d8f5d1b257
In some cases intra modes in inter frames give an over smoothed appearance. Especially with noisy but flat content. Also in some cases there were problems with key frame sizing again with very flat but noisy content. These are temporary changes to help alleviate the visual problems but will almost certainly hurt metric results especially at the very low data rate end. Change-Id: I11549179a19277ffc283d9788bc70168f2a8bdc9
2528 lines
87 KiB
C
2528 lines
87 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "limits.h"
|
|
#include "vp9/encoder/vp9_block.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/encoder/vp9_variance.h"
|
|
#include "vp9/encoder/vp9_encodeintra.h"
|
|
#include "vp9/common/vp9_setupintrarecon.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_firstpass.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/common/vp9_extend.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_swapyv12buffer.h"
|
|
#include <stdio.h>
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_entropymv.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
|
|
#define OUTPUT_FPF 0
|
|
|
|
#define IIFACTOR 12.5
|
|
#define IIKFACTOR1 12.5
|
|
#define IIKFACTOR2 15.0
|
|
#define RMAX 128.0
|
|
#define GF_RMAX 96.0
|
|
#define ERR_DIVISOR 150.0
|
|
#define MIN_DECAY_FACTOR 0.1
|
|
|
|
#define KF_MB_INTRA_MIN 150
|
|
#define GF_MB_INTRA_MIN 100
|
|
|
|
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
|
|
|
|
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
|
|
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame);
|
|
|
|
static int select_cq_level(int qindex) {
|
|
int ret_val = QINDEX_RANGE - 1;
|
|
int i;
|
|
|
|
double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (target_q <= vp9_convert_qindex_to_q(i)) {
|
|
ret_val = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
// Resets the first pass file to the given position using a relative seek from the current position
|
|
static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *Position) {
|
|
cpi->twopass.stats_in = Position;
|
|
}
|
|
|
|
static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) {
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*next_frame = *cpi->twopass.stats_in;
|
|
return 1;
|
|
}
|
|
|
|
// Read frame stats at an offset from the current position
|
|
static int read_frame_stats(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *frame_stats,
|
|
int offset) {
|
|
FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
|
|
|
|
// Check legality of offset
|
|
if (offset >= 0) {
|
|
if (&fps_ptr[offset] >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
} else if (offset < 0) {
|
|
if (&fps_ptr[offset] < cpi->twopass.stats_in_start)
|
|
return EOF;
|
|
}
|
|
|
|
*frame_stats = fps_ptr[offset];
|
|
return 1;
|
|
}
|
|
|
|
static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) {
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*fps = *cpi->twopass.stats_in;
|
|
cpi->twopass.stats_in =
|
|
(void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
|
|
return 1;
|
|
}
|
|
|
|
static void output_stats(const VP9_COMP *cpi,
|
|
struct vpx_codec_pkt_list *pktlist,
|
|
FIRSTPASS_STATS *stats) {
|
|
struct vpx_codec_cx_pkt pkt;
|
|
pkt.kind = VPX_CODEC_STATS_PKT;
|
|
pkt.data.twopass_stats.buf = stats;
|
|
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
|
|
vpx_codec_pkt_list_add(pktlist, &pkt);
|
|
|
|
// TEMP debug code
|
|
#if OUTPUT_FPF
|
|
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "a");
|
|
|
|
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
|
|
"%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
|
|
"%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
|
|
stats->frame,
|
|
stats->intra_error,
|
|
stats->coded_error,
|
|
stats->sr_coded_error,
|
|
stats->ssim_weighted_pred_err,
|
|
stats->pcnt_inter,
|
|
stats->pcnt_motion,
|
|
stats->pcnt_second_ref,
|
|
stats->pcnt_neutral,
|
|
stats->MVr,
|
|
stats->mvr_abs,
|
|
stats->MVc,
|
|
stats->mvc_abs,
|
|
stats->MVrv,
|
|
stats->MVcv,
|
|
stats->mv_in_out_count,
|
|
stats->new_mv_count,
|
|
stats->count,
|
|
stats->duration);
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void zero_stats(FIRSTPASS_STATS *section) {
|
|
section->frame = 0.0;
|
|
section->intra_error = 0.0;
|
|
section->coded_error = 0.0;
|
|
section->sr_coded_error = 0.0;
|
|
section->ssim_weighted_pred_err = 0.0;
|
|
section->pcnt_inter = 0.0;
|
|
section->pcnt_motion = 0.0;
|
|
section->pcnt_second_ref = 0.0;
|
|
section->pcnt_neutral = 0.0;
|
|
section->MVr = 0.0;
|
|
section->mvr_abs = 0.0;
|
|
section->MVc = 0.0;
|
|
section->mvc_abs = 0.0;
|
|
section->MVrv = 0.0;
|
|
section->MVcv = 0.0;
|
|
section->mv_in_out_count = 0.0;
|
|
section->new_mv_count = 0.0;
|
|
section->count = 0.0;
|
|
section->duration = 1.0;
|
|
}
|
|
|
|
static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
|
|
section->frame += frame->frame;
|
|
section->intra_error += frame->intra_error;
|
|
section->coded_error += frame->coded_error;
|
|
section->sr_coded_error += frame->sr_coded_error;
|
|
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter += frame->pcnt_inter;
|
|
section->pcnt_motion += frame->pcnt_motion;
|
|
section->pcnt_second_ref += frame->pcnt_second_ref;
|
|
section->pcnt_neutral += frame->pcnt_neutral;
|
|
section->MVr += frame->MVr;
|
|
section->mvr_abs += frame->mvr_abs;
|
|
section->MVc += frame->MVc;
|
|
section->mvc_abs += frame->mvc_abs;
|
|
section->MVrv += frame->MVrv;
|
|
section->MVcv += frame->MVcv;
|
|
section->mv_in_out_count += frame->mv_in_out_count;
|
|
section->new_mv_count += frame->new_mv_count;
|
|
section->count += frame->count;
|
|
section->duration += frame->duration;
|
|
}
|
|
|
|
static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
|
|
section->frame -= frame->frame;
|
|
section->intra_error -= frame->intra_error;
|
|
section->coded_error -= frame->coded_error;
|
|
section->sr_coded_error -= frame->sr_coded_error;
|
|
section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter -= frame->pcnt_inter;
|
|
section->pcnt_motion -= frame->pcnt_motion;
|
|
section->pcnt_second_ref -= frame->pcnt_second_ref;
|
|
section->pcnt_neutral -= frame->pcnt_neutral;
|
|
section->MVr -= frame->MVr;
|
|
section->mvr_abs -= frame->mvr_abs;
|
|
section->MVc -= frame->MVc;
|
|
section->mvc_abs -= frame->mvc_abs;
|
|
section->MVrv -= frame->MVrv;
|
|
section->MVcv -= frame->MVcv;
|
|
section->mv_in_out_count -= frame->mv_in_out_count;
|
|
section->new_mv_count -= frame->new_mv_count;
|
|
section->count -= frame->count;
|
|
section->duration -= frame->duration;
|
|
}
|
|
|
|
static void avg_stats(FIRSTPASS_STATS *section) {
|
|
if (section->count < 1.0)
|
|
return;
|
|
|
|
section->intra_error /= section->count;
|
|
section->coded_error /= section->count;
|
|
section->sr_coded_error /= section->count;
|
|
section->ssim_weighted_pred_err /= section->count;
|
|
section->pcnt_inter /= section->count;
|
|
section->pcnt_second_ref /= section->count;
|
|
section->pcnt_neutral /= section->count;
|
|
section->pcnt_motion /= section->count;
|
|
section->MVr /= section->count;
|
|
section->mvr_abs /= section->count;
|
|
section->MVc /= section->count;
|
|
section->mvc_abs /= section->count;
|
|
section->MVrv /= section->count;
|
|
section->MVcv /= section->count;
|
|
section->mv_in_out_count /= section->count;
|
|
section->duration /= section->count;
|
|
}
|
|
|
|
// Calculate a modified Error used in distributing bits between easier and harder frames
|
|
static double calculate_modified_err(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
double av_err = (cpi->twopass.total_stats->ssim_weighted_pred_err /
|
|
cpi->twopass.total_stats->count);
|
|
double this_err = this_frame->ssim_weighted_pred_err;
|
|
double modified_err;
|
|
|
|
if (this_err > av_err)
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
|
|
else
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
|
|
|
|
return modified_err;
|
|
}
|
|
|
|
static const double weight_table[256] = {
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
|
|
0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
|
|
0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
|
|
0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
