6a23966c34
Reset the scale factors before build_inter_predictors. Add datarate tests for 3 spatial layers, which exposed this issue. Change-Id: I7f81efbe44345ecea9fdd5f639a4cca76aed3874
4358 lines
160 KiB
C
4358 lines
160 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "./vpx_config.h"
|
|
|
|
#include "vpx_dsp/vpx_dsp_common.h"
|
|
#include "vpx_ports/mem.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#include "vpx_ports/system_state.h"
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_idct.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/encoder/vp9_aq_360.h"
|
|
#include "vp9/encoder/vp9_aq_complexity.h"
|
|
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
|
|
#include "vp9/encoder/vp9_aq_variance.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_ethread.h"
|
|
#include "vp9/encoder/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_pickmode.h"
|
|
#include "vp9/encoder/vp9_rd.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, ThreadData * td,
|
|
TOKENEXTRA **t, int output_enabled,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx);
|
|
|
|
// This is used as a reference when computing the source variance for the
|
|
// purposes of activity masking.
|
|
// Eventually this should be replaced by custom no-reference routines,
|
|
// which will be faster.
|
|
static const uint8_t VP9_VAR_OFFS[64] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
|
|
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4
|
|
};
|
|
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
|
|
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16
|
|
};
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse;
|
|
const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
VP9_VAR_OFFS, 0, &sse);
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
unsigned int vp9_high_get_sby_perpixel_variance(
|
|
VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) {
|
|
unsigned int var, sse;
|
|
switch (bd) {
|
|
case 10:
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10),
|
|
0, &sse);
|
|
break;
|
|
case 12:
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12),
|
|
0, &sse);
|
|
break;
|
|
case 8:
|
|
default:
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8),
|
|
0, &sse);
|
|
break;
|
|
}
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse, var;
|
|
uint8_t *last_y;
|
|
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
|
|
assert(last != NULL);
|
|
last_y =
|
|
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int mi_row,
|
|
int mi_col) {
|
|
unsigned int var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
|
|
mi_row, mi_col,
|
|
BLOCK_64X64);
|
|
if (var < 8)
|
|
return BLOCK_64X64;
|
|
else if (var < 128)
|
|
return BLOCK_32X32;
|
|
else if (var < 2048)
|
|
return BLOCK_16X16;
|
|
else
|
|
return BLOCK_8X8;
|
|
}
|
|
|
|
// Lighter version of set_offsets that only sets the mode info
|
|
// pointers.
|
|
static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
|
|
MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd,
|
|
int mi_row,
|
|
int mi_col) {
|
|
const int idx_str = xd->mi_stride * mi_row + mi_col;
|
|
xd->mi = cm->mi_grid_visible + idx_str;
|
|
xd->mi[0] = cm->mi + idx_str;
|
|
x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
|
|
}
|
|
|
|
static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
|
|
mi = xd->mi[0];
|
|
|
|
// Set up destination pointers.
|
|
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
|
|
// Set up limit values for MV components.
|
|
// Mv beyond the range do not produce new/different prediction block.
|
|
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units.
|
|
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
|
|
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
// Set up source buffers.
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
// R/D setup.
|
|
x->rddiv = cpi->rd.RDDIV;
|
|
x->rdmult = cpi->rd.RDMULT;
|
|
|
|
// Setup segment ID.
|
|
if (seg->enabled) {
|
|
if (cpi->oxcf.aq_mode != VARIANCE_AQ &&
|
|
cpi->oxcf.aq_mode != EQUATOR360_AQ) {
|
|
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
|
|
x->encode_breakout = cpi->segment_encode_breakout[mi->segment_id];
|
|
} else {
|
|
mi->segment_id = 0;
|
|
x->encode_breakout = cpi->encode_breakout;
|
|
}
|
|
|
|
// required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
|
|
xd->tile = *tile;
|
|
}
|
|
|
|
static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const int block_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int block_height = num_8x8_blocks_high_lookup[bsize];
|
|
int i, j;
|
|
for (j = 0; j < block_height; ++j)
|
|
for (i = 0; i < block_width; ++i) {
|
|
if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
|
|
xd->mi[j * xd->mi_stride + i] = xd->mi[0];
|
|
}
|
|
}
|
|
|
|
static void set_block_size(VP9_COMP * const cpi,
|
|
MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
|
|
set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
|
|
xd->mi[0]->sb_type = bsize;
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
int64_t sum_square_error;
|
|
int64_t sum_error;
|
|
int log2_count;
|
|
int variance;
|
|
} var;
|
|
|
|
typedef struct {
|
|
var none;
|
|
var horz[2];
|
|
var vert[2];
|
|
} partition_variance;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
var split[4];
|
|
} v4x4;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v4x4 split[4];
|
|
} v8x8;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v8x8 split[4];
|
|
} v16x16;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v16x16 split[4];
|
|
} v32x32;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v32x32 split[4];
|
|
} v64x64;
|
|
|
|
typedef struct {
|
|
partition_variance *part_variances;
|
|
var *split[4];
|
|
} variance_node;
|
|
|
|
typedef enum {
|
|
V16X16,
|
|
V32X32,
|
|
V64X64,
|
|
} TREE_LEVEL;
|
|
|
|
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
|
|
int i;
|
|
node->part_variances = NULL;
|
|
switch (bsize) {
|
|
case BLOCK_64X64: {
|
|
v64x64 *vt = (v64x64 *) data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_32X32: {
|
|
v32x32 *vt = (v32x32 *) data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_16X16: {
|
|
v16x16 *vt = (v16x16 *) data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_8X8: {
|
|
v8x8 *vt = (v8x8 *) data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_4X4: {
|
|
v4x4 *vt = (v4x4 *) data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i];
|
|
break;
|
|
}
|
|
default: {
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set variance values given sum square error, sum error, count.
|
|
static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
|
|
v->sum_square_error = s2;
|
|
v->sum_error = s;
|
|
v->log2_count = c;
|
|
}
|
|
|
|
static void get_variance(var *v) {
|
|
v->variance = (int)(256 * (v->sum_square_error -
|
|
((v->sum_error * v->sum_error) >> v->log2_count)) >> v->log2_count);
|
|
}
|
|
|
|
static void sum_2_variances(const var *a, const var *b, var *r) {
|
|
assert(a->log2_count == b->log2_count);
|
|
fill_variance(a->sum_square_error + b->sum_square_error,
|
|
a->sum_error + b->sum_error, a->log2_count + 1, r);
|
|
}
|
|
|
|
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
|
|
variance_node node;
|
|
memset(&node, 0, sizeof(node));
|
|
tree_to_node(data, bsize, &node);
|
|
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
|
|
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
|
|
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
|
|
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
|
|
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
|
|
&node.part_variances->none);
|
|
}
|
|
|
|
static int set_vt_partitioning(VP9_COMP *cpi,
|
|
MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd,
|
|
void *data,
|
|
BLOCK_SIZE bsize,
|
|
int mi_row,
|
|
int mi_col,
|
|
int64_t threshold,
|
|
BLOCK_SIZE bsize_min,
|
|
int force_split) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
variance_node vt;
|
|
const int block_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int block_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
assert(block_height == block_width);
|
|
tree_to_node(data, bsize, &vt);
|
|
|
|
if (force_split == 1)
|
|
return 0;
|
|
|
|
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
|
|
// variance is below threshold, otherwise split will be selected.
|
|
// No check for vert/horiz split as too few samples for variance.
|
|
if (bsize == bsize_min) {
|
|
// Variance already computed to set the force_split.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
get_variance(&vt.part_variances->none);
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows &&
|
|
vt.part_variances->none.variance < threshold) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
} else if (bsize > bsize_min) {
|
|
// Variance already computed to set the force_split.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
get_variance(&vt.part_variances->none);
|
|
// For key frame: take split for bsize above 32X32 or very high variance.
|
|
if (cm->frame_type == KEY_FRAME &&
|
|
(bsize > BLOCK_32X32 ||
|
|
vt.part_variances->none.variance > (threshold << 4))) {
|
|
return 0;
|
|
}
|
|
// If variance is low, take the bsize (no split).
