-01-27 07:37:59 -08:00

2259 lines
81 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "vpx_dsp/bitreader_buffer.h"
#include "vpx_dsp/bitreader.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/mem_ops.h"
#include "vpx_scale/vpx_scale.h"
#include "vpx_util/vpx_thread.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_thread_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/decoder/vp9_decodeframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decoder.h"
#include "vp9/decoder/vp9_dsubexp.h"
#define MAX_VP9_HEADER_SIZE 80
static int is_compound_reference_allowed(const VP9_COMMON *cm) {
int i;
for (i = 1; i < REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
return 1;
return 0;
}
static void setup_compound_reference_mode(VP9_COMMON *cm) {
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(vpx_reader *r) {
TX_MODE tx_mode = vpx_read_literal(r, 2);
if (tx_mode == ALLOW_32X32)
tx_mode += vpx_read_bit(r);
return tx_mode;
}
static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 3; ++j)
vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 2; ++j)
vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 1; ++j)
vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
}
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
}
static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
vpx_reader *r) {
if (is_compound_reference_allowed(cm)) {
return vpx_read_bit(r) ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT
: COMPOUND_REFERENCE)
: SINGLE_REFERENCE;
} else {
return SINGLE_REFERENCE;
}
}
static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
FRAME_CONTEXT *const fc = cm->fc;
int i;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
if (cm->reference_mode != COMPOUND_REFERENCE)
for (i = 0; i < REF_CONTEXTS; ++i) {
vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
}
if (cm->reference_mode != SINGLE_REFERENCE)
for (i = 0; i < REF_CONTEXTS; ++i)
vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
}
static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
int i;
for (i = 0; i < n; ++i)
if (vpx_read(r, MV_UPDATE_PROB))
p[i] = (vpx_read_literal(r, 7) << 1) | 1;
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
int i, j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
update_mv_probs(comp_ctx->fp, 3, r);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void inverse_transform_block_inter(MACROBLOCKD* xd, int plane,
const TX_SIZE tx_size,
uint8_t *dst, int stride,
int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
if (eob > 0) {
tran_low_t *const dqcoeff = pd->dqcoeff;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless) {
vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd);
} else {
switch (tx_size) {
case TX_4X4:
vp9_highbd_idct4x4_add(dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_8X8:
vp9_highbd_idct8x8_add(dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_16X16:
vp9_highbd_idct16x16_add(dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_32X32:
vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd);
break;
default:
assert(0 && "Invalid transform size");
}
}
} else {
if (xd->lossless) {
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
} else {
switch (tx_size) {
case TX_4X4:
vp9_idct4x4_add(dqcoeff, dst, stride, eob);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, stride, eob);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, stride, eob);
break;
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
default:
assert(0 && "Invalid transform size");
return;
}
}
}
#else
if (xd->lossless) {
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
} else {
switch (tx_size) {
case TX_4X4:
vp9_idct4x4_add(dqcoeff, dst, stride, eob);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, stride, eob);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, stride, eob);
break;
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
default:
assert(0 && "Invalid transform size");
return;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (eob == 1) {
dqcoeff[0] = 0;
} else {
if (tx_size <= TX_16X16 && eob <= 10)
memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
}
}
static void inverse_transform_block_intra(MACROBLOCKD* xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size,
uint8_t *dst, int stride,
int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
if (eob > 0) {
tran_low_t *const dqcoeff = pd->dqcoeff;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless) {
vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd);
} else {
switch (tx_size) {
case TX_4X4:
vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_8X8:
vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_16X16:
vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
break;
case TX_32X32:
vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd);
break;
default:
assert(0 && "Invalid transform size");
}
}
} else {
if (xd->lossless) {
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
} else {
switch (tx_size) {
case TX_4X4:
vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_8X8:
vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_16X16:
vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
default:
assert(0 && "Invalid transform size");
return;
}
}
}
#else
if (xd->lossless) {
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
} else {
switch (tx_size) {
case TX_4X4:
vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_8X8:
vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_16X16:
vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
default:
assert(0 && "Invalid transform size");
return;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (eob == 1) {
dqcoeff[0] = 0;
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
}
}
static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd,
vpx_reader *r,
MODE_INFO *const mi,
int plane,
int row, int col,
TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
uint8_t *dst;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
if (mi->sb_type < BLOCK_8X8)
if (plane == 0)
mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode,
dst, pd->dst.stride, dst, pd->dst.stride,
col, row, plane);
if (!mi->skip) {
const TX_TYPE tx_type = (plane || xd->lossless) ?
DCT_DCT : intra_mode_to_tx_type_lookup[mode];
const scan_order *sc = (plane || xd->lossless) ?