|
|
};
|
|
|
|
static double simple_weight(YV12_BUFFER_CONFIG *source) {
|
|
int i, j;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
double sum_weights = 0.0;
|
|
|
|
// Loop throught the Y plane raw examining levels and creating a weight for the image
|
|
i = source->y_height;
|
|
do {
|
|
j = source->y_width;
|
|
do {
|
|
sum_weights += weight_table[ *src];
|
|
src++;
|
|
} while (--j);
|
|
src -= source->y_width;
|
|
src += source->y_stride;
|
|
} while (--i);
|
|
|
|
sum_weights /= (source->y_height * source->y_width);
|
|
|
|
return sum_weights;
|
|
}
|
|
|
|
|
|
// This function returns the current per frame maximum bitrate target
|
|
static int frame_max_bits(VP9_COMP *cpi) {
|
|
// Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
|
|
int max_bits;
|
|
|
|
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
|
max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
|
|
// Trap case where we are out of bits
|
|
if (max_bits < 0)
|
|
max_bits = 0;
|
|
|
|
return max_bits;
|
|
}
|
|
|
|
void vp9_init_first_pass(VP9_COMP *cpi) {
|
|
zero_stats(cpi->twopass.total_stats);
|
|
}
|
|
|
|
void vp9_end_first_pass(VP9_COMP *cpi) {
|
|
output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats);
|
|
}
|
|
|
|
static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
|
|
unsigned char *src_ptr = (*(b->base_src) + b->src);
|
|
int src_stride = b->src_stride;
|
|
unsigned char *ref_ptr;
|
|
int ref_stride = d->pre_stride;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre);
|
|
|
|
vp9_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride,
|
|
(unsigned int *)(best_motion_err));
|
|
}
|
|
|
|
static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *ref_mv, MV *best_mv,
|
|
YV12_BUFFER_CONFIG *recon_buffer,
|
|
int *best_motion_err, int recon_yoffset) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
int num00;
|
|
|
|
int_mv tmp_mv;
|
|
int_mv ref_mv_full;
|
|
|
|
int tmp_err;
|
|
int step_param = 3;
|
|
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
|
|
int n;
|
|
vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
|
|
int new_mv_mode_penalty = 256;
|
|
|
|
// override the default variance function to use MSE
|
|
v_fn_ptr.vf = vp9_mse16x16;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
// Initial step/diamond search centred on best mv
|
|
tmp_mv.as_int = 0;
|
|
ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
|
|
ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
|
|
x->sadperbit16, &num00, &v_fn_ptr,
|
|
x->nmvjointcost,
|
|
x->mvcost, ref_mv);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty)
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
|
|
// Further step/diamond searches as necessary
|
|
n = num00;
|
|
num00 = 0;
|
|
|
|
while (n < further_steps) {
|
|
n++;
|
|
|
|
if (num00)
|
|
num00--;
|
|
else {
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
|
|
step_param + n, x->sadperbit16,
|
|
&num00, &v_fn_ptr,
|
|
x->nmvjointcost,
|
|
x->mvcost, ref_mv);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty)
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_first_pass(VP9_COMP *cpi) {
|
|
int mb_row, mb_col;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
int recon_yoffset, recon_uvoffset;
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
|
|
int recon_y_stride = lst_yv12->y_stride;
|
|
int recon_uv_stride = lst_yv12->uv_stride;
|
|
int64_t intra_error = 0;
|
|
int64_t coded_error = 0;
|
|
int64_t sr_coded_error = 0;
|
|
|
|
int sum_mvr = 0, sum_mvc = 0;
|
|
int sum_mvr_abs = 0, sum_mvc_abs = 0;
|
|
int sum_mvrs = 0, sum_mvcs = 0;
|
|
int mvcount = 0;
|
|
int intercount = 0;
|
|
int second_ref_count = 0;
|
|
int intrapenalty = 256;
|
|
int neutral_count = 0;
|
|
int new_mv_count = 0;
|
|
int sum_in_vectors = 0;
|
|
uint32_t lastmv_as_int = 0;
|
|
|
|
int_mv zero_ref_mv;
|
|
|
|
zero_ref_mv.as_int = 0;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
x->src = * cpi->Source;
|
|
xd->pre = *lst_yv12;
|
|
xd->dst = *new_yv12;
|
|
|
|
x->partition_info = x->pi;
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
|
|
vp9_build_block_offsets(x);
|
|
|
|
vp9_setup_block_dptrs(&x->e_mbd);
|
|
|
|
vp9_setup_block_ptrs(x);
|
|
|
|
// set up frame new frame for intra coded blocks
|
|
vp9_setup_intra_recon(new_yv12);
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
// Initialise the MV cost table to the defaults
|
|
// if( cm->current_video_frame == 0)
|
|
// if ( 0 )
|
|
{
|
|
vp9_init_mv_probs(cm);
|
|
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
|
|
}
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
int_mv best_ref_mv;
|
|
|
|
best_ref_mv.as_int = 0;
|
|
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * 8);
|
|
|
|
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
|
|
x->mv_row_min = -((mb_row * 16) + (VP9BORDERINPIXELS - 16));
|
|
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
|
|
+ (VP9BORDERINPIXELS - 16);
|
|
|
|
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
int this_error;
|
|
int gf_motion_error = INT_MAX;
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
|
|
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
|
|
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
|
|
#if !CONFIG_SUPERBLOCKS
|
|
// Copy current mb to a buffer
|
|
vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
|
|
#endif
|
|
|
|
// do intra 16x16 prediction
|
|
this_error = vp9_encode_intra(cpi, x, use_dc_pred);
|
|
|
|
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
|
|
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
|
|
// When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
|
|
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
|
|
this_error += intrapenalty;
|
|
|
|
// Cumulative intra error total
|
|
intra_error += (int64_t)this_error;
|
|
|
|
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
|
|
x->mv_col_min = -((mb_col * 16) + (VP9BORDERINPIXELS - 16));
|
|
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
|
|
+ (VP9BORDERINPIXELS - 16);
|
|
|
|
// Other than for the first frame do a motion search
|
|
if (cm->current_video_frame > 0) {
|
|
int tmp_err;
|
|
int motion_error = INT_MAX;
|
|
int_mv mv, tmp_mv;
|
|
|
|
// Simple 0,0 motion with no mv overhead
|
|
zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset);
|
|
mv.as_int = tmp_mv.as_int = 0;
|
|
|
|
// Test last reference frame using the previous best mv as the
|
|
// starting point (best reference) for the search
|
|
first_pass_motion_search(cpi, x, &best_ref_mv,
|
|
&mv.as_mv, lst_yv12,
|
|
&motion_error, recon_yoffset);
|
|
|
|
// If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
|
|
if (best_ref_mv.as_int) {
|
|
tmp_err = INT_MAX;
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
|
|
lst_yv12, &tmp_err, recon_yoffset);
|
|
|
|
if (tmp_err < motion_error) {
|
|
motion_error = tmp_err;
|
|
mv.as_int = tmp_mv.as_int;
|
|
}
|
|
}
|
|
|
|
// Experimental search in an older reference frame
|
|
if (cm->current_video_frame > 1) {
|
|
// Simple 0,0 motion with no mv overhead
|
|
zz_motion_search(cpi, x, gld_yv12,
|
|
&gf_motion_error, recon_yoffset);
|
|
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv,
|
|
&tmp_mv.as_mv, gld_yv12,
|
|
&gf_motion_error, recon_yoffset);
|
|
|
|
if ((gf_motion_error < motion_error) &&
|
|
(gf_motion_error < this_error)) {
|
|
second_ref_count++;
|
|
}
|
|
|
|
// Reset to last frame as reference buffer
|
|
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
|
|
|
|
// In accumulating a score for the older reference frame
|
|
// take the best of the motion predicted score and
|
|
// the intra coded error (just as will be done for)
|
|
// accumulation of "coded_error" for the last frame.
|
|
if (gf_motion_error < this_error)
|
|
sr_coded_error += gf_motion_error;
|
|
else
|
|
sr_coded_error += this_error;
|
|
} else
|
|
sr_coded_error += motion_error;
|
|
|
|
/* Intra assumed best */
|
|
best_ref_mv.as_int = 0;
|
|
|
|
if (motion_error <= this_error) {
|
|
// Keep a count of cases where the inter and intra were
|
|
// very close and very low. This helps with scene cut
|
|
// detection for example in cropped clips with black bars
|
|
// at the sides or top and bottom.