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows &&
|
|
vt.part_variances->none.variance < threshold) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
return 1;
|
|
}
|
|
|
|
// Check vertical split.
|
|
if (mi_row + block_height / 2 < cm->mi_rows) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
|
|
get_variance(&vt.part_variances->vert[0]);
|
|
get_variance(&vt.part_variances->vert[1]);
|
|
if (vt.part_variances->vert[0].variance < threshold &&
|
|
vt.part_variances->vert[1].variance < threshold &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
|
|
return 1;
|
|
}
|
|
}
|
|
// Check horizontal split.
|
|
if (mi_col + block_width / 2 < cm->mi_cols) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
get_variance(&vt.part_variances->horz[0]);
|
|
get_variance(&vt.part_variances->horz[1]);
|
|
if (vt.part_variances->horz[0].variance < threshold &&
|
|
vt.part_variances->horz[1].variance < threshold &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Set the variance split thresholds for following the block sizes:
|
|
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
|
|
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
|
|
// currently only used on key frame.
|
|
static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
const int threshold_multiplier = is_key_frame ? 20 : 1;
|
|
int64_t threshold_base = (int64_t)(threshold_multiplier *
|
|
cpi->y_dequant[q][1]);
|
|
if (is_key_frame) {
|
|
thresholds[0] = threshold_base;
|
|
thresholds[1] = threshold_base >> 2;
|
|
thresholds[2] = threshold_base >> 2;
|
|
thresholds[3] = threshold_base << 2;
|
|
} else {
|
|
// Increase base variance threshold based on estimated noise level.
|
|
if (cpi->noise_estimate.enabled) {
|
|
NOISE_LEVEL noise_level = vp9_noise_estimate_extract_level(
|
|
&cpi->noise_estimate);
|
|
if (noise_level == kHigh)
|
|
threshold_base = 3 * threshold_base;
|
|
else if (noise_level == kMedium)
|
|
threshold_base = threshold_base << 1;
|
|
else if (noise_level < kLow)
|
|
threshold_base = (7 * threshold_base) >> 3;
|
|
}
|
|
if (cm->width <= 352 && cm->height <= 288) {
|
|
thresholds[0] = threshold_base >> 3;
|
|
thresholds[1] = threshold_base >> 1;
|
|
thresholds[2] = threshold_base << 3;
|
|
} else {
|
|
thresholds[0] = threshold_base;
|
|
thresholds[1] = (5 * threshold_base) >> 2;
|
|
if (cm->width >= 1920 && cm->height >= 1080)
|
|
thresholds[1] = (7 * threshold_base) >> 2;
|
|
thresholds[2] = threshold_base << cpi->oxcf.speed;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
if (sf->partition_search_type != VAR_BASED_PARTITION &&
|
|
sf->partition_search_type != REFERENCE_PARTITION) {
|
|
return;
|
|
} else {
|
|
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
|
|
// The thresholds below are not changed locally.
|
|
if (is_key_frame) {
|
|
cpi->vbp_threshold_sad = 0;
|
|
cpi->vbp_bsize_min = BLOCK_8X8;
|
|
} else {
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
cpi->vbp_threshold_sad = 10;
|
|
else
|
|
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 ?
|
|
(cpi->y_dequant[q][1] << 1) : 1000;
|
|
cpi->vbp_bsize_min = BLOCK_16X16;
|
|
}
|
|
cpi->vbp_threshold_minmax = 15 + (q >> 3);
|
|
}
|
|
}
|
|
|
|
// Compute the minmax over the 8x8 subblocks.
|
|
static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x16_idx, int y16_idx,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide,
|
|
int pixels_high) {
|
|
int k;
|
|
int minmax_max = 0;
|
|
int minmax_min = 255;
|
|
// Loop over the 4 8x8 subblocks.
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
int min = 0;
|
|
int max = 0;
|
|
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
|
|
d + y8_idx * dp + x8_idx, dp,
|
|
&min, &max);
|
|
} else {
|
|
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
|
|
d + y8_idx * dp + x8_idx, dp,
|
|
&min, &max);
|
|
}
|
|
#else
|
|
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
|
|
d + y8_idx * dp + x8_idx, dp,
|
|
&min, &max);
|
|
#endif
|
|
if ((max - min) > minmax_max)
|
|
minmax_max = (max - min);
|
|
if ((max - min) < minmax_min)
|
|
minmax_min = (max - min);
|
|
}
|
|
}
|
|
return (minmax_max - minmax_min);
|
|
}
|
|
|
|
static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x8_idx, int y8_idx, v8x8 *vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide,
|
|
int pixels_high,
|
|
int is_key_frame) {
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
int x4_idx = x8_idx + ((k & 1) << 2);
|
|
int y4_idx = y8_idx + ((k >> 1) << 2);
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
if (x4_idx < pixels_wide && y4_idx < pixels_high) {
|
|
int s_avg;
|
|
int d_avg = 128;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
} else {
|
|
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
}
|
|
#else
|
|
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
#endif
|
|
sum = s_avg - d_avg;
|
|
sse = sum * sum;
|
|
}
|
|
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
|
|
}
|
|
}
|
|
|
|
static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x16_idx, int y16_idx, v16x16 *vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide,
|
|
int pixels_high,
|
|
int is_key_frame) {
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
|
|
int s_avg;
|
|
int d_avg = 128;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
} else {
|
|
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
}
|
|
#else
|
|
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
#endif
|
|
sum = s_avg - d_avg;
|
|
sse = sum * sum;
|
|
}
|
|
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
|
|
}
|
|
}
|
|
|
|
// This function chooses partitioning based on the variance between source and
|
|
// reconstructed last, where variance is computed for down-sampled inputs.
|
|
static int choose_partitioning(VP9_COMP *cpi,
|
|
const TileInfo *const tile,
|
|
MACROBLOCK *x,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int i, j, k, m;
|
|
v64x64 vt;
|
|
v16x16 vt2[16];
|
|
int force_split[21];
|
|
int avg_32x32;
|
|
int avg_16x16[4];
|
|
uint8_t *s;
|
|
const uint8_t *d;
|
|
int sp;
|
|
int dp;
|
|
int pixels_wide = 64, pixels_high = 64;
|
|
int64_t thresholds[4] = {cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
|
|
cpi->vbp_thresholds[2], cpi->vbp_thresholds[3]};
|
|
|
|
// For the variance computation under SVC mode, we treat the frame as key if
|
|
// the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME ||
|
|
(is_one_pass_cbr_svc(cpi) &&
|
|
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
|
|
// Always use 4x4 partition for key frame.
|
|
const int use_4x4_partition = cm->frame_type == KEY_FRAME;
|
|
const int low_res = (cm->width <= 352 && cm->height <= 288);
|
|
int variance4x4downsample[16];
|
|
|
|
int segment_id = CR_SEGMENT_ID_BASE;
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
|
|
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map :
|
|
cm->last_frame_seg_map;
|
|
segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
|
|
|
|
if (cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
set_vbp_thresholds(cpi, thresholds, q);
|
|
}
|
|
}
|
|
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
|
|
|
|
if (xd->mb_to_right_edge < 0)
|
|
pixels_wide += (xd->mb_to_right_edge >> 3);
|
|
if (xd->mb_to_bottom_edge < 0)
|
|
pixels_high += (xd->mb_to_bottom_edge >> 3);
|
|
|
|
s = x->plane[0].src.buf;
|
|
sp = x->plane[0].src.stride;
|
|
|
|
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
|
|
// 5-20 for the 16x16 blocks.
|
|
force_split[0] = 0;
|
|
|
|
if (!is_key_frame) {
|
|
// In the case of spatial/temporal scalable coding, the assumption here is
|
|
// that the temporal reference frame will always be of type LAST_FRAME.
|
|
// TODO(marpan): If that assumption is broken, we need to revisit this code.
|
|
MODE_INFO *mi = xd->mi[0];
|
|
unsigned int uv_sad;
|
|
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
|
|
const YV12_BUFFER_CONFIG *yv12_g = NULL;
|
|
unsigned int y_sad, y_sad_g;
|
|
const BLOCK_SIZE bsize = BLOCK_32X32
|
|
+ (mi_col + 4 < cm->mi_cols) * 2 + (mi_row + 4 < cm->mi_rows);
|
|
|
|
assert(yv12 != NULL);
|
|
|
|
if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) {
|
|
// For now, GOLDEN will not be used for non-zero spatial layers, since
|
|
// it may not be a temporal reference.
|
|
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
|
|
}
|
|
|
|
if (yv12_g && yv12_g != yv12 &&
|
|
(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
|
|
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
y_sad_g = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
|
|
x->plane[0].src.stride,
|
|
xd->plane[0].pre[0].buf,
|
|
xd->plane[0].pre[0].stride);
|
|
} else {
|
|
y_sad_g = UINT_MAX;
|
|
}
|
|
|
|
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
|
|
&cm->frame_refs[LAST_FRAME - 1].sf);
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
mi->ref_frame[1] = NONE;
|
|
mi->sb_type = BLOCK_64X64;
|
|
mi->mv[0].as_int = 0;
|
|
mi->interp_filter = BILINEAR;
|
|
|
|
y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
|
|
if (y_sad_g < y_sad) {
|
|
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
mi->ref_frame[0] = GOLDEN_FRAME;
|
|
mi->mv[0].as_int = 0;
|
|
y_sad = y_sad_g;
|
|
} else {
|
|
x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
|
|
}
|
|
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
|
|
|
|
// Check if most of the superblock is skin content, and if so, force split
|
|
// to 32x32. Avoid checking superblocks on/near boundary and avoid low
|
|
// resolutons for now.