&vp9_default_scan_orders[tx_size] : &vp9_scan_orders[tx_size][tx_type];
const int eob = vp9_decode_block_tokens(xd, plane, sc, col, row, tx_size,
r, mi->segment_id);
inverse_transform_block_intra(xd, plane, tx_type, tx_size,
dst, pd->dst.stride, eob);
}
}
static int reconstruct_inter_block(MACROBLOCKD *const xd, vpx_reader *r,
MODE_INFO *const mi, int plane,
int row, int col, TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *sc = &vp9_default_scan_orders[tx_size];
const int eob = vp9_decode_block_tokens(xd, plane, sc, col, row, tx_size, r,
mi->segment_id);
inverse_transform_block_inter(xd, plane, tx_size,
&pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
pd->dst.stride, eob);
return eob;
}
static void build_mc_border(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
int x, int y, int b_w, int b_h, int w, int h) {
// Get a pointer to the start of the real data for this row.
const uint8_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w)
left = b_w;
if (x + b_w > w)
right = x + b_w - w;
if (right > b_w)
right = b_w;
copy = b_w - left - right;
if (left)
memset(dst, ref_row[0], left);
if (copy)
memcpy(dst + left, ref_row + x + left, copy);
if (right)
memset(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h)
ref_row += src_stride;
} while (--b_h);
}
#if CONFIG_VP9_HIGHBITDEPTH
static void high_build_mc_border(const uint8_t *src8, int src_stride,
uint16_t *dst, int dst_stride,
int x, int y, int b_w, int b_h,
int w, int h) {
// Get a pointer to the start of the real data for this row.
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w)
left = b_w;
if (x + b_w > w)
right = x + b_w - w;
if (right > b_w)
right = b_w;
copy = b_w - left - right;
if (left)
vpx_memset16(dst, ref_row[0], left);
if (copy)
memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
if (right)
vpx_memset16(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h)
ref_row += src_stride;
} while (--b_h);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
int x0, int y0, int b_w, int b_h,
int frame_width, int frame_height,
int border_offset,
uint8_t *const dst, int dst_buf_stride,
int subpel_x, int subpel_y,
const InterpKernel *kernel,
const struct scale_factors *sf,
MACROBLOCKD *xd,
int w, int h, int ref, int xs, int ys) {
DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]);
const uint8_t *buf_ptr;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w,
x0, y0, b_w, b_h, frame_width, frame_height);
buf_ptr = CONVERT_TO_BYTEPTR(mc_buf_high) + border_offset;
} else {
build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w,
x0, y0, b_w, b_h, frame_width, frame_height);
buf_ptr = ((uint8_t *)mc_buf_high) + border_offset;
}
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
high_inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
} else {
inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
}
}
#else
static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
int x0, int y0, int b_w, int b_h,
int frame_width, int frame_height,
int border_offset,
uint8_t *const dst, int dst_buf_stride,
int subpel_x, int subpel_y,
const InterpKernel *kernel,
const struct scale_factors *sf,
int w, int h, int ref, int xs, int ys) {
DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]);
const uint8_t *buf_ptr;
build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w,
x0, y0, b_w, b_h, frame_width, frame_height);
buf_ptr = mc_buf + border_offset;
inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void dec_build_inter_predictors(VPxWorker *const worker, MACROBLOCKD *xd,
int plane, int bw, int bh, int x,
int y, int w, int h, int mi_x, int mi_y,
const InterpKernel *kernel,
const struct scale_factors *sf,
struct buf_2d *pre_buf,
struct buf_2d *dst_buf, const MV* mv,
RefCntBuffer *ref_frame_buf,
int is_scaled, int ref) {
struct macroblockd_plane *const pd = &xd->plane[plane];
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
MV32 scaled_mv;
int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height,
buf_stride, subpel_x, subpel_y;
uint8_t *ref_frame, *buf_ptr;
// Get reference frame pointer, width and height.
if (plane == 0) {
frame_width = ref_frame_buf->buf.y_crop_width;
frame_height = ref_frame_buf->buf.y_crop_height;
ref_frame = ref_frame_buf->buf.y_buffer;
} else {
frame_width = ref_frame_buf->buf.uv_crop_width;
frame_height = ref_frame_buf->buf.uv_crop_height;
ref_frame = plane == 1 ? ref_frame_buf->buf.u_buffer
: ref_frame_buf->buf.v_buffer;
}
if (is_scaled) {
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
// Co-ordinate of containing block to pixel precision.
int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
#if CONFIG_BETTER_HW_COMPATIBILITY
assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
xd->mi[0]->sb_type != BLOCK_8X4);
assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
#endif
// Co-ordinate of the block to 1/16th pixel precision.
x0_16 = (x_start + x) << SUBPEL_BITS;
y0_16 = (y_start + y) << SUBPEL_BITS;
// Co-ordinate of current block in reference frame
// to 1/16th pixel precision.
x0_16 = sf->scale_value_x(x0_16, sf);
y0_16 = sf->scale_value_y(y0_16, sf);
// Map the top left corner of the block into the reference frame.