|
|
if ((((this_error - intrapenalty) * 9) <=
|
|
(motion_error * 10)) &&
|
|
(this_error < (2 * intrapenalty))) {
|
|
neutral_count++;
|
|
}
|
|
|
|
mv.as_mv.row <<= 3;
|
|
mv.as_mv.col <<= 3;
|
|
this_error = motion_error;
|
|
vp9_set_mbmode_and_mvs(x, NEWMV, &mv);
|
|
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
|
|
vp9_encode_inter16x16y(x);
|
|
sum_mvr += mv.as_mv.row;
|
|
sum_mvr_abs += abs(mv.as_mv.row);
|
|
sum_mvc += mv.as_mv.col;
|
|
sum_mvc_abs += abs(mv.as_mv.col);
|
|
sum_mvrs += mv.as_mv.row * mv.as_mv.row;
|
|
sum_mvcs += mv.as_mv.col * mv.as_mv.col;
|
|
intercount++;
|
|
|
|
best_ref_mv.as_int = mv.as_int;
|
|
|
|
// Was the vector non-zero
|
|
if (mv.as_int) {
|
|
mvcount++;
|
|
|
|
// Was it different from the last non zero vector
|
|
if (mv.as_int != lastmv_as_int)
|
|
new_mv_count++;
|
|
lastmv_as_int = mv.as_int;
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_row < cm->mb_rows / 2) {
|
|
if (mv.as_mv.row > 0)
|
|
sum_in_vectors--;
|
|
else if (mv.as_mv.row < 0)
|
|
sum_in_vectors++;
|
|
} else if (mb_row > cm->mb_rows / 2) {
|
|
if (mv.as_mv.row > 0)
|
|
sum_in_vectors++;
|
|
else if (mv.as_mv.row < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_col < cm->mb_cols / 2) {
|
|
if (mv.as_mv.col > 0)
|
|
sum_in_vectors--;
|
|
else if (mv.as_mv.col < 0)
|
|
sum_in_vectors++;
|
|
} else if (mb_col > cm->mb_cols / 2) {
|
|
if (mv.as_mv.col > 0)
|
|
sum_in_vectors++;
|
|
else if (mv.as_mv.col < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
}
|
|
}
|
|
} else
|
|
sr_coded_error += (int64_t)this_error;
|
|
|
|
coded_error += (int64_t)this_error;
|
|
|
|
// adjust to the next column of macroblocks
|
|
x->src.y_buffer += 16;
|
|
x->src.u_buffer += 8;
|
|
x->src.v_buffer += 8;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += 8;
|
|
}
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
|
|
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
|
|
// extend the recon for intra prediction
|
|
vp9_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
|
|
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
|
|
vp9_clear_system_state(); // __asm emms;
|
|
}
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
{
|
|
double weight = 0.0;
|
|
|
|
FIRSTPASS_STATS fps;
|
|
|
|
fps.frame = cm->current_video_frame;
|
|
fps.intra_error = (double)(intra_error >> 8);
|
|
fps.coded_error = (double)(coded_error >> 8);
|
|
fps.sr_coded_error = (double)(sr_coded_error >> 8);
|
|
weight = simple_weight(cpi->Source);
|
|
|
|
|
|
if (weight < 0.1)
|
|
weight = 0.1;
|
|
|
|
fps.ssim_weighted_pred_err = fps.coded_error * weight;
|
|
|
|
fps.pcnt_inter = 0.0;
|
|
fps.pcnt_motion = 0.0;
|
|
fps.MVr = 0.0;
|
|
fps.mvr_abs = 0.0;
|
|
fps.MVc = 0.0;
|
|
fps.mvc_abs = 0.0;
|
|
fps.MVrv = 0.0;
|
|
fps.MVcv = 0.0;
|
|
fps.mv_in_out_count = 0.0;
|
|
fps.new_mv_count = 0.0;
|
|
fps.count = 1.0;
|
|
|
|
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
|
|
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
|
|
fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
|
|
|
|
if (mvcount > 0) {
|
|
fps.MVr = (double)sum_mvr / (double)mvcount;
|
|
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
|
|
fps.MVc = (double)sum_mvc / (double)mvcount;
|
|
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
|
|
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
|
|
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
|
|
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
|
|
fps.new_mv_count = new_mv_count;
|
|
|
|
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
|
|
}
|
|
|
|
// TODO: handle the case when duration is set to 0, or something less
|
|
// than the full time between subsequent cpi->source_time_stamp s .
|
|
fps.duration = (double)(cpi->source->ts_end
|
|
- cpi->source->ts_start);
|
|
|
|
// don't want to do output stats with a stack variable!
|
|
memcpy(cpi->twopass.this_frame_stats,
|
|
&fps,
|
|
sizeof(FIRSTPASS_STATS));
|
|
output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats);
|
|
accumulate_stats(cpi->twopass.total_stats, &fps);
|
|
}
|
|
|
|
// Copy the previous Last Frame back into gf and and arf buffers if
|
|
// the prediction is good enough... but also dont allow it to lag too far
|
|
if ((cpi->twopass.sr_update_lag > 3) ||
|
|
((cm->current_video_frame > 0) &&
|
|
(cpi->twopass.this_frame_stats->pcnt_inter > 0.20) &&
|
|
((cpi->twopass.this_frame_stats->intra_error /
|
|
cpi->twopass.this_frame_stats->coded_error) > 2.0))) {
|
|
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
|
|
cpi->twopass.sr_update_lag = 1;
|
|
} else
|
|
cpi->twopass.sr_update_lag++;
|
|
|
|
// swap frame pointers so last frame refers to the frame we just compressed
|
|
vp9_swap_yv12_buffer(lst_yv12, new_yv12);
|
|
vp8_yv12_extend_frame_borders(lst_yv12);
|
|
|
|
// Special case for the first frame. Copy into the GF buffer as a second reference.
|
|
if (cm->current_video_frame == 0) {
|
|
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
|
|
}
|
|
|
|
|
|
// use this to see what the first pass reconstruction looks like
|
|
if (0) {
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
|
|
if (cm->current_video_frame == 0)
|
|
recon_file = fopen(filename, "wb");
|
|
else
|
|
recon_file = fopen(filename, "ab");
|
|
|
|
(void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
|
|
cm->current_video_frame++;
|
|
|
|
}
|
|
|
|
// Estimate a cost per mb attributable to overheads such as the coding of
|
|
// modes and motion vectors.
|
|
// Currently simplistic in its assumptions for testing.
|
|
//
|
|
|
|
|
|
static double bitcost(double prob) {
|
|
return -(log(prob) / log(2.0));
|
|
}
|
|
|
|
static long long estimate_modemvcost(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats) {
|
|
int mv_cost;
|
|
int mode_cost;
|
|
|
|
double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
|
|
double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
|
|
double av_intra = (1.0 - av_pct_inter);
|
|
|
|
double zz_cost;
|
|
double motion_cost;
|
|
double intra_cost;
|
|
|
|
zz_cost = bitcost(av_pct_inter - av_pct_motion);
|
|
motion_cost = bitcost(av_pct_motion);
|
|
intra_cost = bitcost(av_intra);
|
|
|
|
// Estimate of extra bits per mv overhead for mbs
|
|
// << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb
|
|
mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
|
|
|
|
// Crude estimate of overhead cost from modes
|
|
// << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb
|
|
mode_cost =
|
|
(int)((((av_pct_inter - av_pct_motion) * zz_cost) +
|
|
(av_pct_motion * motion_cost) +
|
|
(av_intra * intra_cost)) * cpi->common.MBs) << 9;
|
|
|
|
// return mv_cost + mode_cost;
|
|
// TODO PGW Fix overhead costs for extended Q range
|
|
return 0;
|
|
}
|
|
|
|
static double calc_correction_factor(double err_per_mb,
|
|
double err_divisor,
|
|
double pt_low,
|
|
double pt_high,
|
|
int Q) {
|
|
double power_term;
|
|
double error_term = err_per_mb / err_divisor;
|
|
double correction_factor;
|
|
|
|
// Adjustment based on actual quantizer to power term.
|
|
power_term = (vp9_convert_qindex_to_q(Q) * 0.01) + pt_low;
|
|
power_term = (power_term > pt_high) ? pt_high : power_term;
|
|
|
|
// Adjustments to error term
|
|
// TBD
|
|
|
|
// Calculate correction factor
|
|
correction_factor = pow(error_term, power_term);
|
|
|
|
// Clip range
|
|
correction_factor =
|
|
(correction_factor < 0.05)
|
|
? 0.05 : (correction_factor > 2.0) ? 2.0 : correction_factor;
|
|
|
|
return correction_factor;
|
|
}
|
|
|
|
// Given a current maxQ value sets a range for future values.
|
|
// PGW TODO..
|
|
// This code removes direct dependency on QIndex to determin the range
|
|
// (now uses the actual quantizer) but has not been tuned.
|
|
static void adjust_maxq_qrange(VP9_COMP *cpi) {
|
|
int i;
|
|
double q;
|
|
|
|
// Set the max corresponding to cpi->avg_q * 2.0
|
|
q = cpi->avg_q * 2.0;
|
|
cpi->twopass.maxq_max_limit = cpi->worst_quality;
|
|
for (i = cpi->best_quality; i <= cpi->worst_quality; i++) {
|
|
cpi->twopass.maxq_max_limit = i;
|
|
if (vp9_convert_qindex_to_q(i) >= q)
|
|
break;
|
|
}
|
|
|
|
// Set the min corresponding to cpi->avg_q * 0.5
|
|
q = cpi->avg_q * 0.5;
|
|
cpi->twopass.maxq_min_limit = cpi->best_quality;
|
|
for (i = cpi->worst_quality; i >= cpi->best_quality; i--) {
|
|
cpi->twopass.maxq_min_limit = i;
|
|
if (vp9_convert_qindex_to_q(i) <= q)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int estimate_max_q(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats,
|
|
int section_target_bandwitdh,
|
|
int overhead_bits) {
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = (fpstats->coded_error / fpstats->count);
|
|
double sr_err_diff;
|
|
double sr_correction;
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double speed_correction = 1.0;
|
|
double overhead_bits_per_mb;
|
|
|
|
if (section_target_bandwitdh <= 0)
|
|
return cpi->twopass.maxq_max_limit; // Highest value allowed
|
|
|
|
target_norm_bits_per_mb =
|
|
(section_target_bandwitdh < (1 << 20))
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Look at the drop in prediction quality between the last frame
|
|
// and the GF buffer (which contained an older frame).