|
|
// Note superblock may still pick 64X64 if y_sad is very small
|
|
// (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
|
|
x->sb_is_skin = 0;
|
|
#if !CONFIG_VP9_HIGHBITDEPTH
|
|
if (cpi->use_skin_detection && !low_res && (mi_col >= 8 &&
|
|
mi_col + 8 < cm->mi_cols && mi_row >= 8 && mi_row + 8 < cm->mi_rows)) {
|
|
int num_16x16_skin = 0;
|
|
int num_16x16_nonskin = 0;
|
|
uint8_t *ysignal = x->plane[0].src.buf;
|
|
uint8_t *usignal = x->plane[1].src.buf;
|
|
uint8_t *vsignal = x->plane[2].src.buf;
|
|
int spuv = x->plane[1].src.stride;
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
int is_skin = vp9_compute_skin_block(ysignal,
|
|
usignal,
|
|
vsignal,
|
|
sp,
|
|
spuv,
|
|
BLOCK_16X16);
|
|
num_16x16_skin += is_skin;
|
|
num_16x16_nonskin += (1 - is_skin);
|
|
if (num_16x16_nonskin > 3) {
|
|
// Exit loop if at least 4 of the 16x16 blocks are not skin.
|
|
i = 4;
|
|
j = 4;
|
|
}
|
|
ysignal += 16;
|
|
usignal += 8;
|
|
vsignal += 8;
|
|
}
|
|
ysignal += (sp << 4) - 64;
|
|
usignal += (spuv << 3) - 32;
|
|
vsignal += (spuv << 3) - 32;
|
|
}
|
|
if (num_16x16_skin > 12) {
|
|
x->sb_is_skin = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
}
|
|
#endif
|
|
for (i = 1; i <= 2; ++i) {
|
|
struct macroblock_plane *p = &x->plane[i];
|
|
struct macroblockd_plane *pd = &xd->plane[i];
|
|
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
|
|
|
|
if (bs == BLOCK_INVALID)
|
|
uv_sad = UINT_MAX;
|
|
else
|
|
uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride);
|
|
|
|
// TODO(marpan): Investigate if we should lower this threshold if
|
|
// superblock is detected as skin.
|
|
x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
|
|
}
|
|
|
|
d = xd->plane[0].dst.buf;
|
|
dp = xd->plane[0].dst.stride;
|
|
|
|
// If the y_sad is very small, take 64x64 as partition and exit.
|
|
// Don't check on boosted segment for now, as 64x64 is suppressed there.
|
|
if (segment_id == CR_SEGMENT_ID_BASE &&
|
|
y_sad < cpi->vbp_threshold_sad) {
|
|
const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
|
|
const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
|
|
return 0;
|
|
}
|
|
}
|
|
} else {
|
|
d = VP9_VAR_OFFS;
|
|
dp = 0;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
switch (xd->bd) {
|
|
case 10:
|
|
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10);
|
|
break;
|
|
case 12:
|
|
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12);
|
|
break;
|
|
case 8:
|
|
default:
|
|
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8);
|
|
break;
|
|
}
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
|
|
// Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
|
|
// for splits.
|
|
for (i = 0; i < 4; i++) {
|
|
const int x32_idx = ((i & 1) << 5);
|
|
const int y32_idx = ((i >> 1) << 5);
|
|
const int i2 = i << 2;
|
|
force_split[i + 1] = 0;
|
|
avg_16x16[i] = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
const int x16_idx = x32_idx + ((j & 1) << 4);
|
|
const int y16_idx = y32_idx + ((j >> 1) << 4);
|
|
const int split_index = 5 + i2 + j;
|
|
v16x16 *vst = &vt.split[i].split[j];
|
|
force_split[split_index] = 0;
|
|
variance4x4downsample[i2 + j] = 0;
|
|
if (!is_key_frame) {
|
|
fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide,
|
|
pixels_high,
|
|
is_key_frame);
|
|
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
|
|
get_variance(&vt.split[i].split[j].part_variances.none);
|
|
avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
|
|
if (vt.split[i].split[j].part_variances.none.variance >
|
|
thresholds[2]) {
|
|
// 16X16 variance is above threshold for split, so force split to 8x8
|
|
// for this 16x16 block (this also forces splits for upper levels).
|
|
force_split[split_index] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
} else if (cpi->oxcf.speed < 8 &&
|
|
vt.split[i].split[j].part_variances.none.variance >
|
|
thresholds[1] &&
|
|
!cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
// We have some nominal amount of 16x16 variance (based on average),
|
|
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
|
|
// force split to 8x8 block for this 16x16 block.
|
|
int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide, pixels_high);
|
|
if (minmax > cpi->vbp_threshold_minmax) {
|
|
force_split[split_index] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
}
|
|
}
|
|
if (is_key_frame || (low_res &&
|
|
vt.split[i].split[j].part_variances.none.variance >
|
|
(thresholds[1] << 1))) {
|
|
force_split[split_index] = 0;
|
|
// Go down to 4x4 down-sampling for variance.
|
|
variance4x4downsample[i2 + j] = 1;
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
v8x8 *vst2 = is_key_frame ? &vst->split[k] :
|
|
&vt2[i2 + j].split[k];
|
|
fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide,
|
|
pixels_high,
|
|
is_key_frame);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Fill the rest of the variance tree by summing split partition values.
|
|
avg_32x32 = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
const int i2 = i << 2;
|
|
for (j = 0; j < 4; j++) {
|
|
if (variance4x4downsample[i2 + j] == 1) {
|
|
v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] :
|
|
&vt.split[i].split[j];
|
|
for (m = 0; m < 4; m++)
|
|
fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
|
|
fill_variance_tree(vtemp, BLOCK_16X16);
|
|
// If variance of this 16x16 block is above the threshold, force block
|
|
// to split. This also forces a split on the upper levels.
|
|
get_variance(&vtemp->part_variances.none);
|
|
if (vtemp->part_variances.none.variance > thresholds[2]) {
|
|
force_split[5 + i2 + j] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
}
|
|
}
|
|
fill_variance_tree(&vt.split[i], BLOCK_32X32);
|
|
// If variance of this 32x32 block is above the threshold, or if its above
|
|
// (some threshold of) the average variance over the sub-16x16 blocks, then
|
|
// force this block to split. This also forces a split on the upper
|
|
// (64x64) level.
|
|
if (!force_split[i + 1]) {
|
|
get_variance(&vt.split[i].part_variances.none);
|
|
if (vt.split[i].part_variances.none.variance > thresholds[1] ||
|
|
(!is_key_frame &&
|
|
vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
|
|
vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
avg_32x32 += vt.split[i].part_variances.none.variance;
|
|
}
|
|
}
|
|
if (!force_split[0]) {
|
|
fill_variance_tree(&vt, BLOCK_64X64);
|
|
get_variance(&vt.part_variances.none);
|
|
// If variance of this 64x64 block is above (some threshold of) the average
|
|
// variance over the sub-32x32 blocks, then force this block to split.
|
|
if (!is_key_frame &&
|
|
vt.part_variances.none.variance > (5 * avg_32x32) >> 4)
|
|
force_split[0] = 1;
|
|
}
|
|
|
|
// Now go through the entire structure, splitting every block size until
|
|
// we get to one that's got a variance lower than our threshold.
|
|
if ( mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
|
|
!set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
|
|
thresholds[0], BLOCK_16X16, force_split[0])) {
|
|
for (i = 0; i < 4; ++i) {
|
|
const int x32_idx = ((i & 1) << 2);
|
|
const int y32_idx = ((i >> 1) << 2);
|
|
const int i2 = i << 2;
|
|
if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
|
|
(mi_row + y32_idx), (mi_col + x32_idx),
|
|
thresholds[1], BLOCK_16X16,
|
|
force_split[i + 1])) {
|
|
for (j = 0; j < 4; ++j) {
|
|
const int x16_idx = ((j & 1) << 1);
|
|
const int y16_idx = ((j >> 1) << 1);
|
|
// For inter frames: if variance4x4downsample[] == 1 for this 16x16
|
|
// block, then the variance is based on 4x4 down-sampling, so use vt2
|
|
// in set_vt_partioning(), otherwise use vt.
|
|
v16x16 *vtemp = (!is_key_frame &&
|
|
variance4x4downsample[i2 + j] == 1) ?