x0 = sf->scale_value_x(x_start + x, sf);
y0 = sf->scale_value_y(y_start + y, sf);
// Scale the MV and incorporate the sub-pixel offset of the block
// in the reference frame.
scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
// Co-ordinate of containing block to pixel precision.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
// Co-ordinate of the block to 1/16th pixel precision.
x0_16 = x0 << SUBPEL_BITS;
y0_16 = y0 << SUBPEL_BITS;
scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
// Calculate the top left corner of the best matching block in the
// reference frame.
x0 += scaled_mv.col >> SUBPEL_BITS;
y0 += scaled_mv.row >> SUBPEL_BITS;
x0_16 += scaled_mv.col;
y0_16 += scaled_mv.row;
// Get reference block pointer.
buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
buf_stride = pre_buf->stride;
// Do border extension if there is motion or the
// width/height is not a multiple of 8 pixels.
if (is_scaled || scaled_mv.col || scaled_mv.row ||
(frame_width & 0x7) || (frame_height & 0x7)) {
int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
// Get reference block bottom right horizontal coordinate.
int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
int x_pad = 0, y_pad = 0;
if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
x0 -= VP9_INTERP_EXTEND - 1;
x1 += VP9_INTERP_EXTEND;
x_pad = 1;
}
if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
y0 -= VP9_INTERP_EXTEND - 1;
y1 += VP9_INTERP_EXTEND;
y_pad = 1;
}
// Wait until reference block is ready. Pad 7 more pixels as last 7
// pixels of each superblock row can be changed by next superblock row.
if (worker != NULL)
vp9_frameworker_wait(worker, ref_frame_buf,
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
// Skip border extension if block is inside the frame.
if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
// Extend the border.
const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
const int b_w = x1 - x0 + 1;
const int b_h = y1 - y0 + 1;
const int border_offset = y_pad * 3 * b_w + x_pad * 3;
extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h,
frame_width, frame_height, border_offset,
dst, dst_buf->stride,
subpel_x, subpel_y,
kernel, sf,
#if CONFIG_VP9_HIGHBITDEPTH
xd,
#endif
w, h, ref, xs, ys);
return;
}
} else {
// Wait until reference block is ready. Pad 7 more pixels as last 7
// pixels of each superblock row can be changed by next superblock row.
if (worker != NULL) {
const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
vp9_frameworker_wait(worker, ref_frame_buf,
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
}
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
high_inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
} else {
inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
}
#else
inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
MACROBLOCKD *xd,
int mi_row, int mi_col) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const MODE_INFO *mi = xd->mi[0];
const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
const BLOCK_SIZE sb_type = mi->sb_type;
const int is_compound = has_second_ref(mi);
int ref;
int is_scaled;
VPxWorker *const fwo = pbi->frame_parallel_decode ?
pbi->frame_worker_owner : NULL;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
const struct scale_factors *const sf = &ref_buf->sf;
const int idx = ref_buf->idx;
BufferPool *const pool = pbi->common.buffer_pool;
RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
if (!vp9_is_valid_scale(sf))
vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
is_scaled = vp9_is_scaled(sf);
vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, sf);
xd->block_refs[ref] = ref_buf;
if (sb_type < BLOCK_8X8) {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int n4w_x4 = 4 * num_4x4_w;
const int n4h_x4 = 4 * num_4x4_h;
struct buf_2d *const pre_buf = &pd->pre[ref];
int i = 0, x, y;
for (y = 0; y < num_4x4_h; ++y) {
for (x = 0; x < num_4x4_w; ++x) {
const MV mv = average_split_mvs(pd, mi, ref, i++);
dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4,
4 * x, 4 * y, 4, 4, mi_x, mi_y, kernel,
sf, pre_buf, dst_buf, &mv,
ref_frame_buf, is_scaled, ref);
}
}
}
} else {
const MV mv = mi->mv[ref].as_mv;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int n4w_x4 = 4 * num_4x4_w;
const int n4h_x4 = 4 * num_4x4_h;
struct buf_2d *const pre_buf = &pd->pre[ref];
dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4,
0, 0, n4w_x4, n4h_x4, mi_x, mi_y, kernel,
sf, pre_buf, dst_buf, &mv,
ref_frame_buf, is_scaled, ref);
}
}
}
}
static INLINE TX_SIZE dec_get_uv_tx_size(const MODE_INFO *mi,
int n4_wl, int n4_hl) {
// get minimum log2 num4x4s dimension
const int x = VPXMIN(n4_wl, n4_hl);
return VPXMIN(mi->tx_size, x);
}
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
}
}
static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
int bhl) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
}
}
static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis,
int bwl, int bhl) {
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
}
set_plane_n4(xd, bw, bh, bwl, bhl);
set_skip_context(xd, mi_row, mi_col);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
return xd->mi[0];
}
static void decode_block(VP9Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col,
vpx_reader *r, BLOCK_SIZE bsize,
int bwl, int bhl) {
VP9_COMMON *const cm = &pbi->common;
const int less8x8 = bsize < BLOCK_8X8;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col,
bw, bh, x_mis, y_mis, bwl, bhl);
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
vpx_internal_error(xd->error_info,
VPX_CODEC_CORRUPT_FRAME, "Invalid block size.");
}
vpx_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
if (mi->skip) {
dec_reset_skip_context(xd);
}
if (!is_inter_block(mi)) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mi, pd->n4_wl, pd->n4_hl)
: mi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ?