|
|
sr_err_diff =
|
|
(fpstats->sr_coded_error - fpstats->coded_error) /
|
|
(fpstats->count * cpi->common.MBs);
|
|
sr_correction = (sr_err_diff / 32.0);
|
|
sr_correction = pow(sr_correction, 0.25);
|
|
if (sr_correction < 0.75)
|
|
sr_correction = 0.75;
|
|
else if (sr_correction > 1.25)
|
|
sr_correction = 1.25;
|
|
|
|
// Calculate a corrective factor based on a rolling ratio of bits spent
|
|
// vs target bits
|
|
if ((cpi->rolling_target_bits > 0) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality)) {
|
|
double rolling_ratio;
|
|
|
|
rolling_ratio = (double)cpi->rolling_actual_bits /
|
|
(double)cpi->rolling_target_bits;
|
|
|
|
if (rolling_ratio < 0.95)
|
|
cpi->twopass.est_max_qcorrection_factor -= 0.005;
|
|
else if (rolling_ratio > 1.05)
|
|
cpi->twopass.est_max_qcorrection_factor += 0.005;
|
|
|
|
cpi->twopass.est_max_qcorrection_factor =
|
|
(cpi->twopass.est_max_qcorrection_factor < 0.1)
|
|
? 0.1
|
|
: (cpi->twopass.est_max_qcorrection_factor > 10.0)
|
|
? 10.0 : cpi->twopass.est_max_qcorrection_factor;
|
|
}
|
|
|
|
// Corrections for higher compression speed settings
|
|
// (reduced compression expected)
|
|
if (cpi->compressor_speed == 1) {
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Estimate of overhead bits per mb
|
|
// Correction to overhead bits for min allowed Q.
|
|
// PGW TODO.. This code is broken for the extended Q range
|
|
// for now overhead set to 0.
|
|
overhead_bits_per_mb = overhead_bits / num_mbs;
|
|
overhead_bits_per_mb *= pow(0.98, (double)cpi->twopass.maxq_min_limit);
|
|
|
|
// Try and pick a max Q that will be high enough to encode the
|
|
// content at the given rate.
|
|
for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) {
|
|
int bits_per_mb_at_this_q;
|
|
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) *
|
|
sr_correction * speed_correction *
|
|
cpi->twopass.est_max_qcorrection_factor;
|
|
|
|
if (err_correction_factor < 0.05)
|
|
err_correction_factor = 0.05;
|
|
else if (err_correction_factor > 5.0)
|
|
err_correction_factor = 5.0;
|
|
|
|
bits_per_mb_at_this_q =
|
|
vp9_bits_per_mb(INTER_FRAME, Q) + (int)overhead_bits_per_mb;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
|
|
(double)bits_per_mb_at_this_q);
|
|
|
|
// Mode and motion overhead
|
|
// As Q rises in real encode loop rd code will force overhead down
|
|
// We make a crude adjustment for this here as *.98 per Q step.
|
|
// PGW TODO.. This code is broken for the extended Q range
|
|
// for now overhead set to 0.
|
|
// overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Restriction on active max q for constrained quality mode.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->cq_target_quality)) {
|
|
Q = cpi->cq_target_quality;
|
|
}
|
|
|
|
// Adjust maxq_min_limit and maxq_max_limit limits based on
|
|
// averaga q observed in clip for non kf/gf/arf frames
|
|
// Give average a chance to settle though.
|
|
// PGW TODO.. This code is broken for the extended Q range
|
|
if ((cpi->ni_frames >
|
|
((int)cpi->twopass.total_stats->count >> 8)) &&
|
|
(cpi->ni_frames > 150)) {
|
|
adjust_maxq_qrange(cpi);
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// For cq mode estimate a cq level that matches the observed
|
|
// complexity and data rate.
|
|
static int estimate_cq(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats,
|
|
int section_target_bandwitdh,
|
|
int overhead_bits) {
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = (fpstats->coded_error / fpstats->count);
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double sr_err_diff;
|
|
double sr_correction;
|
|
double speed_correction = 1.0;
|
|
double clip_iiratio;
|
|
double clip_iifactor;
|
|
double overhead_bits_per_mb;
|
|
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Estimate of overhead bits per mb
|
|
overhead_bits_per_mb = overhead_bits / num_mbs;
|
|
|
|
// Corrections for higher compression speed settings
|
|
// (reduced compression expected)
|
|
if (cpi->compressor_speed == 1) {
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Look at the drop in prediction quality between the last frame
|
|
// and the GF buffer (which contained an older frame).
|
|
sr_err_diff =
|
|
(fpstats->sr_coded_error - fpstats->coded_error) /
|
|
(fpstats->count * cpi->common.MBs);
|
|
sr_correction = (sr_err_diff / 32.0);
|
|
sr_correction = pow(sr_correction, 0.25);
|
|
if (sr_correction < 0.75)
|
|
sr_correction = 0.75;
|
|
else if (sr_correction > 1.25)
|
|
sr_correction = 1.25;
|
|
|
|
// II ratio correction factor for clip as a whole
|
|
clip_iiratio = cpi->twopass.total_stats->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error);
|
|
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
|
|
if (clip_iifactor < 0.80)
|
|
clip_iifactor = 0.80;
|
|
|
|
// Try and pick a Q that can encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++) {
|
|
int bits_per_mb_at_this_q;
|
|
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) *
|
|
sr_correction * speed_correction * clip_iifactor;
|
|
|
|
if (err_correction_factor < 0.05)
|
|
err_correction_factor = 0.05;
|
|
else if (err_correction_factor > 5.0)
|
|
err_correction_factor = 5.0;
|
|
|
|
bits_per_mb_at_this_q =
|
|
vp9_bits_per_mb(INTER_FRAME, Q) + (int)overhead_bits_per_mb;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
|
|
(double)bits_per_mb_at_this_q);
|
|
|
|
// Mode and motion overhead
|
|
// As Q rises in real encode loop rd code will force overhead down
|
|
// We make a crude adjustment for this here as *.98 per Q step.
|
|
// PGW TODO.. This code is broken for the extended Q range
|
|
// for now overhead set to 0.
|
|
overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Clip value to range "best allowed to (worst allowed - 1)"
|
|
Q = select_cq_level(Q);
|
|
if (Q >= cpi->worst_quality)
|
|
Q = cpi->worst_quality - 1;
|
|
if (Q < cpi->best_quality)
|
|
Q = cpi->best_quality;
|
|
|
|
return Q;
|
|
}
|
|
|
|
|
|
extern void vp9_new_frame_rate(VP9_COMP *cpi, double framerate);
|
|
|
|
void vp9_init_second_pass(VP9_COMP *cpi) {
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
* cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
if (two_pass_min_rate < lower_bounds_min_rate)
|
|
two_pass_min_rate = lower_bounds_min_rate;
|
|
|
|
zero_stats(cpi->twopass.total_stats);
|
|
zero_stats(cpi->twopass.total_left_stats);
|
|
|
|
if (!cpi->twopass.stats_in_end)
|
|
return;
|
|
|
|
*cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
|
|
*cpi->twopass.total_left_stats = *cpi->twopass.total_stats;
|
|
|
|
// each frame can have a different duration, as the frame rate in the source
|
|
// isn't guaranteed to be constant. The frame rate prior to the first frame
|
|
// encoded in the second pass is a guess. However the sum duration is not.
|
|
// Its calculated based on the actual durations of all frames from the first
|
|
// pass.
|
|
vp9_new_frame_rate(cpi,
|
|
10000000.0 * cpi->twopass.total_stats->count /
|
|
cpi->twopass.total_stats->duration);
|
|
|
|
cpi->output_frame_rate = cpi->oxcf.frame_rate;
|
|
cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration *
|
|
cpi->oxcf.target_bandwidth / 10000000.0);
|
|
cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration *
|
|
two_pass_min_rate / 10000000.0);
|
|
|
|
// Calculate a minimum intra value to be used in determining the IIratio
|
|
// scores used in the second pass. We have this minimum to make sure
|
|
// that clips that are static but "low complexity" in the intra domain
|
|
// are still boosted appropriately for KF/GF/ARF
|
|
cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
|
|
cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
|
|
|
|
// This variable monitors how far behind the second ref update is lagging
|
|
cpi->twopass.sr_update_lag = 1;
|
|
|
|
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
|
|
{
|
|
double sum_iiratio = 0.0;
|
|
double IIRatio;
|
|
|
|
start_pos = cpi->twopass.stats_in; // Note starting "file" position
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF) {
|
|
IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
|
|
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
|
|
sum_iiratio += IIRatio;
|
|
}
|
|
|
|
cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count);
|
|
|
|
// Reset file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
|
|
// Scan the first pass file and calculate a modified total error based upon the bias/power function
|
|
// used to allocate bits
|
|
{
|
|
start_pos = cpi->twopass.stats_in; // Note starting "file" position
|
|
|
|
cpi->twopass.modified_error_total = 0.0;
|
|
cpi->twopass.modified_error_used = 0.0;
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF) {
|
|
cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
|
|
}
|
|
cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
|
|
|
|
reset_fpf_position(cpi, start_pos); // Reset file position
|
|
|
|
}
|
|
}
|
|
|
|
void vp9_end_second_pass(VP9_COMP *cpi) {
|
|
}
|
|
|
|
// This function gives and estimate of how badly we believe
|
|
// the prediction quality is decaying from frame to frame.