|
|
&vt2[i2 + j] : &vt.split[i].split[j];
|
|
if (!set_vt_partitioning(cpi, x, xd, vtemp, BLOCK_16X16,
|
|
mi_row + y32_idx + y16_idx,
|
|
mi_col + x32_idx + x16_idx,
|
|
thresholds[2],
|
|
cpi->vbp_bsize_min,
|
|
force_split[5 + i2 + j])) {
|
|
for (k = 0; k < 4; ++k) {
|
|
const int x8_idx = (k & 1);
|
|
const int y8_idx = (k >> 1);
|
|
if (use_4x4_partition) {
|
|
if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
|
|
BLOCK_8X8,
|
|
mi_row + y32_idx + y16_idx + y8_idx,
|
|
mi_col + x32_idx + x16_idx + x8_idx,
|
|
thresholds[3], BLOCK_8X8, 0)) {
|
|
set_block_size(cpi, x, xd,
|
|
(mi_row + y32_idx + y16_idx + y8_idx),
|
|
(mi_col + x32_idx + x16_idx + x8_idx),
|
|
BLOCK_4X4);
|
|
}
|
|
} else {
|
|
set_block_size(cpi, x, xd,
|
|
(mi_row + y32_idx + y16_idx + y8_idx),
|
|
(mi_col + x32_idx + x16_idx + x8_idx),
|
|
BLOCK_8X8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void update_state(VP9_COMP *cpi, ThreadData *td,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int output_enabled) {
|
|
int i, x_idx, y;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RD_COUNTS *const rdc = &td->rd_counts;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MODE_INFO *const xdmi = xd->mi[0];
|
|
MODE_INFO *mi_addr = xd->mi[0];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
|
|
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
|
|
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
|
MV_REF *const frame_mvs =
|
|
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
int max_plane;
|
|
|
|
assert(mi->sb_type == bsize);
|
|
|
|
*mi_addr = *mi;
|
|
*x->mbmi_ext = ctx->mbmi_ext;
|
|
|
|
// If segmentation in use
|
|
if (seg->enabled) {
|
|
// For in frame complexity AQ copy the segment id from the segment map.
|
|
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
|
|
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mi_addr->segment_id =
|
|
get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
// Else for cyclic refresh mode update the segment map, set the segment id
|
|
// and then update the quantizer.
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row,
|
|
mi_col, bsize, ctx->rate, ctx->dist,
|
|
x->skip, p);
|
|
}
|
|
}
|
|
|
|
max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
|
|
for (i = 0; i < max_plane; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][1];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
|
|
p[i].eobs = ctx->eobs_pbuf[i][1];
|
|
}
|
|
|
|
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][2];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
|
|
p[i].eobs = ctx->eobs_pbuf[i][2];
|
|
}
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
|
|
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
|
|
xd->mi[x_idx + y * mis] = mi_addr;
|
|
}
|
|
|
|
if (cpi->oxcf.aq_mode)
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
|
|
if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
|
|
xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
|
|
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
|
|
|
|
if (!output_enabled)
|
|
return;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
if (frame_is_intra_only(cm)) {
|
|
static const int kf_mode_index[] = {
|
|
THR_DC /*DC_PRED*/,
|
|
THR_V_PRED /*V_PRED*/,
|
|
THR_H_PRED /*H_PRED*/,
|
|
THR_D45_PRED /*D45_PRED*/,
|
|
THR_D135_PRED /*D135_PRED*/,
|
|
THR_D117_PRED /*D117_PRED*/,
|
|
THR_D153_PRED /*D153_PRED*/,
|
|
THR_D207_PRED /*D207_PRED*/,
|
|
THR_D63_PRED /*D63_PRED*/,
|
|
THR_TM /*TM_PRED*/,
|
|
};
|
|
++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
|
|
} else {
|
|
// Note how often each mode chosen as best
|
|
++cpi->mode_chosen_counts[ctx->best_mode_index];
|
|
}
|
|
#endif
|
|
if (!frame_is_intra_only(cm)) {
|
|
if (is_inter_block(xdmi)) {
|
|
vp9_update_mv_count(td);
|
|
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
const int ctx = vp9_get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[ctx][xdmi->interp_filter];
|
|
}
|
|
}
|
|
|
|
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
|
|
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
|
|
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
rdc->filter_diff[i] += ctx->best_filter_diff[i];
|
|
}
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->ref_frame[0];
|
|
mv->ref_frame[1] = mi->ref_frame[1];
|
|
mv->mv[0].as_int = mi->mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
|
|
int mi_row, int mi_col) {
|
|
uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
|
|
const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
|
|
int i;
|
|
|
|
// Set current frame pointer.
|
|
x->e_mbd.cur_buf = src;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
|
|
NULL, x->e_mbd.plane[i].subsampling_x,
|
|
x->e_mbd.plane[i].subsampling_y);
|
|
}
|
|
|
|
static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
INTERP_FILTER filter_ref;
|
|
|
|
if (xd->up_available)
|
|
filter_ref = xd->mi[-xd->mi_stride]->interp_filter;
|
|
else if (xd->left_available)
|
|
filter_ref = xd->mi[-1]->interp_filter;
|
|
else
|
|
filter_ref = EIGHTTAP;
|
|
|
|
mi->sb_type = bsize;
|
|
mi->mode = ZEROMV;
|
|
mi->tx_size =
|
|
VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
|
|
mi->skip = 1;
|
|
mi->uv_mode = DC_PRED;
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
mi->ref_frame[1] = NONE;
|
|
mi->mv[0].as_int = 0;
|
|
mi->interp_filter = filter_ref;
|
|
|
|
xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
|
|
x->skip = 1;
|
|
|
|
vp9_rd_cost_init(rd_cost);
|
|
}
|
|
|
|
static int set_segment_rdmult(VP9_COMP *const cpi,
|
|
MACROBLOCK *const x,
|
|
int8_t segment_id) {
|
|
int segment_qindex;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
vpx_clear_system_state();
|
|
segment_qindex = vp9_get_qindex(&cm->seg, segment_id,
|
|
cm->base_qindex);
|
|
return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
|
|
}
|
|
|
|
static void rd_pick_sb_modes(VP9_COMP *cpi,
|
|
TileDataEnc *tile_data,
|
|
MACROBLOCK *const x,
|
|
int mi_row, int mi_col, RD_COST *rd_cost,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
|
|
int i, orig_rdmult;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
// Use the lower precision, but faster, 32x32 fdct for mode selection.
|
|
x->use_lp32x32fdct = 1;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
mi = xd->mi[0];
|
|
mi->sb_type = bsize;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][0];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
|
|
p[i].eobs = ctx->eobs_pbuf[i][0];
|
|
}
|
|
ctx->is_coded = 0;
|
|
ctx->skippable = 0;
|
|
ctx->pred_pixel_ready = 0;
|
|
x->skip_recode = 0;
|
|
|
|
// Set to zero to make sure we do not use the previous encoded frame stats
|
|
mi->skip = 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->source_variance =
|
|
vp9_high_get_sby_perpixel_variance(cpi, &x->plane[0].src,
|
|
bsize, xd->bd);
|
|
} else {
|
|
x->source_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
}
|
|
#else
|
|
x->source_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Save rdmult before it might be changed, so it can be restored later.
|
|
orig_rdmult = x->rdmult;
|
|
|
|
if (aq_mode == VARIANCE_AQ) {
|
|
const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
|
|
: vp9_block_energy(cpi, x, bsize);
|
|
if (cm->frame_type == KEY_FRAME ||
|
|
cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
|
|
mi->segment_id = vp9_vaq_segment_id(energy);
|
|
} else {
|
|
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == EQUATOR360_AQ) {
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
|
|
} else {
|
|
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == COMPLEXITY_AQ) {
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
|
|
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
// If segment is boosted, use rdmult for that segment.
|
|
if (cyclic_refresh_segment_id_boosted(
|
|
get_segment_id(cm, map, bsize, mi_row, mi_col)))
|
|
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
|
|
}
|
|
|
|
// Find best coding mode & reconstruct the MB so it is available
|
|
// as a predictor for MBs that follow in the SB
|
|
if (frame_is_intra_only(cm)) {
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
|
|
} else {
|
|
if (bsize >= BLOCK_8X8) {
|
|
if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
|
|
vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
|
|
ctx, best_rd);
|
|
else
|
|
vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col,
|
|
rd_cost, bsize, ctx, best_rd);
|
|
} else {
|
|
vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
|
|
rd_cost, bsize, ctx, best_rd);
|
|
}
|
|
}
|
|
|
|
|
|
// Examine the resulting rate and for AQ mode 2 make a segment choice.
|
|
if ((rd_cost->rate != INT_MAX) &&
|
|
(aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) &&
|
|
(cm->frame_type == KEY_FRAME ||
|
|
cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
|
|
vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
|
|
}
|
|
|
|
x->rdmult = orig_rdmult;
|
|
|
|
// TODO(jingning) The rate-distortion optimization flow needs to be
|
|
// refactored to provide proper exit/return handle.