0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ?
0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
predict_and_reconstruct_intra_block(xd, r, mi, plane,
row, col, tx_size);
}
} else {
// Prediction
dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
// Reconstruction
if (!mi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mi, pd->n4_wl, pd->n4_hl)
: mi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ?
0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ?
0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
eobtotal += reconstruct_inter_block(xd, r, mi, plane, row, col,
tx_size);
}
if (!less8x8 && eobtotal == 0)
mi->skip = 1; // skip loopfilter
}
}
xd->corrupted |= vpx_reader_has_error(r);
if (cm->lf.filter_level) {
vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
}
}
static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd,
int mi_row, int mi_col,
int bsl) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1;
// assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
static INLINE void dec_update_partition_context(MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE subsize,
int bw) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bw);
}
static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
vpx_reader *r,
int has_rows, int has_cols, int bsl) {
const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl);
const vpx_prob *const probs = get_partition_probs(xd, ctx);
FRAME_COUNTS *counts = xd->counts;
PARTITION_TYPE p;
if (has_rows && has_cols)
p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
else if (!has_rows && has_cols)
p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (counts)
++counts->partition[ctx][p];
return p;
}
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(VP9Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col,
vpx_reader* r, BLOCK_SIZE bsize, int n4x4_l2) {
VP9_COMMON *const cm = &pbi->common;
const int n8x8_l2 = n4x4_l2 - 1;
const int num_8x8_wh = 1 << n8x8_l2;
const int hbs = num_8x8_wh >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = read_partition(xd, mi_row, mi_col, r, has_rows, has_cols,
n8x8_l2);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
if (!hbs) {
// calculate bmode block dimensions (log 2)
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_block(pbi, xd, mi_row, mi_col, r, subsize, 1, 1);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n4x4_l2);
break;
case PARTITION_HORZ:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n8x8_l2);
if (has_rows)
decode_block(pbi, xd, mi_row + hbs, mi_col, r, subsize, n4x4_l2,
n8x8_l2);
break;
case PARTITION_VERT:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2, n4x4_l2);
if (has_cols)
decode_block(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2,
n4x4_l2);
break;
case PARTITION_SPLIT:
decode_partition(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row + hbs, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize,
n8x8_l2);
break;
default:
assert(0 && "Invalid partition type");
}
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh);
}
static void setup_token_decoder(const uint8_t *data,
const uint8_t *data_end,
size_t read_size,
struct vpx_internal_error_info *error_info,
vpx_reader *r,
vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
vpx_reader *r) {
int i, j, k, l, m;
if (vpx_read_bit(r))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
vpx_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
}
static void setup_segmentation(struct segmentation *seg,
struct vpx_read_bit_buffer *rb) {
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = vpx_rb_read_bit(rb);
if (!seg->enabled)
return;
// Segmentation map update
seg->update_map = vpx_rb_read_bit(rb);
if (seg->update_map) {
for (i = 0; i < SEG_TREE_PROBS; i++)
seg->tree_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8)
: MAX_PROB;
seg->temporal_update = vpx_rb_read_bit(rb);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8)
: MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
seg->update_data = vpx_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = vpx_rb_read_bit(rb);
vp9_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vpx_rb_read_bit(rb);
if (feature_enabled) {
vp9_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vpx_rb_read_bit(rb) ? -data : data;
}
vp9_set_segdata(seg, i, j, data);
}
}
}
}
static void setup_loopfilter(struct loopfilter *lf,
struct vpx_read_bit_buffer *rb) {
lf->filter_level = vpx_rb_read_literal(rb, 6);
lf->sharpness_level = vpx_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
if (vpx_rb_read_bit(rb))
lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (vpx_rb_read_bit(rb))
lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
}
}
}
static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
}
static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
struct vpx_read_bit_buffer *rb) {
cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
cm->uv_dc_delta_q = read_delta_q(rb);
cm->uv_ac_delta_q = read_delta_q(rb);
cm->dequant_bit_depth = cm->bit_depth;
xd->lossless = cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
#if CONFIG_VP9_HIGHBITDEPTH
xd->bd = (int)cm->bit_depth;
#endif
}
static void setup_segmentation_dequant(VP9_COMMON *const cm) {
// Build y/uv dequant values based on segmentation.