|
|
static double get_prediction_decay_rate(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *next_frame) {
|
|
double prediction_decay_rate;
|
|
double second_ref_decay;
|
|
double mb_sr_err_diff;
|
|
|
|
// Initial basis is the % mbs inter coded
|
|
prediction_decay_rate = next_frame->pcnt_inter;
|
|
|
|
// Look at the observed drop in prediction quality between the last frame
|
|
// and the GF buffer (which contains an older frame).
|
|
mb_sr_err_diff =
|
|
(next_frame->sr_coded_error - next_frame->coded_error) /
|
|
(cpi->common.MBs);
|
|
second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
|
|
second_ref_decay = pow(second_ref_decay, 0.5);
|
|
if (second_ref_decay < 0.85)
|
|
second_ref_decay = 0.85;
|
|
else if (second_ref_decay > 1.0)
|
|
second_ref_decay = 1.0;
|
|
|
|
if (second_ref_decay < prediction_decay_rate)
|
|
prediction_decay_rate = second_ref_decay;
|
|
|
|
return prediction_decay_rate;
|
|
}
|
|
|
|
// Function to test for a condition where a complex transition is followed
|
|
// by a static section. For example in slide shows where there is a fade
|
|
// between slides. This is to help with more optimal kf and gf positioning.
|
|
static int detect_transition_to_still(
|
|
VP9_COMP *cpi,
|
|
int frame_interval,
|
|
int still_interval,
|
|
double loop_decay_rate,
|
|
double last_decay_rate) {
|
|
BOOL trans_to_still = FALSE;
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// For example a static image after a fade or other transition
|
|
// instead of a clean scene cut.
|
|
if ((frame_interval > MIN_GF_INTERVAL) &&
|
|
(loop_decay_rate >= 0.999) &&
|
|
(last_decay_rate < 0.9)) {
|
|
int j;
|
|
FIRSTPASS_STATS *position = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_next_frame;
|
|
double zz_inter;
|
|
|
|
// Look ahead a few frames to see if static condition
|
|
// persists...
|
|
for (j = 0; j < still_interval; j++) {
|
|
if (EOF == input_stats(cpi, &tmp_next_frame))
|
|
break;
|
|
|
|
zz_inter =
|
|
(tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
|
|
if (zz_inter < 0.999)
|
|
break;
|
|
}
|
|
// Reset file position
|
|
reset_fpf_position(cpi, position);
|
|
|
|
// Only if it does do we signal a transition to still
|
|
if (j == still_interval)
|
|
trans_to_still = TRUE;
|
|
}
|
|
|
|
return trans_to_still;
|
|
}
|
|
|
|
// This function detects a flash through the high relative pcnt_second_ref
|
|
// score in the frame following a flash frame. The offset passed in should
|
|
// reflect this
|
|
static BOOL detect_flash(VP9_COMP *cpi, int offset) {
|
|
FIRSTPASS_STATS next_frame;
|
|
|
|
BOOL flash_detected = FALSE;
|
|
|
|
// Read the frame data.
|
|
// The return is FALSE (no flash detected) if not a valid frame
|
|
if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
|
|
// What we are looking for here is a situation where there is a
|
|
// brief break in prediction (such as a flash) but subsequent frames
|
|
// are reasonably well predicted by an earlier (pre flash) frame.
|
|
// The recovery after a flash is indicated by a high pcnt_second_ref
|
|
// comapred to pcnt_inter.
|
|
if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
|
|
(next_frame.pcnt_second_ref >= 0.5)) {
|
|
flash_detected = TRUE;
|
|
}
|
|
}
|
|
|
|
return flash_detected;
|
|
}
|
|
|
|
// Update the motion related elements to the GF arf boost calculation
|
|
static void accumulate_frame_motion_stats(
|
|
VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *this_frame,
|
|
double *this_frame_mv_in_out,
|
|
double *mv_in_out_accumulator,
|
|
double *abs_mv_in_out_accumulator,
|
|
double *mv_ratio_accumulator) {
|
|
// double this_frame_mv_in_out;
|
|
double this_frame_mvr_ratio;
|
|
double this_frame_mvc_ratio;
|
|
double motion_pct;
|
|
|
|
// Accumulate motion stats.
|
|
motion_pct = this_frame->pcnt_motion;
|
|
|
|
// Accumulate Motion In/Out of frame stats
|
|
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
|
|
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
|
|
*abs_mv_in_out_accumulator +=
|
|
fabs(this_frame->mv_in_out_count * motion_pct);
|
|
|
|
// Accumulate a measure of how uniform (or conversely how random)
|
|
// the motion field is. (A ratio of absmv / mv)
|
|
if (motion_pct > 0.05) {
|
|
this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
|
|
|
|
this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvr_ratio < this_frame->mvr_abs)
|
|
? (this_frame_mvr_ratio * motion_pct)
|
|
: this_frame->mvr_abs * motion_pct;
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvc_ratio < this_frame->mvc_abs)
|
|
? (this_frame_mvc_ratio * motion_pct)
|
|
: this_frame->mvc_abs * motion_pct;
|
|
|
|
}
|
|
}
|
|
|
|
// Calculate a baseline boost number for the current frame.
|
|
static double calc_frame_boost(
|
|
VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *this_frame,
|
|
double this_frame_mv_in_out) {
|
|
double frame_boost;
|
|
|
|
// Underlying boost factor is based on inter intra error ratio
|
|
if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
|
|
frame_boost = (IIFACTOR * this_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
else
|
|
frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
|
|
// Increase boost for frames where new data coming into frame
|
|
// (eg zoom out). Slightly reduce boost if there is a net balance
|
|
// of motion out of the frame (zoom in).
|
|
// The range for this_frame_mv_in_out is -1.0 to +1.0
|
|
if (this_frame_mv_in_out > 0.0)
|
|
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
|
|
// In extreme case boost is halved
|
|
else
|
|
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
|
|
|
// Clip to maximum
|
|
if (frame_boost > GF_RMAX)
|
|
frame_boost = GF_RMAX;
|
|
|
|
return frame_boost;
|
|
}
|
|
|
|
static int calc_arf_boost(
|
|
VP9_COMP *cpi,
|
|
int offset,
|
|
int f_frames,
|
|
int b_frames,
|
|
int *f_boost,
|
|
int *b_boost) {
|
|
FIRSTPASS_STATS this_frame;
|
|
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
int arf_boost;
|
|
BOOL flash_detected = FALSE;
|
|
|
|
// Search forward from the proposed arf/next gf position
|
|
for (i = 0; i < f_frames; i++) {
|
|
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(cpi, &this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i + offset)) ||
|
|
detect_flash(cpi, (i + offset + 1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
decay_accumulator =
|
|
decay_accumulator * get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator *
|
|
calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
|
|
}
|
|
|
|
*f_boost = (int)boost_score;
|
|
|
|
// Reset for backward looking loop
|
|
boost_score = 0.0;
|
|
mv_ratio_accumulator = 0.0;
|
|
decay_accumulator = 1.0;
|
|
this_frame_mv_in_out = 0.0;
|
|
mv_in_out_accumulator = 0.0;
|
|
abs_mv_in_out_accumulator = 0.0;
|
|
|
|
// Search backward towards last gf position
|
|
for (i = -1; i >= -b_frames; i--) {
|
|
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(cpi, &this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i + offset)) ||
|
|
detect_flash(cpi, (i + offset + 1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
decay_accumulator =
|
|
decay_accumulator * get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator *
|
|
calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
|
|
|
|
}
|
|
*b_boost = (int)boost_score;
|
|
|
|
arf_boost = (*f_boost + *b_boost);
|
|
if (arf_boost < ((b_frames + f_frames) * 20))
|
|
arf_boost = ((b_frames + f_frames) * 20);
|
|
|
|
return arf_boost;
|
|
}
|
|
|
|
static void configure_arnr_filter(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int half_gf_int;
|
|
int frames_after_arf;
|
|
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
|
|
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
|
|
|
|
// Define the arnr filter width for this group of frames:
|
|
// We only filter frames that lie within a distance of half
|
|
// the GF interval from the ARF frame. We also have to trap
|
|
// cases where the filter extends beyond the end of clip.
|
|
// Note: this_frame->frame has been updated in the loop
|
|
// so it now points at the ARF frame.
|
|
half_gf_int = cpi->baseline_gf_interval >> 1;
|
|
frames_after_arf = (int)(cpi->twopass.total_stats->count -
|
|
this_frame->frame - 1);
|
|
|
|
switch (cpi->oxcf.arnr_type) {
|
|
case 1: // Backward filter
|
|
frames_fwd = 0;
|
|
if (frames_bwd > half_gf_int)
|
|
frames_bwd = half_gf_int;
|
|
break;
|
|
|
|
case 2: // Forward filter
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
frames_bwd = 0;
|
|
break;
|
|
|
|
case 3: // Centered filter
|
|
default:
|
|
frames_fwd >>= 1;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
|
|
frames_bwd = frames_fwd;
|
|
|
|
// For even length filter there is one more frame backward
|
|
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
|
|
if (frames_bwd < half_gf_int)
|
|
frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
|
|
break;
|
|
}
|
|
|
|
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
|
|
}
|
|
|
|
// Analyse and define a gf/arf group .
|
|
static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double gf_group_err = 0.0;
|
|
double gf_first_frame_err = 0.0;
|
|
double mod_frame_err = 0.0;
|
|
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
|
|
double loop_decay_rate = 1.00; // Starting decay rate
|
|
double last_loop_decay_rate = 1.00;
|
|
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
unsigned int allow_alt_ref =
|
|
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
|
|
|
int f_boost = 0;
|
|
int b_boost = 0;
|
|
BOOL flash_detected;
|
|
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
// Load stats for the current frame.