|
|
if (rd_cost->rate == INT_MAX)
|
|
rd_cost->rdcost = INT64_MAX;
|
|
|
|
ctx->rate = rd_cost->rate;
|
|
ctx->dist = rd_cost->dist;
|
|
}
|
|
|
|
static void update_stats(VP9_COMMON *cm, ThreadData *td) {
|
|
const MACROBLOCK *x = &td->mb;
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
const MODE_INFO *const mi = xd->mi[0];
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const BLOCK_SIZE bsize = mi->sb_type;
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
FRAME_COUNTS *const counts = td->counts;
|
|
const int inter_block = is_inter_block(mi);
|
|
const int seg_ref_active = segfeature_active(&cm->seg, mi->segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
if (!seg_ref_active) {
|
|
counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
|
|
// If the segment reference feature is enabled we have only a single
|
|
// reference frame allowed for the segment so exclude it from
|
|
// the reference frame counts used to work out probabilities.
|
|
if (inter_block) {
|
|
const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
|
|
[has_second_ref(mi)]++;
|
|
|
|
if (has_second_ref(mi)) {
|
|
counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
|
|
[ref0 == GOLDEN_FRAME]++;
|
|
} else {
|
|
counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
|
|
[ref0 != LAST_FRAME]++;
|
|
if (ref0 != LAST_FRAME)
|
|
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
|
|
[ref0 != GOLDEN_FRAME]++;
|
|
}
|
|
}
|
|
}
|
|
if (inter_block &&
|
|
!segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
|
|
const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
|
|
if (bsize >= BLOCK_8X8) {
|
|
const PREDICTION_MODE mode = mi->mode;
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(
|
|
xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
|
|
a + num_4x4_blocks_wide * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(
|
|
xd->left_context[p]
|
|
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
l + num_4x4_blocks_high * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(xd->above_seg_context + mi_col, sa,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
}
|
|
|
|
static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
// buffer the above/left context information of the block in search.
|
|
for (p = 0; p < MAX_MB_PLANE; ++p) {
|
|
memcpy(
|
|
a + num_4x4_blocks_wide * p,
|
|
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(
|
|
l + num_4x4_blocks_high * p,
|
|
xd->left_context[p]
|
|
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(sa, xd->above_seg_context + mi_col,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
}
|
|
|
|
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
|
|
ThreadData *td,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
|
|
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
|
|
|
|
if (output_enabled) {
|
|
update_stats(&cpi->common, td);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
}
|
|
|
|
static void encode_sb(VP9_COMP *cpi, ThreadData *td,
|
|
const TileInfo *const tile,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
int ctx;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize = bsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
subsize = get_subsize(bsize, pc_tree->partitioning);
|
|
} else {
|
|
ctx = 0;
|
|
subsize = BLOCK_4X4;
|
|
}
|
|
|
|
partition = partition_lookup[bsl][subsize];
|
|
if (output_enabled && bsize != BLOCK_4X4)
|
|
td->counts->partition[ctx][partition]++;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->leaf_split[0]);
|
|
} else {
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->split[0]);
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[1]);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, pc_tree->split[2]);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[3]);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid partition type.");
|
|
break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
// Check to see if the given partition size is allowed for a specified number
|
|
// of 8x8 block rows and columns remaining in the image.
|
|
// If not then return the largest allowed partition size
|
|
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
|
|
int rows_left, int cols_left,
|
|
int *bh, int *bw) {
|
|
if (rows_left <= 0 || cols_left <= 0) {
|
|
return VPXMIN(bsize, BLOCK_8X8);
|
|
} else {
|
|
for (; bsize > 0; bsize -= 3) {
|
|
*bh = num_8x8_blocks_high_lookup[bsize];
|
|
*bw = num_8x8_blocks_wide_lookup[bsize];
|
|
if ((*bh <= rows_left) && (*bw <= cols_left)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return bsize;
|
|
}
|
|
|
|
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
|
|
int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
|
|
BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
|
|
int bh = bh_in;
|
|
int r, c;
|
|
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
|
|
int bw = bw_in;
|
|
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
|
|
const int index = r * mis + c;
|
|
mi_8x8[index] = mi + index;
|
|
mi_8x8[index]->sb_type = find_partition_size(bsize,
|
|
row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function attempts to set all mode info entries in a given SB64
|
|
// to the same block partition size.
|
|
// However, at the bottom and right borders of the image the requested size
|
|
// may not be allowed in which case this code attempts to choose the largest
|
|
// allowable partition.
|
|
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MODE_INFO **mi_8x8, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mi_stride;
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
int block_row, block_col;
|
|
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
|
|
int bh = num_8x8_blocks_high_lookup[bsize];
|
|
int bw = num_8x8_blocks_wide_lookup[bsize];
|
|
|
|
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
|
|
|
|
// Apply the requested partition size to the SB64 if it is all "in image"
|
|
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
|
|
(row8x8_remaining >= MI_BLOCK_SIZE)) {
|
|
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
|
|
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
|
|
int index = block_row * mis + block_col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = bsize;
|
|
}
|
|
}
|
|
} else {
|
|
// Else this is a partial SB64.
|
|
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
|
|
col8x8_remaining, bsize, mi_8x8);
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
int row;
|
|
int col;
|
|
} coord_lookup[16] = {
|
|
// 32x32 index = 0
|
|
{0, 0}, {0, 2}, {2, 0}, {2, 2},
|
|
// 32x32 index = 1
|
|
{0, 4}, {0, 6}, {2, 4}, {2, 6},
|
|
// 32x32 index = 2
|
|
{4, 0}, {4, 2}, {6, 0}, {6, 2},
|
|
// 32x32 index = 3
|
|
{4, 4}, {4, 6}, {6, 4}, {6, 6},
|
|
};
|
|
|
|
static void set_source_var_based_partition(VP9_COMP *cpi,
|
|
const TileInfo *const tile,
|
|
MACROBLOCK *const x,
|
|
MODE_INFO **mi_8x8,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mi_stride;
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
|
|
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
|
|
|
|
// In-image SB64
|
|
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
|
|
(row8x8_remaining >= MI_BLOCK_SIZE)) {
|
|
int i, j;
|
|
int index;
|
|
diff d32[4];
|
|
const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
|
|
int is_larger_better = 0;
|
|
int use32x32 = 0;
|
|
unsigned int thr = cpi->source_var_thresh;
|
|
|
|
memset(d32, 0, 4 * sizeof(diff));
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
diff *d16[4];
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
int b_mi_row = coord_lookup[i * 4 + j].row;
|
|
int b_mi_col = coord_lookup[i * 4 + j].col;
|
|
int boffset = b_mi_row / 2 * cm->mb_cols +
|
|
b_mi_col / 2;
|
|
|
|
d16[j] = cpi->source_diff_var + offset + boffset;
|
|
|
|
index = b_mi_row * mis + b_mi_col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = BLOCK_16X16;
|
|
|
|
// TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
|
|
// size to further improve quality.
|
|
}
|
|
|
|
is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
|
|
(d16[2]->var < thr) && (d16[3]->var < thr);
|
|
|
|
// Use 32x32 partition
|
|
if (is_larger_better) {
|
|
use32x32 += 1;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
d32[i].sse += d16[j]->sse;
|
|
d32[i].sum += d16[j]->sum;
|
|
}
|
|
|
|
d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
|
|
|
|
index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = BLOCK_32X32;
|
|
}
|
|
}
|
|
|
|
if (use32x32 == 4) {
|
|
thr <<= 1;
|
|
is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
|
|
(d32[2].var < thr) && (d32[3].var < thr);
|
|
|
|
// Use 64x64 partition
|
|
if (is_larger_better) {
|
|
mi_8x8[0] = mi_upper_left;
|
|
mi_8x8[0]->sb_type = BLOCK_64X64;
|
|
}
|
|
}
|
|
} else { // partial in-image SB64
|
|
int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
|
|
int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
|
|
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
|
|
row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
|
|
}
|
|
}
|
|
|
|
static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int mi_row, int mi_col, int bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
struct macroblock_plane *const p = x->plane;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
|
|
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
|
|
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
|
|
|
*(xd->mi[0]) = ctx->mic;
|
|
*(x->mbmi_ext) = ctx->mbmi_ext;
|
|
|
|
if (seg->enabled && cpi->oxcf.aq_mode) {
|
|
// For in frame complexity AQ or variance AQ, copy segment_id from
|
|
// segmentation_map.
|
|
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ ||
|
|
cpi->oxcf.aq_mode == VARIANCE_AQ ||
|
|
cpi->oxcf.aq_mode == EQUATOR360_AQ) {
|
|
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
} else {
|
|
// Setting segmentation map for cyclic_refresh.