if (cm->seg.enabled) {
int i;
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant[i][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q,
cm->bit_depth);
cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[i][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q,
cm->bit_depth);
cm->uv_dequant[i][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q,
cm->bit_depth);
}
} else {
const int qindex = cm->base_qindex;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[0][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q,
cm->bit_depth);
cm->uv_dequant[0][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q,
cm->bit_depth);
}
}
static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR };
return vpx_rb_read_bit(rb) ? SWITCHABLE
: literal_to_filter[vpx_rb_read_literal(rb, 2)];
}
static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
cm->render_width = cm->width;
cm->render_height = cm->height;
if (vpx_rb_read_bit(rb))
vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
}
static void resize_mv_buffer(VP9_COMMON *cm) {
vpx_free(cm->cur_frame->mvs);
cm->cur_frame->mi_rows = cm->mi_rows;
cm->cur_frame->mi_cols = cm->mi_cols;
cm->cur_frame->mvs = (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*cm->cur_frame->mvs));
}
static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in vp9_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (vp9_alloc_context_buffers(cm, width, height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
vp9_set_mb_mi(cm, width, height);
}
vp9_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
cm->mi_cols > cm->cur_frame->mi_cols) {
resize_mv_buffer(cm);
}
}
static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
int width, height;
BufferPool *const pool = cm->buffer_pool;
vp9_read_frame_size(rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (vpx_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_DEC_BORDER_IN_PIXELS,
cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
vpx_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(VP9_COMMON *cm,
struct vpx_read_bit_buffer *rb) {
int width, height;
int found = 0, i;
int has_valid_ref_frame = 0;
BufferPool *const pool = cm->buffer_pool;
for (i = 0; i < REFS_PER_FRAME; ++i) {
if (vpx_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
found = 1;
break;
}
}
if (!found)
vp9_read_frame_size(rb, &width, &height);
if (width <= 0 || height <= 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height,
width, height);
}
if (!has_valid_ref_frame)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(
ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y,
cm->bit_depth,
cm->subsampling_x,
cm->subsampling_y))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (vpx_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_DEC_BORDER_IN_PIXELS,
cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
max_ones = max_log2_tile_cols - min_log2_tile_cols;
cm->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && vpx_rb_read_bit(rb))
cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = vpx_rb_read_bit(rb);
if (cm->log2_tile_rows)
cm->log2_tile_rows += vpx_rb_read_bit(rb);
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
int is_last,
struct vpx_internal_error_info *error_info,
const uint8_t **data,
vpx_decrypt_cb decrypt_cb, void *decrypt_state,
TileBuffer *buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, 4, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, 4);
size = mem_get_be32(be_data);
} else {
size = mem_get_be32(*data);
}
*data += 4;
if (size > (size_t)(data_end - *data))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static void get_tile_buffers(VP9Decoder *pbi,
const uint8_t *data, const uint8_t *data_end,
int tile_cols, int tile_rows,
TileBuffer (*tile_buffers)[1 << 6]) {
int r, c;
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c) {
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
TileBuffer *const buf = &tile_buffers[r][c];
buf->col = c;
get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, buf);
}
}
}
static const uint8_t *decode_tiles(VP9Decoder *pbi,
const uint8_t *data,
const uint8_t *data_end) {
VP9_COMMON *const cm = &pbi->common;
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
TileBuffer tile_buffers[4][1 << 6];
int tile_row, tile_col;
int mi_row, mi_col;
TileData *tile_data = NULL;
if (cm->lf.filter_level && !cm->skip_loop_filter &&
pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
vpx_memalign(32, sizeof(LFWorkerData)));
pbi->lf_worker.hook = (VPxWorkerHook)vp9_loop_filter_worker;
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
// Be sure to sync as we might be resuming after a failed frame decode.
winterface->sync(&pbi->lf_worker);
vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
pbi->mb.plane);
}
assert(tile_rows <= 4);
assert(tile_cols <= (1 << 6));
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_cols);
vp9_reset_lfm(cm);
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
if (pbi->tile_data == NULL ||
(tile_cols * tile_rows) != pbi->total_tiles) {
vpx_free(pbi->tile_data);
CHECK_MEM_ERROR(
cm,
pbi->tile_data,
vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data))));
pbi->total_tiles = tile_rows * tile_cols;
}
// Load all tile information into tile_data.
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
tile_data = pbi->tile_data + tile_cols * tile_row + tile_col;
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
tile_data->xd.counts = cm->frame_parallel_decoding_mode ?