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// Note the error of the frame at the start of the group (this will be
|
|
// the GF frame error if we code a normal gf
|
|
gf_first_frame_err = mod_frame_err;
|
|
|
|
// Special treatment if the current frame is a key frame (which is also
|
|
// a gf). If it is then its error score (and hence bit allocation) need
|
|
// to be subtracted out from the calculation for the GF group
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
gf_group_err -= gf_first_frame_err;
|
|
|
|
// Scan forward to try and work out how many frames the next gf group
|
|
// should contain and what level of boost is appropriate for the GF
|
|
// or ARF that will be coded with the group
|
|
i = 0;
|
|
|
|
while (((i < cpi->twopass.static_scene_max_gf_interval) ||
|
|
((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
|
|
(i < cpi->twopass.frames_to_key)) {
|
|
i++; // Increment the loop counter
|
|
|
|
// Accumulate error score of frames in this gf group
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
// Test for the case where there is a brief flash but the prediction
|
|
// quality back to an earlier frame is then restored.
|
|
flash_detected = detect_flash(cpi, 0);
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(cpi, &next_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
last_loop_decay_rate = loop_decay_rate;
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
|
|
// Monitor for static sections.
|
|
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
|
|
zero_motion_accumulator) {
|
|
zero_motion_accumulator =
|
|
(next_frame.pcnt_inter - next_frame.pcnt_motion);
|
|
}
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// (for example a staic image after a fade or other transition).
|
|
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
|
|
last_loop_decay_rate)) {
|
|
allow_alt_ref = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate a boost number for this frame
|
|
boost_score +=
|
|
(decay_accumulator *
|
|
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out));
|
|
|
|
// Break out conditions.
|
|
if (
|
|
// Break at cpi->max_gf_interval unless almost totally static
|
|
(i >= cpi->max_gf_interval && (zero_motion_accumulator < 0.995)) ||
|
|
(
|
|
// Dont break out with a very short interval
|
|
(i > MIN_GF_INTERVAL) &&
|
|
// Dont break out very close to a key frame
|
|
((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
|
|
((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
|
|
(!flash_detected) &&
|
|
((mv_ratio_accumulator > 100.0) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ||
|
|
((boost_score - old_boost_score) < IIFACTOR))
|
|
)) {
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
// Dont allow a gf too near the next kf
|
|
if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
|
|
while (i < cpi->twopass.frames_to_key) {
|
|
i++;
|
|
|
|
if (EOF == input_stats(cpi, this_frame))
|
|
break;
|
|
|
|
if (i < cpi->twopass.frames_to_key) {
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the interval till the next gf or arf.
|
|
cpi->baseline_gf_interval = i;
|
|
|
|
// Should we use the alternate refernce frame
|
|
if (allow_alt_ref &&
|
|
(i < cpi->oxcf.lag_in_frames) &&
|
|
(i >= MIN_GF_INTERVAL) &&
|
|
// dont use ARF very near next kf
|
|
(i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
|
|
((next_frame.pcnt_inter > 0.75) ||
|
|
(next_frame.pcnt_second_ref > 0.5)) &&
|
|
((mv_in_out_accumulator / (double)i > -0.2) ||
|
|
(mv_in_out_accumulator > -2.0)) &&
|
|
(boost_score > 100)) {
|
|
// Alterrnative boost calculation for alt ref
|
|
cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
|
|
cpi->source_alt_ref_pending = TRUE;
|
|
|
|
configure_arnr_filter(cpi, this_frame);
|
|
} else {
|
|
cpi->gfu_boost = (int)boost_score;
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
}
|
|
|
|
// Now decide how many bits should be allocated to the GF group as a
|
|
// proportion of those remaining in the kf group.
|
|
// The final key frame group in the clip is treated as a special case
|
|
// where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
|
|
// This is also important for short clips where there may only be one
|
|
// key frame.
|
|
if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count -
|
|
cpi->common.current_video_frame)) {
|
|
cpi->twopass.kf_group_bits =
|
|
(cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
|
|
}
|
|
|
|
// Calculate the bits to be allocated to the group as a whole
|
|
if ((cpi->twopass.kf_group_bits > 0) &&
|
|
(cpi->twopass.kf_group_error_left > 0)) {
|
|
cpi->twopass.gf_group_bits =
|
|
(int)((double)cpi->twopass.kf_group_bits *
|
|
(gf_group_err / cpi->twopass.kf_group_error_left));
|
|
} else
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
cpi->twopass.gf_group_bits =
|
|
(cpi->twopass.gf_group_bits < 0)
|
|
? 0
|
|
: (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
|
|
? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
|
|
|
|
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
|
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
|
if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
|
cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
|
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
// Update the record of error used so far (only done once per gf group)
|
|
cpi->twopass.modified_error_used += gf_group_err;
|
|
|
|
// Assign bits to the arf or gf.
|
|
for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) {
|
|
int boost;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int gf_bits;
|
|
|
|
boost = (cpi->gfu_boost * vp9_gfboost_qadjust(Q)) / 100;
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (boost > ((cpi->baseline_gf_interval + 1) * 200))
|
|
boost = ((cpi->baseline_gf_interval + 1) * 200);
|
|
else if (boost < 125)
|
|
boost = 125;
|
|
|
|
if (cpi->source_alt_ref_pending && i == 0)
|
|
allocation_chunks =
|
|
((cpi->baseline_gf_interval + 1) * 100) + boost;
|
|
else
|
|
allocation_chunks =
|
|
(cpi->baseline_gf_interval * 100) + (boost - 100);
|
|
|
|
// Prevent overflow
|
|
if (boost > 1028) {
|
|
int divisor = boost >> 10;
|
|
boost /= divisor;
|
|
allocation_chunks /= divisor;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the gf or arf based on
|
|
// the boost number
|
|
gf_bits = (int)((double)boost *
|
|
(cpi->twopass.gf_group_bits /
|
|
(double)allocation_chunks));
|
|
|
|
// If the frame that is to be boosted is simpler than the average for
|
|
// the gf/arf group then use an alternative calculation
|
|
// based on the error score of the frame itself
|
|
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
|
|
double alt_gf_grp_bits;
|
|
int alt_gf_bits;
|
|
|
|
alt_gf_grp_bits =
|
|
(double)cpi->twopass.kf_group_bits *
|
|
(mod_frame_err * (double)cpi->baseline_gf_interval) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left);
|
|
|
|
alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
|
|
(double)allocation_chunks));
|
|
|
|
if (gf_bits > alt_gf_bits) {
|
|
gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
// Else if it is harder than other frames in the group make sure it at
|
|
// least receives an allocation in keeping with its relative error
|
|
// score, otherwise it may be worse off than an "un-boosted" frame
|
|
else {
|
|
int alt_gf_bits =
|
|
(int)((double)cpi->twopass.kf_group_bits *
|
|
mod_frame_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left));
|
|
|
|
if (alt_gf_bits > gf_bits) {
|
|
gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
|
|
// Dont allow a negative value for gf_bits
|
|
if (gf_bits < 0)
|
|
gf_bits = 0;
|
|
|
|
gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
|
|
|
|
if (i == 0) {
|
|
cpi->twopass.gf_bits = gf_bits;
|
|
}
|
|
if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) {
|
|
cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame
|
|
}
|
|
}
|
|
|
|
{
|
|
// Adjust KF group bits and error remainin
|
|
cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0;
|
|
|
|
// Note the error score left in the remaining frames of the group.
|
|
// For normal GFs we want to remove the error score for the first frame
|
|
// of the group (except in Key frame case where this has already
|
|
// happened)
|
|
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
|
|
cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err
|
|
- gf_first_frame_err);
|
|
else
|
|
cpi->twopass.gf_group_error_left = (int64_t)gf_group_err;
|
|
|
|
cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
// This condition could fail if there are two kfs very close together
|
|
// despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
|
|
// calculation of cpi->twopass.alt_extra_bits.
