vpx/vp9/encoder/vp9_encodemb.c
Jingning Han ccba289f8d Fast computation path for forward transform and quantization
This commit enables a fast path computational flow for forward
transformation. It checks the sse and variance of prediction
residuals and decides if the quantized coefficients are all
zero, dc only, or more. It then selects the corresponding coding
path in the forward transformation and quantization stage.

It is currently enabled in rtc coding mode. Will do it for rd
coding mode next.

In speed -6, the runtime for pedestrian_area 1080p at 1000 kbps
goes down from 14234 ms to 13704 ms, i.e., about 4% speed-up.
Overall coding performance for rtc set is changed by -0.18%.

Change-Id: I0452da1786d59bc8bcbe0a35fdae9f623d1d44e1
2014-06-12 11:10:54 -07:00

661 lines
24 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_tokenize.h"
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
};
struct encode_b_args {
MACROBLOCK *x;
struct optimize_ctx *ctx;
unsigned char *skip;
};
void vp9_subtract_block_c(int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint8_t *src, ptrdiff_t src_stride,
const uint8_t *pred, ptrdiff_t pred_stride) {
int r, c;
for (r = 0; r < rows; r++) {
for (c = 0; c < cols; c++)
diff[c] = src[c] - pred[c];
diff += diff_stride;
pred += pred_stride;
src += src_stride;
}
}
void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
typedef struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
} vp9_token_state;
// TODO(jimbankoski): experiment to find optimal RD numbers.
static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan,
const int16_t *nb,
int idx, int token,
uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = vp9_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static int optimize_b(MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
uint8_t token_cache[1024];
const int16_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = pd->plane_type;
const int default_eob = 16 << (tx_size << 1);
const int mul = 1 + (tx_size == TX_32X32);
const int16_t *dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
const scan_order *const so = get_scan(xd, tx_size, type, block);
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
int next = eob, sz = 0;
int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt, i, final_eob;
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
if (!ref)
rdmult = (rdmult * 9) >> 4;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++)
token_cache[scan[i]] =
vp9_pt_energy_class[vp9_dct_value_tokens_ptr[qcoeff[scan[i]]].token];
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
const int rc = scan[i];
int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][0].token];
rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp9_dct_value_cost_ptr[x];
dx = mul * (dqcoeff[rc] - coeff[rc]);
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
(abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token;
}
if (next < default_eob) {
band = band_translate[i + 1];
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp9_dct_value_cost_ptr[x];
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = band_translate[i + 1];
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
vpx_memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2)));
vpx_memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2)));
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) {
final_eob = i;
}
qcoeff[rc] = x;
dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
static INLINE void fdct32x32(int rd_transform,
const int16_t *src, int16_t *dst, int src_stride) {
if (rd_transform)
vp9_fdct32x32_rd(src, dst, src_stride);
else
vp9_fdct32x32(src, dst, src_stride);
}
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
const int16_t *src_diff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
vp9_fdct32x32_1(src_diff, coeff, diff_stride);
vp9_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
vp9_fdct16x16_1(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
vp9_fdct8x8_1(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
}
}
void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
int16_t *const coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
const int16_t *src_diff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vp9_fdct16x16(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vp9_fdct8x8(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
}
static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
a = &ctx->ta[plane][i];
l = &ctx->tl[plane][j];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
if (x->zcoeff_blk[tx_size][block] && plane == 0) {
p->eobs[block] = 0;
*a = *l = 0;
return;
}
if (x->skip_txfm == 0) {
// full forward transform and quantization
if (!x->skip_recode)
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
} else if (x->skip_txfm == 2) {
// fast path forward transform and quantization
vp9_xform_quant_fp(x, plane, block, plane_bsize, tx_size);
} else {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
}
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const int ctx = combine_entropy_contexts(*a, *l);
*a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
if (p->eobs[block])
*(args->skip) = 0;
if (x->skip_encode || p->eobs[block] == 0)
return;
switch (tx_size) {
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
default:
assert(0 && "Invalid transform size");
}
}
static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
if (p->eobs[block] > 0)
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp9_subtract_plane(x, bsize, 0);
vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, x);
}
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = {x, &ctx, &mbmi->skip};
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
if (!x->skip_recode)
vp9_subtract_plane(x, bsize, plane);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd,
ctx.ta[plane], ctx.tl[plane]);
}
vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const scan_order *scan_order;
TX_TYPE tx_type;
PREDICTION_MODE mode;
const int bwl = b_width_log2(plane_bsize);
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int i, j;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * (j * dst_stride + i)];
src = &p->src.buf[4 * (j * src_stride + i)];
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
scan_order = &vp9_default_scan_orders[TX_32X32];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
if (!x->skip_recode) {
vp9_subtract_block(32, 32, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob);
break;
case TX_16X16:
tx_type = get_tx_type(pd->plane_type, xd);
scan_order = &vp9_scan_orders[TX_16X16][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
if (!x->skip_recode) {
vp9_subtract_block(16, 16, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
vp9_fht16x16(src_diff, coeff, diff_stride, tx_type);
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_8X8:
tx_type = get_tx_type(pd->plane_type, xd);
scan_order = &vp9_scan_orders[TX_8X8][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
if (!x->skip_recode) {
vp9_subtract_block(8, 8, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
vp9_fht8x8(src_diff, coeff, diff_stride, tx_type);
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_4X4:
tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
if (!x->skip_recode) {
vp9_subtract_block(4, 4, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
if (tx_type != DCT_DCT)
vp9_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT)
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, dst_stride, *eob);
else
vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type);
}
break;
default:
assert(0);
}
if (*eob)
*(args->skip) = 0;
}
void vp9_encode_block_intra(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
unsigned char *skip) {
struct encode_b_args arg = {x, NULL, skip};
encode_block_intra(plane, block, plane_bsize, tx_size, &arg);
}
void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
const MACROBLOCKD *const xd = &x->e_mbd;
struct encode_b_args arg = {x, NULL, &xd->mi[0]->mbmi.skip};
vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block_intra,
&arg);
}