NULL : &cm->counts;
vp9_zero(tile_data->dqcoeff);
vp9_tile_init(&tile_data->xd.tile, tile_data->cm, tile_row, tile_col);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
TileInfo tile;
vp9_tile_set_row(&tile, cm, tile_row);
for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
mi_row += MI_BLOCK_SIZE) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
const int col = pbi->inv_tile_order ?
tile_cols - tile_col - 1 : tile_col;
tile_data = pbi->tile_data + tile_cols * tile_row + col;
vp9_tile_set_col(&tile, tile_data->cm, col);
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(pbi, &tile_data->xd, mi_row,
mi_col, &tile_data->bit_reader, BLOCK_64X64, 4);
}
pbi->mb.corrupted |= tile_data->xd.corrupted;
if (pbi->mb.corrupted)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
// Loopfilter one row.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
const int lf_start = mi_row - MI_BLOCK_SIZE;
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
// delay the loopfilter by 1 macroblock row.
if (lf_start < 0) continue;
// decoding has completed: finish up the loop filter in this thread.
if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = mi_row;
if (pbi->max_threads > 1) {
winterface->launch(&pbi->lf_worker);
} else {
winterface->execute(&pbi->lf_worker);
}
}
// After loopfiltering, the last 7 row pixels in each superblock row may
// still be changed by the longest loopfilter of the next superblock
// row.
if (pbi->frame_parallel_decode)
vp9_frameworker_broadcast(pbi->cur_buf,
mi_row << MI_BLOCK_SIZE_LOG2);
}
}
// Loopfilter remaining rows in the frame.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
// Get last tile data.
tile_data = pbi->tile_data + tile_cols * tile_rows - 1;
if (pbi->frame_parallel_decode)
vp9_frameworker_broadcast(pbi->cur_buf, INT_MAX);
return vpx_reader_find_end(&tile_data->bit_reader);
}
// On entry 'tile_data->data_end' points to the end of the input frame, on exit
// it is updated to reflect the bitreader position of the final tile column if
// present in the tile buffer group or NULL otherwise.
static int tile_worker_hook(TileWorkerData *const tile_data,
VP9Decoder *const pbi) {
TileInfo *volatile tile = &tile_data->xd.tile;
const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
const uint8_t *volatile bit_reader_end = NULL;
volatile int n = tile_data->buf_start;
tile_data->error_info.setjmp = 1;
if (setjmp(tile_data->error_info.jmp)) {
tile_data->error_info.setjmp = 0;
tile_data->xd.corrupted = 1;
tile_data->data_end = NULL;
return 0;
}
tile_data->xd.error_info = &tile_data->error_info;
tile_data->xd.corrupted = 0;
do {
int mi_row, mi_col;
const TileBuffer *const buf = pbi->tile_buffers + n;
vp9_zero(tile_data->dqcoeff);
vp9_tile_init(tile, &pbi->common, 0, buf->col);
setup_token_decoder(buf->data, tile_data->data_end, buf->size,
&tile_data->error_info, &tile_data->bit_reader,
pbi->decrypt_cb, pbi->decrypt_state);
vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(pbi, &tile_data->xd, mi_row, mi_col,
&tile_data->bit_reader, BLOCK_64X64, 4);
}
}
if (buf->col == final_col) {
bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
}
} while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
tile_data->data_end = bit_reader_end;
return !tile_data->xd.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileBuffer *const buf1 = (const TileBuffer*)a;
const TileBuffer *const buf2 = (const TileBuffer*)b;
return (int)(buf2->size - buf1->size);
}
static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
const uint8_t *data,
const uint8_t *data_end) {
VP9_COMMON *const cm = &pbi->common;
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
const uint8_t *bit_reader_end = NULL;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
int n;
assert(tile_cols <= (1 << 6));
assert(tile_rows == 1);
(void)tile_rows;
if (pbi->num_tile_workers == 0) {
const int num_threads = pbi->max_threads;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
// Ensure tile data offsets will be properly aligned. This may fail on
// platforms without DECLARE_ALIGNED().
assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
CHECK_MEM_ERROR(cm, pbi->tile_worker_data,
vpx_memalign(32, num_threads *
sizeof(*pbi->tile_worker_data)));
for (n = 0; n < num_threads; ++n) {
VPxWorker *const worker = &pbi->tile_workers[n];
++pbi->num_tile_workers;
winterface->init(worker);
if (n < num_threads - 1 && !winterface->reset(worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Reset tile decoding hook
for (n = 0; n < num_workers; ++n) {
VPxWorker *const worker = &pbi->tile_workers[n];
TileWorkerData *const tile_data = &pbi->tile_worker_data[n];
winterface->sync(worker);
tile_data->xd = pbi->mb;
tile_data->xd.counts =
cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
worker->hook = (VPxWorkerHook)tile_worker_hook;
worker->data1 = tile_data;
worker->data2 = pbi;
}
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_mi_cols);
vp9_reset_lfm(cm);
// Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
&pbi->tile_buffers);
// Sort the buffers based on size in descending order.
qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
compare_tile_buffers);
if (num_workers == tile_cols) {
// Rearrange the tile buffers such that the largest, and
// presumably the most difficult, tile will be decoded in the main thread.