|
|
if (cpi->baseline_gf_interval >= 3) {
|
|
int boost = (cpi->source_alt_ref_pending)
|
|
? b_boost : cpi->gfu_boost;
|
|
|
|
if (boost >= 150) {
|
|
int pct_extra;
|
|
|
|
pct_extra = (boost - 100) / 50;
|
|
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
|
|
|
|
cpi->twopass.alt_extra_bits = (int)
|
|
((cpi->twopass.gf_group_bits * pct_extra) / 100);
|
|
cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
|
|
cpi->twopass.alt_extra_bits /=
|
|
((cpi->baseline_gf_interval - 1) >> 1);
|
|
} else
|
|
cpi->twopass.alt_extra_bits = 0;
|
|
} else
|
|
cpi->twopass.alt_extra_bits = 0;
|
|
}
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
FIRSTPASS_STATS sectionstats;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
for (i = 0; i < cpi->baseline_gf_interval; i++) {
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating = (int)
|
|
(sectionstats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
|
|
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
}
|
|
|
|
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
|
|
static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int target_frame_size; // gf_group_error_left
|
|
|
|
double modified_err;
|
|
double err_fraction; // What portion of the remaining GF group error is used by this frame
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
// Calculate modified prediction error used in bit allocation
|
|
modified_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
if (cpi->twopass.gf_group_error_left > 0)
|
|
err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame
|
|
else
|
|
err_fraction = 0.0;
|
|
|
|
target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
|
|
|
|
// Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end.
|
|
if (target_frame_size < 0)
|
|
target_frame_size = 0;
|
|
else {
|
|
if (target_frame_size > max_bits)
|
|
target_frame_size = max_bits;
|
|
|
|
if (target_frame_size > cpi->twopass.gf_group_bits)
|
|
target_frame_size = (int)cpi->twopass.gf_group_bits;
|
|
}
|
|
|
|
// Adjust error remaining
|
|
cpi->twopass.gf_group_error_left -= (int64_t)modified_err;
|
|
cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
|
|
|
|
|
|
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
|
|
}
|
|
|
|
// Make a damped adjustment to the active max q.
|
|
static int adjust_active_maxq(int old_maxqi, int new_maxqi) {
|
|
int i;
|
|
int ret_val = new_maxqi;
|
|
double old_q;
|
|
double new_q;
|
|
double target_q;
|
|
|
|
old_q = vp9_convert_qindex_to_q(old_maxqi);
|
|
new_q = vp9_convert_qindex_to_q(new_maxqi);
|
|
|
|
target_q = ((old_q * 7.0) + new_q) / 8.0;
|
|
|
|
if (target_q > old_q) {
|
|
for (i = old_maxqi; i <= new_maxqi; i++) {
|
|
if (vp9_convert_qindex_to_q(i) >= target_q) {
|
|
ret_val = i;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = old_maxqi; i >= new_maxqi; i--) {
|
|
if (vp9_convert_qindex_to_q(i) <= target_q) {
|
|
ret_val = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
void vp9_second_pass(VP9_COMP *cpi) {
|
|
int tmp_q;
|
|
int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame);
|
|
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS this_frame_copy;
|
|
|
|
double this_frame_error;
|
|
double this_frame_intra_error;
|
|
double this_frame_coded_error;
|
|
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
int overhead_bits;
|
|
|
|
if (!cpi->twopass.stats_in) {
|
|
return;
|
|
}
|
|
|
|
vp9_clear_system_state();
|
|
|
|
vpx_memset(&this_frame, 0, sizeof(FIRSTPASS_STATS));
|
|
|
|
if (EOF == input_stats(cpi, &this_frame))
|
|
return;
|
|
|
|
this_frame_error = this_frame.ssim_weighted_pred_err;
|
|
this_frame_intra_error = this_frame.intra_error;
|
|
this_frame_coded_error = this_frame.coded_error;
|
|
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// keyframe and section processing !
|
|
if (cpi->twopass.frames_to_key == 0) {
|
|
// Define next KF group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
find_next_key_frame(cpi, &this_frame_copy);
|
|
}
|
|
|
|
// Is this a GF / ARF (Note that a KF is always also a GF)
|
|
if (cpi->frames_till_gf_update_due == 0) {
|
|
// Define next gf group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
define_gf_group(cpi, &this_frame_copy);
|
|
|
|
// If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
|
|
// If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
|
|
// If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
|
|
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
|
|
// Assign a standard frames worth of bits from those allocated to the GF group
|
|
int bak = cpi->per_frame_bandwidth;
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
cpi->per_frame_bandwidth = bak;
|
|
}
|
|
}
|
|
|
|
// Otherwise this is an ordinary frame
|
|
else {
|
|
// Assign bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
|
|
// Keep a globally available copy of this and the next frame's iiratio.
|
|
cpi->twopass.this_iiratio = (int)(this_frame_intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
|
|
cpi->twopass.next_iiratio = (int)(next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
}
|
|
}
|
|
|
|
// Set nominal per second bandwidth for this frame
|
|
cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth
|
|
* cpi->output_frame_rate);
|
|
if (cpi->target_bandwidth < 0)
|
|
cpi->target_bandwidth = 0;
|
|
|
|
|
|
// Account for mv, mode and other overheads.
|
|
overhead_bits = (int)estimate_modemvcost(
|
|
cpi, cpi->twopass.total_left_stats);
|
|
|
|
// Special case code for first frame.
|
|
if (cpi->common.current_video_frame == 0) {
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
// Set a cq_level in constrained quality mode.
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
int est_cq;
|
|
|
|
est_cq =
|
|
estimate_cq(cpi,
|
|
cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits);
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
if (est_cq > cpi->cq_target_quality)
|
|
cpi->cq_target_quality = est_cq;
|
|
}
|
|
|
|
// guess at maxq needed in 2nd pass
|
|
cpi->twopass.maxq_max_limit = cpi->worst_quality;
|
|
cpi->twopass.maxq_min_limit = cpi->best_quality;
|
|
|
|
tmp_q = estimate_max_q(
|
|
cpi,
|
|
cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits);
|
|
|
|
cpi->active_worst_quality = tmp_q;
|
|
cpi->ni_av_qi = tmp_q;
|
|
cpi->avg_q = vp9_convert_qindex_to_q(tmp_q);
|
|
|
|
// Limit the maxq value returned subsequently.
|
|
// This increases the risk of overspend or underspend if the initial
|
|
// estimate for the clip is bad, but helps prevent excessive
|
|
// variation in Q, especially near the end of a clip
|
|
// where for example a small overspend may cause Q to crash
|
|
adjust_maxq_qrange(cpi);
|
|
}
|
|
|
|
// The last few frames of a clip almost always have to few or too many
|
|
// bits and for the sake of over exact rate control we dont want to make
|
|
// radical adjustments to the allowed quantizer range just to use up a
|
|
// few surplus bits or get beneath the target rate.
|
|
else if ((cpi->common.current_video_frame <
|
|
(((unsigned int)cpi->twopass.total_stats->count * 255) >> 8)) &&
|
|
((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
|
|
(unsigned int)cpi->twopass.total_stats->count)) {
|
|
if (frames_left < 1)
|
|
frames_left = 1;
|
|
|
|
tmp_q = estimate_max_q(
|
|
cpi,
|
|
cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits);
|
|
|
|
// Make a damped adjustment to active max Q
|
|
cpi->active_worst_quality =
|
|
adjust_active_maxq(cpi->active_worst_quality, tmp_q);
|
|
}
|
|
|
|
cpi->twopass.frames_to_key--;
|
|
|
|
// Update the total stats remaining sturcture
|
|
subtract_stats(cpi->twopass.total_left_stats, &this_frame);
|
|
}
|
|
|
|
|
|
static BOOL test_candidate_kf(VP9_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) {
|
|
BOOL is_viable_kf = FALSE;
|
|
|
|
// Does the frame satisfy the primary criteria of a key frame
|
|
// If so, then examine how well it predicts subsequent frames
|
|
if ((this_frame->pcnt_second_ref < 0.10) &&
|
|
(next_frame->pcnt_second_ref < 0.10) &&
|
|
((this_frame->pcnt_inter < 0.05) ||
|
|
(
|
|
((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
|
|
((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
|
|
((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
|
|
(fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
|
|
((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
|
|
)
|
|
)
|
|
)
|
|
) {
|
|
int i;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
FIRSTPASS_STATS local_next_frame;
|
|
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double next_iiratio;
|
|
|
|
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
|
|
|
|
// Note the starting file position so we can reset to it
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// Examine how well the key frame predicts subsequent frames
|
|
for (i = 0; i < 16; i++) {
|
|
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
|
|
|
|
if (next_iiratio > RMAX)
|
|
next_iiratio = RMAX;
|
|
|
|
// Cumulative effect of decay in prediction quality
|
|
if (local_next_frame.pcnt_inter > 0.85)
|
|
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
else
|
|
decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
|
|
|
|
// decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
|
|
// Keep a running total
|
|
boost_score += (decay_accumulator * next_iiratio);
|
|
|
|
// Test various breakout clauses
|
|
if ((local_next_frame.pcnt_inter < 0.05) ||
|
|
(next_iiratio < 1.5) ||
|
|
(((local_next_frame.pcnt_inter -
|
|
local_next_frame.pcnt_neutral) < 0.20) &&
|
|
(next_iiratio < 3.0)) ||
|
|
((boost_score - old_boost_score) < 3.0) ||
|
|
(local_next_frame.intra_error < 200)
|
|
) {
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
|
|
// Get the next frame details
|
|
if (EOF == input_stats(cpi, &local_next_frame))
|
|
break;
|
|
}
|
|
|
|
// If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
|
|
if (boost_score > 30.0 && (i > 3))
|
|
is_viable_kf = TRUE;
|
|
else {
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
is_viable_kf = FALSE;
|
|
}
|
|
}
|
|
|
|
return is_viable_kf;
|
|
}
|
|
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int i, j;
|
|
FIRSTPASS_STATS last_frame;
|
|
FIRSTPASS_STATS first_frame;
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_position;
|
|
|
|
double decay_accumulator = 1.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
double boost_score = 0;
|
|
double old_boost_score = 0.0;
|
|
double loop_decay_rate;
|
|
|
|
double kf_mod_err = 0.0;
|
|
double kf_group_err = 0.0;
|
|
double kf_group_intra_err = 0.0;
|
|
double kf_group_coded_err = 0.0;
|
|
double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
start_position = cpi->twopass.stats_in;
|
|
|
|
cpi->common.frame_type = KEY_FRAME;
|
|
|
|
// is this a forced key frame by interval
|
|
cpi->this_key_frame_forced = cpi->next_key_frame_forced;
|
|
|
|
// Clear the alt ref active flag as this can never be active on a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Kf is always a gf so clear frames till next gf counter
|
|
cpi->frames_till_gf_update_due = 0;
|
|
|
|
cpi->twopass.frames_to_key = 1;
|
|
|
|
// Take a copy of the initial frame details
|
|
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
|
|
|
|
cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group
|
|
cpi->twopass.kf_group_error_left = 0; // Group modified error score.