|
|
vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
|
|
ctx->rate, ctx->dist, x->skip, p);
|
|
}
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
}
|
|
|
|
if (is_inter_block(mi)) {
|
|
vp9_update_mv_count(td);
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
|
|
}
|
|
|
|
if (mi->sb_type < BLOCK_8X8) {
|
|
mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
}
|
|
|
|
if (cm->use_prev_frame_mvs ||
|
|
(cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1
|
|
&& cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
|
|
MV_REF *const frame_mvs =
|
|
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->ref_frame[0];
|
|
mv->ref_frame[1] = mi->ref_frame[1];
|
|
mv->mv[0].as_int = mi->mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
x->skip_txfm[0] = mi->segment_id ? 0 : ctx->skip_txfm[0];
|
|
}
|
|
|
|
static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
|
|
const TileInfo *const tile,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
|
|
update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
|
|
|
|
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
|
|
update_stats(&cpi->common, td);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
|
|
static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
|
|
const TileInfo *const tile,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
int ctx;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
const int idx_str = xd->mi_stride * mi_row + mi_col;
|
|
MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
|
|
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
subsize = mi_8x8[0]->sb_type;
|
|
} else {
|
|
ctx = 0;
|
|
subsize = BLOCK_4X4;
|
|
}
|
|
|
|
partition = partition_lookup[bsl][subsize];
|
|
if (output_enabled && bsize != BLOCK_4X4)
|
|
td->counts->partition[ctx][partition]++;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->split[0]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[1]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, pc_tree->split[2]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
|
|
output_enabled, subsize, pc_tree->split[3]);
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid partition type.");
|
|
break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
static void rd_use_partition(VP9_COMP *cpi,
|
|
ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
MODE_INFO **mi_8x8, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize,
|
|
int *rate, int64_t *dist,
|
|
int do_recon, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mis = cm->mi_stride;
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
|
|
const int bss = (1 << bsl) / 4;
|
|
int i, pl;
|
|
PARTITION_TYPE partition = PARTITION_NONE;
|
|
BLOCK_SIZE subsize;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
RD_COST last_part_rdc, none_rdc, chosen_rdc;
|
|
BLOCK_SIZE sub_subsize = BLOCK_4X4;
|
|
int splits_below = 0;
|
|
BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
|
|
int do_partition_search = 1;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
assert(num_4x4_blocks_wide_lookup[bsize] ==
|
|
num_4x4_blocks_high_lookup[bsize]);
|
|
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
vp9_rd_cost_reset(&none_rdc);
|
|
vp9_rd_cost_reset(&chosen_rdc);
|
|
|
|
partition = partition_lookup[bsl][bs_type];
|
|
subsize = get_subsize(bsize, partition);
|
|
|
|
pc_tree->partitioning = partition;
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
x->mb_energy = vp9_block_energy(cpi, x, bsize);
|
|
}
|
|
|
|
if (do_partition_search &&
|
|
cpi->sf.partition_search_type == SEARCH_PARTITION &&
|
|
cpi->sf.adjust_partitioning_from_last_frame) {
|
|
// Check if any of the sub blocks are further split.
|
|
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
|
|
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
|
|
splits_below = 1;
|
|
for (i = 0; i < 4; i++) {
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
|
|
if (this_mi && this_mi->sb_type >= sub_subsize) {
|
|
splits_below = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If partition is not none try none unless each of the 4 splits are split
|
|
// even further..
|
|
if (partition != PARTITION_NONE && !splits_below &&
|
|
mi_row + (mi_step >> 1) < cm->mi_rows &&
|
|
mi_col + (mi_step >> 1) < cm->mi_cols) {
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
|
|
ctx, INT64_MAX);
|
|
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
|
|
if (none_rdc.rate < INT_MAX) {
|
|
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate,
|
|
none_rdc.dist);
|
|
}
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
mi_8x8[0]->sb_type = bs_type;
|
|
pc_tree->partitioning = partition;
|
|
}
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
bsize, ctx, INT64_MAX);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, &pc_tree->horizontal[0],
|
|
INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX &&
|
|
bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
|
|
RD_COST tmp_rdc;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
rd_pick_sb_modes(cpi, tile_data, x,
|
|
mi_row + (mi_step >> 1), mi_col, &tmp_rdc,
|
|
subsize, &pc_tree->horizontal[1], INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
}
|
|
break;
|
|
case PARTITION_VERT:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, &pc_tree->vertical[0], INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX &&
|
|
bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
|
|
RD_COST tmp_rdc;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
rd_pick_sb_modes(cpi, tile_data, x,
|
|
mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
|
|
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
|
|
INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, pc_tree->leaf_split[0], INT64_MAX);
|
|
break;
|
|
}
|
|
last_part_rdc.rate = 0;
|
|
last_part_rdc.dist = 0;
|
|
last_part_rdc.rdcost = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (mi_step >> 1);
|
|
int y_idx = (i >> 1) * (mi_step >> 1);
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
RD_COST tmp_rdc;
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
rd_use_partition(cpi, td, tile_data,
|
|
mi_8x8 + jj * bss * mis + ii * bss, tp,
|
|
mi_row + y_idx, mi_col + x_idx, subsize,
|
|
&tmp_rdc.rate, &tmp_rdc.dist,
|
|
i != 3, pc_tree->split[i]);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
if (last_part_rdc.rate < INT_MAX) {
|
|
last_part_rdc.rate += cpi->partition_cost[pl][partition];
|
|
last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
last_part_rdc.rate, last_part_rdc.dist);
|
|
}
|
|
|
|
if (do_partition_search
|
|
&& cpi->sf.adjust_partitioning_from_last_frame
|
|
&& cpi->sf.partition_search_type == SEARCH_PARTITION
|
|
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
|
|
&& (mi_row + mi_step < cm->mi_rows ||
|
|
mi_row + (mi_step >> 1) == cm->mi_rows)
|
|
&& (mi_col + mi_step < cm->mi_cols ||
|
|
mi_col + (mi_step >> 1) == cm->mi_cols)) {
|
|
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
chosen_rdc.rate = 0;
|
|
chosen_rdc.dist = 0;
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
// Split partition.
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (mi_step >> 1);
|
|
int y_idx = (i >> 1) * (mi_step >> 1);
|
|
RD_COST tmp_rdc;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
pc_tree->split[i]->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x,
|
|
mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
|
|
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&chosen_rdc);
|
|
break;
|
|
}
|
|
|
|
chosen_rdc.rate += tmp_rdc.rate;
|
|
chosen_rdc.dist += tmp_rdc.dist;
|
|
|
|
if (i != 3)
|
|
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
|
|
split_subsize, pc_tree->split[i]);
|
|
|
|
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
|
|
split_subsize);
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
}
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
if (chosen_rdc.rate < INT_MAX) {
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
chosen_rdc.rate, chosen_rdc.dist);
|
|
}
|
|
}
|
|
|
|
// If last_part is better set the partitioning to that.
|
|
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
|
|
mi_8x8[0]->sb_type = bsize;
|
|
if (bsize >= BLOCK_8X8)
|
|
pc_tree->partitioning = partition;
|
|
chosen_rdc = last_part_rdc;
|
|
}
|
|
// If none was better set the partitioning to that.
|
|
if (none_rdc.rdcost < chosen_rdc.rdcost) {
|
|
if (bsize >= BLOCK_8X8)
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
chosen_rdc = none_rdc;
|
|
}
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
// We must have chosen a partitioning and encoding or we'll fail later on.
|
|
// No other opportunities for success.
|
|
if (bsize == BLOCK_64X64)
|
|
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
|
|
|
|
if (do_recon) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
|
|
pc_tree);
|
|
}
|
|
|
|
*rate = chosen_rdc.rate;
|
|
*dist = chosen_rdc.dist;
|
|
}
|
|
|
|
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
|
|
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
|
|
BLOCK_16X16
|
|
};
|
|
|
|
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
|
|
BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
|
|
BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
|
|
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
|
|
BLOCK_64X64
|
|
};
|
|
|
|
|
|
// Look at all the mode_info entries for blocks that are part of this
|
|
// partition and find the min and max values for sb_type.
|
|
// At the moment this is designed to work on a 64x64 SB but could be
|
|
// adjusted to use a size parameter.
|
|
//
|
|
// The min and max are assumed to have been initialized prior to calling this
|
|
// function so repeat calls can accumulate a min and max of more than one sb64.
|
|
static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size,
|
|
int bs_hist[BLOCK_SIZES]) {
|
|
int sb_width_in_blocks = MI_BLOCK_SIZE;
|
|
int sb_height_in_blocks = MI_BLOCK_SIZE;
|
|
int i, j;
|
|
int index = 0;
|
|
|
|
// Check the sb_type for each block that belongs to this region.