// This should help minimize the number of instances where the main thread
// is waiting for a worker to complete.
const TileBuffer largest = pbi->tile_buffers[0];
memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
(tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
pbi->tile_buffers[tile_cols - 1] = largest;
} else {
int start = 0, end = tile_cols - 2;
TileBuffer tmp;
// Interleave the tiles to distribute the load between threads, assuming a
// larger tile implies it is more difficult to decode.
while (start < end) {
tmp = pbi->tile_buffers[start];
pbi->tile_buffers[start] = pbi->tile_buffers[end];
pbi->tile_buffers[end] = tmp;
start += 2;
end -= 2;
}
}
// Initialize thread frame counts.
if (!cm->frame_parallel_decoding_mode) {
for (n = 0; n < num_workers; ++n) {
TileWorkerData *const tile_data =
(TileWorkerData*)pbi->tile_workers[n].data1;
vp9_zero(tile_data->counts);
}
}
{
const int base = tile_cols / num_workers;
const int remain = tile_cols % num_workers;
int buf_start = 0;
for (n = 0; n < num_workers; ++n) {
const int count = base + (remain + n) / num_workers;
VPxWorker *const worker = &pbi->tile_workers[n];
TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
tile_data->buf_start = buf_start;
tile_data->buf_end = buf_start + count - 1;
tile_data->data_end = data_end;
buf_start += count;
worker->had_error = 0;
if (n == num_workers - 1) {
assert(tile_data->buf_end == tile_cols - 1);
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
for (; n > 0; --n) {
VPxWorker *const worker = &pbi->tile_workers[n - 1];
TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
// TODO(jzern): The tile may have specific error data associated with
// its vpx_internal_error_info which could be propagated to the main info
// in cm. Additionally once the threads have been synced and an error is
// detected, there's no point in continuing to decode tiles.
pbi->mb.corrupted |= !winterface->sync(worker);
if (!bit_reader_end) bit_reader_end = tile_data->data_end;
}
}
// Accumulate thread frame counts.
if (!cm->frame_parallel_decoding_mode) {
for (n = 0; n < num_workers; ++n) {
TileWorkerData *const tile_data =
(TileWorkerData*)pbi->tile_workers[n].data1;
vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
}
}
assert(bit_reader_end || pbi->mb.corrupted);
return bit_reader_end;
}
static void error_handler(void *data) {
VP9_COMMON *const cm = (VP9_COMMON *)data;
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
}
static void read_bitdepth_colorspace_sampling(
VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
if (cm->profile >= PROFILE_2) {
cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 1;
#endif
} else {
cm->bit_depth = VPX_BITS_8;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
cm->color_space = vpx_rb_read_literal(rb, 3);
if (cm->color_space != VPX_CS_SRGB) {
cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
cm->subsampling_x = vpx_rb_read_bit(rb);
cm->subsampling_y = vpx_rb_read_bit(rb);
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:2:0 color not supported in profile 1 or 3");
if (vpx_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
cm->color_range = VPX_CR_FULL_RANGE;
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
cm->subsampling_y = cm->subsampling_x = 0;
if (vpx_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:4:4 color not supported in profile 0 or 2");
}
}
}
static size_t read_uncompressed_header(VP9Decoder *pbi,
struct vpx_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
int i, mask, ref_index = 0;
size_t sz;
cm->last_frame_type = cm->frame_type;
cm->last_intra_only = cm->intra_only;
if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->profile = vp9_read_profile(rb);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->profile >= MAX_PROFILES)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#else
if (cm->profile >= PROFILE_2)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#endif
cm->show_existing_frame = vpx_rb_read_bit(rb);
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
lock_buffer_pool(pool);
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
unlock_buffer_pool(pool);
pbi->refresh_frame_flags = 0;
cm->lf.filter_level = 0;
cm->show_frame = 1;
if (pbi->frame_parallel_decode) {
for (i = 0; i < REF_FRAMES; ++i)
cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
}
return 0;
}
cm->frame_type = (FRAME_TYPE) vpx_rb_read_bit(rb);
cm->show_frame = vpx_rb_read_bit(rb);
cm->error_resilient_mode = vpx_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
if (!vp9_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (i = 0; i < REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
} else {
cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
cm->reset_frame_context = cm->error_resilient_mode ?
0 : vpx_rb_read_literal(rb, 2);
if (cm->intra_only) {
if (!vp9_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
if (cm->profile > PROFILE_0) {
read_bitdepth_colorspace_sampling(cm, rb);
} else {
// NOTE: The intra-only frame header does not include the specification
// of either the color format or color sub-sampling in profile 0. VP9
// specifies that the default color format should be YUV 4:2:0 in this
// case (normative).