|
|
|
|
kf_mod_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// find the next keyframe
|
|
i = 0;
|
|
while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
|
|
// load a the next frame's stats
|
|
vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
|
|
input_stats(cpi, this_frame);
|
|
|
|
// Provided that we are not at the end of the file...
|
|
if (cpi->oxcf.auto_key
|
|
&& lookup_next_frame_stats(cpi, &next_frame) != EOF) {
|
|
// Normal scene cut check
|
|
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) {
|
|
break;
|
|
}
|
|
|
|
// How fast is prediction quality decaying
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
|
|
// We want to know something about the recent past... rather than
|
|
// as used elsewhere where we are concened with decay in prediction
|
|
// quality since the last GF or KF.
|
|
recent_loop_decay[i % 8] = loop_decay_rate;
|
|
decay_accumulator = 1.0;
|
|
for (j = 0; j < 8; j++) {
|
|
decay_accumulator = decay_accumulator * recent_loop_decay[j];
|
|
}
|
|
|
|
// Special check for transition or high motion followed by a
|
|
// to a static scene.
|
|
if (detect_transition_to_still(cpi, i,
|
|
(cpi->key_frame_frequency - i),
|
|
loop_decay_rate,
|
|
decay_accumulator)) {
|
|
break;
|
|
}
|
|
|
|
|
|
// Step on to the next frame
|
|
cpi->twopass.frames_to_key++;
|
|
|
|
// If we don't have a real key frame within the next two
|
|
// forcekeyframeevery intervals then break out of the loop.
|
|
if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency)
|
|
break;
|
|
} else
|
|
cpi->twopass.frames_to_key++;
|
|
|
|
i++;
|
|
}
|
|
|
|
// If there is a max kf interval set by the user we must obey it.
|
|
// We already breakout of the loop above at 2x max.
|
|
// This code centers the extra kf if the actual natural
|
|
// interval is between 1x and 2x
|
|
if (cpi->oxcf.auto_key
|
|
&& cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
|
|
FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_frame;
|
|
|
|
cpi->twopass.frames_to_key /= 2;
|
|
|
|
// Copy first frame details
|
|
vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
kf_group_err = 0;
|
|
kf_group_intra_err = 0;
|
|
kf_group_coded_err = 0;
|
|
|
|
// Rescan to get the correct error data for the forced kf group
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
// Accumulate kf group errors
|
|
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
|
|
kf_group_intra_err += tmp_frame.intra_error;
|
|
kf_group_coded_err += tmp_frame.coded_error;
|
|
|
|
// Load a the next frame's stats
|
|
input_stats(cpi, &tmp_frame);
|
|
}
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, current_pos);
|
|
|
|
cpi->next_key_frame_forced = TRUE;
|
|
} else
|
|
cpi->next_key_frame_forced = FALSE;
|
|
|
|
// Special case for the last frame of the file
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
}
|
|
|
|
// Calculate the number of bits that should be assigned to the kf group.
|
|
if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) {
|
|
// Max for a single normal frame (not key frame)
|
|
int max_bits = frame_max_bits(cpi);
|
|
|
|
// Maximum bits for the kf group
|
|
int64_t max_grp_bits;
|
|
|
|
// Default allocation based on bits left and relative
|
|
// complexity of the section
|
|
cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left *
|
|
(kf_group_err /
|
|
cpi->twopass.modified_error_left));
|
|
|
|
// Clip based on maximum per frame rate defined by the user.
|
|
max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
|
|
if (cpi->twopass.kf_group_bits > max_grp_bits)
|
|
cpi->twopass.kf_group_bits = max_grp_bits;
|
|
} else
|
|
cpi->twopass.kf_group_bits = 0;
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// determine how big to make this keyframe based on how well the subsequent frames use inter blocks
|
|
decay_accumulator = 1.0;
|
|
boost_score = 0.0;
|
|
loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
double r;
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
|
|
r = (IIKFACTOR2 * next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
else
|
|
r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
|
|
if (r > RMAX)
|
|
r = RMAX;
|
|
|
|
// Monitor for static sections.
|
|
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
|
|
zero_motion_accumulator) {
|
|
zero_motion_accumulator =
|
|
(next_frame.pcnt_inter - next_frame.pcnt_motion);
|
|
}
|
|
|
|
// How fast is prediction quality decaying
|
|
if (!detect_flash(cpi, 0)) {
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
if ((i > MIN_GF_INTERVAL) &&
|
|
((boost_score - old_boost_score) < 6.25)) {
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating = (int)
|
|
(sectionstats.intra_error
|
|
/ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
|
|
}
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// Work out how many bits to allocate for the key frame itself
|
|
if (1) {
|
|
int kf_boost = (int)boost_score;
|
|
int allocation_chunks;
|
|
int alt_kf_bits;
|
|
|
|
if (kf_boost < (cpi->twopass.frames_to_key * 5))
|
|
kf_boost = (cpi->twopass.frames_to_key * 5);
|
|
|
|
if (kf_boost < 300) // Min KF boost
|
|
kf_boost = 300;
|
|
|
|
// Make a note of baseline boost and the zero motion
|
|
// accumulator value for use elsewhere.
|
|
cpi->kf_boost = kf_boost;
|
|
cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
|
|
|
|
// We do three calculations for kf size.
|
|
// The first is based on the error score for the whole kf group.
|
|
// The second (optionaly) on the key frames own error if this is
|
|
// smaller than the average for the group.
|
|
// The final one insures that the frame receives at least the
|
|
// allocation it would have received based on its own error score vs
|
|
// the error score remaining
|
|
// Special case if the sequence appears almost totaly static
|
|
// In this case we want to spend almost all of the bits on the
|
|
// key frame.
|
|
// cpi->twopass.frames_to_key-1 because key frame itself is taken
|
|
// care of by kf_boost.
|
|
if (zero_motion_accumulator >= 0.99) {
|
|
allocation_chunks =
|
|
((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
|
|
} else {
|
|
allocation_chunks =
|
|
((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
|
|
}
|
|
|
|
// Prevent overflow
|
|
if (kf_boost > 1028) {
|
|
int divisor = kf_boost >> 10;
|
|
kf_boost /= divisor;
|
|
allocation_chunks /= divisor;
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
|
|
|
|
// Calculate the number of bits to be spent on the key frame
|
|
cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
|
|
|
|
// If the key frame is actually easier than the average for the
|
|
// kf group (which does sometimes happen... eg a blank intro frame)
|
|
// Then use an alternate calculation based on the kf error score
|
|
// which should give a smaller key frame.
|
|
if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
|
|
double alt_kf_grp_bits =
|
|
((double)cpi->twopass.bits_left *
|
|
(kf_mod_err * (double)cpi->twopass.frames_to_key) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
|
|
|
|
alt_kf_bits = (int)((double)kf_boost *
|
|
(alt_kf_grp_bits / (double)allocation_chunks));
|
|
|
|
if (cpi->twopass.kf_bits > alt_kf_bits) {
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
// Else if it is much harder than other frames in the group make sure
|
|
// it at least receives an allocation in keeping with its relative
|
|
// error score
|
|
else {
|
|
alt_kf_bits =
|
|
(int)((double)cpi->twopass.bits_left *
|
|
(kf_mod_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
|
|
|
|
if (alt_kf_bits > cpi->twopass.kf_bits) {
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
|
|
// Add in the minimum frame allowance
|
|
cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
|
|
|
|
// Peer frame bit target for this frame
|
|
cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
|
|
// Convert to a per second bitrate
|
|
cpi->target_bandwidth = (int)(cpi->twopass.kf_bits *
|
|
cpi->output_frame_rate);
|
|
}
|
|
|
|
// Note the total error score of the kf group minus the key frame itself
|
|
cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
|
|
|
|
// Adjust the count of total modified error left.
|
|
// The count of bits left is adjusted elsewhere based on real coded frame sizes
|
|
cpi->twopass.modified_error_left -= kf_group_err;
|
|
}
|