|
|
for (i = 0; i < sb_height_in_blocks; ++i) {
|
|
for (j = 0; j < sb_width_in_blocks; ++j) {
|
|
MODE_INFO *mi = mi_8x8[index+j];
|
|
BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
|
|
bs_hist[sb_type]++;
|
|
*min_block_size = VPXMIN(*min_block_size, sb_type);
|
|
*max_block_size = VPXMAX(*max_block_size, sb_type);
|
|
}
|
|
index += xd->mi_stride;
|
|
}
|
|
}
|
|
|
|
// Next square block size less or equal than current block size.
|
|
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
|
|
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
|
|
BLOCK_64X64
|
|
};
|
|
|
|
// Look at neighboring blocks and set a min and max partition size based on
|
|
// what they chose.
|
|
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCKD *const xd,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MODE_INFO **mi = xd->mi;
|
|
const int left_in_image = xd->left_available && mi[-1];
|
|
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
int bh, bw;
|
|
BLOCK_SIZE min_size = BLOCK_4X4;
|
|
BLOCK_SIZE max_size = BLOCK_64X64;
|
|
int bs_hist[BLOCK_SIZES] = {0};
|
|
|
|
// Trap case where we do not have a prediction.
|
|
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
|
|
// Default "min to max" and "max to min"
|
|
min_size = BLOCK_64X64;
|
|
max_size = BLOCK_4X4;
|
|
|
|
// NOTE: each call to get_sb_partition_size_range() uses the previous
|
|
// passed in values for min and max as a starting point.
|
|
// Find the min and max partition used in previous frame at this location
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
MODE_INFO **prev_mi =
|
|
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
|
|
get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
|
|
}
|
|
// Find the min and max partition sizes used in the left SB64
|
|
if (left_in_image) {
|
|
MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
|
|
bs_hist);
|
|
}
|
|
// Find the min and max partition sizes used in the above SB64.
|
|
if (above_in_image) {
|
|
MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
|
|
bs_hist);
|
|
}
|
|
|
|
// Adjust observed min and max for "relaxed" auto partition case.
|
|
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
}
|
|
|
|
// Check border cases where max and min from neighbors may not be legal.
|
|
max_size = find_partition_size(max_size,
|
|
row8x8_remaining, col8x8_remaining,
|
|
&bh, &bw);
|
|
// Test for blocks at the edge of the active image.
|
|
// This may be the actual edge of the image or where there are formatting
|
|
// bars.
|
|
if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
|
|
min_size = BLOCK_4X4;
|
|
} else {
|
|
min_size =
|
|
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
|
|
}
|
|
|
|
// When use_square_partition_only is true, make sure at least one square
|
|
// partition is allowed by selecting the next smaller square size as
|
|
// *min_block_size.
|
|
if (cpi->sf.use_square_partition_only &&
|
|
next_square_size[max_size] < min_size) {
|
|
min_size = next_square_size[max_size];
|
|
}
|
|
|
|
*min_block_size = min_size;
|
|
*max_block_size = max_size;
|
|
}
|
|
|
|
// TODO(jingning) refactor functions setting partition search range
|
|
static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
|
|
MODE_INFO *mi;
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
|
|
BLOCK_SIZE bs, min_size, max_size;
|
|
|
|
min_size = BLOCK_64X64;
|
|
max_size = BLOCK_4X4;
|
|
|
|
if (prev_mi) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
mi = prev_mi[idy * cm->mi_stride + idx];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xd->left_available) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
mi = xd->mi[idy * cm->mi_stride - 1];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (xd->up_available) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
mi = xd->mi[idx - cm->mi_stride];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (min_size == max_size) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
|
|
*min_bs = min_size;
|
|
*max_bs = max_size;
|
|
}
|
|
|
|
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
|
|
const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
|
|
{1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
|
|
const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
|
|
{0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
|
|
const int qindex_split_threshold_lookup[BLOCK_SIZES] =
|
|
{0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
|
|
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
|
|
|
|
typedef enum {
|
|
MV_ZERO = 0,
|
|
MV_LEFT = 1,
|
|
MV_UP = 2,
|
|
MV_RIGHT = 3,
|
|
MV_DOWN = 4,
|
|
MV_INVALID
|
|
} MOTION_DIRECTION;
|
|
|
|
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
|
|
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
|
|
return MV_ZERO;
|
|
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
|
|
return MV_LEFT;
|
|
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
|
|
return MV_RIGHT;
|
|
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
|
|
return MV_UP;
|
|
} else {
|
|
return MV_DOWN;
|
|
}
|
|
}
|
|
|
|
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
|
|
MOTION_DIRECTION that_mv) {
|
|
if (this_mv == that_mv) {
|
|
return 0;
|
|
} else {
|
|
return abs(this_mv - that_mv) == 2 ? 2 : 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
|
|
// unlikely to be selected depending on previous rate-distortion optimization
|
|
// results, for encoding speed-up.
|
|
static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, RD_COST *rd_cost,
|
|
int64_t best_rd, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
int i, pl;
|
|
BLOCK_SIZE subsize;
|
|
RD_COST this_rdc, sum_rdc, best_rdc;
|
|
int do_split = bsize >= BLOCK_8X8;
|
|
int do_rect = 1;
|
|
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
|
|
const int xss = x->e_mbd.plane[1].subsampling_x;
|
|
const int yss = x->e_mbd.plane[1].subsampling_y;
|
|
|
|
BLOCK_SIZE min_size = x->min_partition_size;
|
|
BLOCK_SIZE max_size = x->max_partition_size;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
unsigned int src_diff_var = UINT_MAX;
|
|
int none_complexity = 0;
|
|
#endif
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed = !force_vert_split && yss <= xss &&
|
|
bsize >= BLOCK_8X8;
|
|
int partition_vert_allowed = !force_horz_split && xss <= yss &&
|
|
bsize >= BLOCK_8X8;
|
|
|
|
int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
|
|
int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
|
|
|
|
(void)*tp_orig;
|
|
|
|
assert(num_8x8_blocks_wide_lookup[bsize] ==
|
|
num_8x8_blocks_high_lookup[bsize]);
|
|
|
|
// Adjust dist breakout threshold according to the partition size.
|
|
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
|
|
b_height_log2_lookup[bsize]);
|
|
rate_breakout_thr *= num_pels_log2_lookup[bsize];
|
|
|
|
vp9_rd_cost_init(&this_rdc);
|
|
vp9_rd_cost_init(&sum_rdc);
|
|
vp9_rd_cost_reset(&best_rdc);
|
|
best_rdc.rdcost = best_rd;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
|
|
x->mb_energy = vp9_block_energy(cpi, x, bsize);
|
|
|
|
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
|
|
int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
|
|
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
|
|
|
|
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
|
|
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
|
|
}
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
|
|
partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
|
|
force_horz_split);
|
|
partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
|
|
force_vert_split);
|
|
do_split &= bsize > min_size;
|
|
}
|
|
|
|
if (cpi->sf.use_square_partition_only &&
|
|
bsize > cpi->sf.use_square_only_threshold) {
|
|
if (cpi->use_svc) {
|
|
if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
|
|
partition_horz_allowed &= force_horz_split;
|
|
if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
|
|
partition_vert_allowed &= force_vert_split;
|
|
} else {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
}
|
|
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
|
|
mi_row, mi_col, bsize);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Decide whether we shall split directly and skip searching NONE by using
|
|
// the first pass block statistics
|
|
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
|
|
partition_none_allowed && src_diff_var > 4 &&
|
|
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
// compute a complexity measure, basically measure inconsistency of motion
|
|
// vectors obtained from the first pass in the current block
|
|
for (r = mb_row; r < mb_row_end ; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
|
|
MOTION_DIRECTION this_mv;
|
|
MOTION_DIRECTION right_mv;
|
|
MOTION_DIRECTION bottom_mv;
|
|
|
|
this_mv =
|
|
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
|
|
|
|
// to its right
|
|
if (c != mb_col_end - 1) {
|
|
right_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
|
|
none_complexity += get_motion_inconsistency(this_mv, right_mv);
|
|
}
|
|
|
|
// to its bottom
|
|
if (r != mb_row_end - 1) {
|
|
bottom_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
|
|
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
|
|
}
|
|
|
|
// do not count its left and top neighbors to avoid double counting
|
|
}
|
|
}
|
|
|
|
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
|
|
partition_none_allowed = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col,
|
|
&this_rdc, bsize, ctx, best_rdc.rdcost);
|
|
if (this_rdc.rate != INT_MAX) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
this_rdc.rate, this_rdc.dist);
|
|
}
|
|
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = this_rdc;
|
|
if (bsize >= BLOCK_8X8)
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
|
|
// If all y, u, v transform blocks in this partition are skippable, and
|
|
// the dist & rate are within the thresholds, the partition search is
|
|
// terminated for current branch of the partition search tree.