cm->color_space = VPX_CS_BT_601;
cm->color_range = VPX_CR_STUDIO_RANGE;
cm->subsampling_y = cm->subsampling_x = 1;
cm->bit_depth = VPX_BITS_8;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
} else if (pbi->need_resync != 1) { /* Skip if need resync */
pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
}
setup_frame_size_with_refs(cm, rb);
cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
cm->interp_filter = read_interp_filter(rb);
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_VP9_HIGHBITDEPTH
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height,
cm->width, cm->height,
cm->use_highbitdepth);
#else
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height,
cm->width, cm->height);
#endif
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
#endif
get_frame_new_buffer(cm)->color_space = cm->color_space;
get_frame_new_buffer(cm)->color_range = cm->color_range;
get_frame_new_buffer(cm)->render_width = cm->render_width;
get_frame_new_buffer(cm)->render_height = cm->render_height;
if (pbi->need_resync) {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = vpx_rb_read_bit(rb);
cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
if (!cm->frame_parallel_decoding_mode)
vp9_zero(cm->counts);
} else {
cm->refresh_frame_context = 0;
cm->frame_parallel_decoding_mode = 1;
}
// This flag will be overridden by the call to vp9_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
vp9_setup_past_independence(cm);
setup_loopfilter(&cm->lf, rb);
setup_quantization(cm, &pbi->mb, rb);
setup_segmentation(&cm->seg, rb);
setup_segmentation_dequant(cm);
setup_tile_info(cm, rb);
sz = vpx_rb_read_literal(rb, 16);
if (sz == 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
size_t partition_size) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
FRAME_CONTEXT *const fc = cm->fc;
vpx_reader r;
int k;
if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
pbi->decrypt_state))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
if (cm->tx_mode == TX_MODE_SELECT)
read_tx_mode_probs(&fc->tx_probs, &r);
read_coef_probs(fc, cm->tx_mode, &r);
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp9_diff_update_prob(&r, &fc->skip_probs[k]);
if (!frame_is_intra_only(cm)) {
nmv_context *const nmvc = &fc->nmvc;
int i, j;
read_inter_mode_probs(fc, &r);
if (cm->interp_filter == SWITCHABLE)
read_switchable_interp_probs(fc, &r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
cm->reference_mode = read_frame_reference_mode(cm, &r);
if (cm->reference_mode != SINGLE_REFERENCE)
setup_compound_reference_mode(cm);
read_frame_reference_mode_probs(cm, &r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
}
return vpx_reader_has_error(&r);
}
static struct vpx_read_bit_buffer *init_read_bit_buffer(
VP9Decoder *pbi,
struct vpx_read_bit_buffer *rb,
const uint8_t *data,
const uint8_t *data_end,
uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
if (pbi->decrypt_cb) {
const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
rb->bit_buffer = clear_data;
rb->bit_buffer_end = clear_data + n;
} else {
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
}
return rb;
}
//------------------------------------------------------------------------------
int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
}
void vp9_read_frame_size(struct vpx_read_bit_buffer *rb,
int *width, int *height) {
*width = vpx_rb_read_literal(rb, 16) + 1;
*height = vpx_rb_read_literal(rb, 16) + 1;
}
BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
int profile = vpx_rb_read_bit(rb);
profile |= vpx_rb_read_bit(rb) << 1;
if (profile > 2)
profile += vpx_rb_read_bit(rb);
return (BITSTREAM_PROFILE) profile;
}
void vp9_decode_frame(VP9Decoder *pbi,
const uint8_t *data, const uint8_t *data_end,
const uint8_t **p_data_end) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct vpx_read_bit_buffer rb;
int context_updated = 0;
uint8_t clear_data[MAX_VP9_HEADER_SIZE];
const size_t first_partition_size = read_uncompressed_header(pbi,
init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
const int tile_rows = 1 << cm->log2_tile_rows;
const int tile_cols = 1 << cm->log2_tile_cols;
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
if (!first_partition_size) {
// showing a frame directly
*p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
return;
}
data += vpx_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
cm->use_prev_frame_mvs = !cm->error_resilient_mode &&
cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cm->last_intra_only &&
cm->last_show_frame &&
(cm->last_frame_type != KEY_FRAME);
vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
if (!cm->fc->initialized)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
if (new_fb->corrupted)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data header is corrupted.");
if (cm->lf.filter_level && !cm->skip_loop_filter) {
vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
}
// If encoded in frame parallel mode, frame context is ready after decoding
// the frame header.
if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) {
VPxWorker *const worker = pbi->frame_worker_owner;
FrameWorkerData *const frame_worker_data = worker->data1;
if (cm->refresh_frame_context) {
context_updated = 1;
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
vp9_frameworker_lock_stats(worker);
pbi->cur_buf->row = -1;
pbi->cur_buf->col = -1;
frame_worker_data->frame_context_ready = 1;
// Signal the main thread that context is ready.
vp9_frameworker_signal_stats(worker);
vp9_frameworker_unlock_stats(worker);
}
if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
// Multi-threaded tile decoder
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
if (!xd->corrupted) {
if (!cm->skip_loop_filter) {
// If multiple threads are used to decode tiles, then we use those
// threads to do parallel loopfiltering.
vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane,
cm->lf.filter_level, 0, 0, pbi->tile_workers,
pbi->num_tile_workers, &pbi->lf_row_sync);
}
} else {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
}
if (!xd->corrupted) {
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
} else {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
// Non frame parallel update frame context here.
if (cm->refresh_frame_context && !context_updated)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}