|
|
if (!x->e_mbd.lossless && ctx->skippable &&
|
|
((best_rdc.dist < (dist_breakout_thr >> 2)) ||
|
|
(best_rdc.dist < dist_breakout_thr &&
|
|
best_rdc.rate < rate_breakout_thr))) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Check if every 16x16 first pass block statistics has zero
|
|
// motion and the corresponding first pass residue is small enough.
|
|
// If that is the case, check the difference variance between the
|
|
// current frame and the last frame. If the variance is small enough,
|
|
// stop further splitting in RD optimization
|
|
if (cpi->use_fp_mb_stats && do_split != 0 &&
|
|
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
int skip = 1;
|
|
for (r = mb_row; r < mb_row_end; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_MOTION_ZERO_MASK) ||
|
|
!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_ERROR_SMALL_MASK)) {
|
|
skip = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (skip == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (skip) {
|
|
if (src_diff_var == UINT_MAX) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(
|
|
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
|
|
}
|
|
if (src_diff_var < 8) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// store estimated motion vector
|
|
if (cpi->sf.adaptive_motion_search)
|
|
store_pred_mv(x, ctx);
|
|
|
|
// PARTITION_SPLIT
|
|
// TODO(jingning): use the motion vectors given by the above search as
|
|
// the starting point of motion search in the following partition type check.
|
|
if (do_split) {
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
if (bsize == BLOCK_8X8) {
|
|
i = 4;
|
|
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
|
|
pc_tree->leaf_split[0]->pred_interp_filter =
|
|
ctx->mic.interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
pc_tree->leaf_split[0], best_rdc.rdcost);
|
|
if (sum_rdc.rate == INT_MAX)
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
|
|
const int x_idx = (i & 1) * mi_step;
|
|
const int y_idx = (i >> 1) * mi_step;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
|
|
pc_tree->split[i]->index = i;
|
|
rd_pick_partition(cpi, td, tile_data, tp,
|
|
mi_row + y_idx, mi_col + x_idx,
|
|
subsize, &this_rdc,
|
|
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
break;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
// Rate and distortion based partition search termination clause.
|
|
if (!x->e_mbd.lossless &&
|
|
((best_rdc.dist < (dist_breakout_thr >> 2)) ||
|
|
(best_rdc.dist < dist_breakout_thr &&
|
|
best_rdc.rate < rate_breakout_thr))) {
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
} else {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
if ((cpi->sf.less_rectangular_check) &&
|
|
((bsize > cpi->sf.use_square_only_threshold) ||
|
|
(best_rdc.dist < dist_breakout_thr)))
|
|
do_rect &= !partition_none_allowed;
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed &&
|
|
(do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
if (cpi->sf.adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[0].pred_interp_filter =
|
|
ctx->mic.interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->horizontal[0], best_rdc.rdcost);
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
|
|
bsize > BLOCK_8X8) {
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[1].pred_interp_filter =
|
|
ctx->mic.interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col,
|
|
&this_rdc, subsize, &pc_tree->horizontal[1],
|
|
best_rdc.rdcost - sum_rdc.rdcost);
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
|
|
if ((cpi->sf.less_rectangular_check) &&
|
|
(bsize > cpi->sf.use_square_only_threshold))
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed &&
|
|
(do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[0].pred_interp_filter =
|
|
ctx->mic.interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->vertical[0], best_rdc.rdcost);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
|
|
bsize > BLOCK_8X8) {
|
|
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
|
|
&pc_tree->vertical[0]);
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[1].pred_interp_filter =
|
|
ctx->mic.interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step,
|
|
&this_rdc, subsize,
|
|
&pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost);
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
sum_rdc.rate, sum_rdc.dist);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// TODO(jbb): This code added so that we avoid static analysis
|
|
// warning related to the fact that best_rd isn't used after this
|
|
// point. This code should be refactored so that the duplicate
|
|
// checks occur in some sub function and thus are used...
|
|
(void) best_rd;
|
|
*rd_cost = best_rdc;
|
|
|
|
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
|
|
pc_tree->index != 3) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
bsize, pc_tree);
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64) {
|
|
assert(tp_orig < *tp);
|
|
assert(best_rdc.rate < INT_MAX);
|
|
assert(best_rdc.dist < INT64_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
static void encode_rd_sb_row(VP9_COMP *cpi,
|
|
ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
int mi_row,
|
|
TOKENEXTRA **tp) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
int mi_col;
|
|
|
|
// Initialize the left context for the new SB row
|
|
memset(&xd->left_context, 0, sizeof(xd->left_context));
|
|
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
int dummy_rate;
|
|
int64_t dummy_dist;
|
|
RD_COST dummy_rdc;
|
|
int i;
|
|
int seg_skip = 0;
|
|
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
|
|
|
|
if (sf->adaptive_pred_interp_filter) {
|
|
for (i = 0; i < 64; ++i)
|
|
td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
|
|
|
|
for (i = 0; i < 64; ++i) {
|
|
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
|
|
}
|
|
}
|
|
|
|
vp9_zero(x->pred_mv);
|
|
td->pc_root->index = 0;
|
|
|
|
if (seg->enabled) {
|
|
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
|
|
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
|
|
}
|
|
|
|
x->source_variance = UINT_MAX;
|
|
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
|
|
const BLOCK_SIZE bsize =
|
|
seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else if (cpi->partition_search_skippable_frame) {
|
|
BLOCK_SIZE bsize;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else if (sf->partition_search_type == VAR_BASED_PARTITION &&
|
|
cm->frame_type != KEY_FRAME) {
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else {
|
|
// If required set upper and lower partition size limits
|
|
if (sf->auto_min_max_partition_size) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
|
|
&x->min_partition_size,
|
|
&x->max_partition_size);
|
|
}
|
|
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rdc, INT64_MAX, td->pc_root);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
|
|
|
// Copy data over into macro block data structures.
|
|
vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
|
|
|
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
memset(xd->above_context[0], 0,
|
|
sizeof(*xd->above_context[0]) *
|
|
2 * aligned_mi_cols * MAX_MB_PLANE);
|
|
memset(xd->above_seg_context, 0,
|
|
sizeof(*xd->above_seg_context) * aligned_mi_cols);
|
|
}
|
|
|
|
static int check_dual_ref_flags(VP9_COMP *cpi) {
|
|
const int ref_flags = cpi->ref_frame_flags;
|
|
|
|
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
|
|
return 0;
|
|
} else {
|
|
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
|
|
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
|
|
}
|
|
}
|
|
|
|
static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
|
|
int mi_row, mi_col;
|
|
const int mis = cm->mi_stride;
|
|
MODE_INFO **mi_ptr = cm->mi_grid_visible;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
|
|
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
|
|
if (mi_ptr[mi_col]->tx_size > max_tx_size)
|
|
mi_ptr[mi_col]->tx_size = max_tx_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
|
|
if (frame_is_intra_only(&cpi->common))
|
|
return INTRA_FRAME;
|
|
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
|
|
return ALTREF_FRAME;
|
|
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
return GOLDEN_FRAME;
|
|
else
|
|
return LAST_FRAME;
|
|
}
|
|
|
|
static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
|
|
if (xd->lossless)
|
|
return ONLY_4X4;
|
|
if (cpi->common.frame_type == KEY_FRAME &&
|
|
cpi->sf.use_nonrd_pick_mode)
|
|
return ALLOW_16X16;
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
|
|
return ALLOW_32X32;
|
|
else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
|
|
cpi->sf.tx_size_search_method == USE_TX_8X8)
|
|
return TX_MODE_SELECT;
|
|
else
|
|
return cpi->common.tx_mode;
|
|
}
|
|
|
|
static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
if (bsize < BLOCK_16X16)
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
|
|
else
|
|
vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
|
|
}
|
|
|
|
static void nonrd_pick_sb_modes(VP9_COMP *cpi,
|
|
TileDataEnc *tile_data, MACROBLOCK *const x,
|
|
int mi_row, int mi_col, RD_COST *rd_cost,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
|
|
int plane;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
mi = xd->mi[0];
|
|
mi->sb_type = bsize;
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
struct macroblockd_plane *pd = &xd->plane[plane];
|
|
memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
|
|
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
|
|
memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
|
|
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
|
|
}
|
|
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
|
|
if (cyclic_refresh_segment_id_boosted(mi->segment_id))
|
|
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
|
|
else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
|
|
set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
|
|
else if (bsize >= BLOCK_8X8)
|
|
vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col,
|
|
rd_cost, bsize, ctx);
|
|
else
|
|
vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col,
|
|
rd_cost, bsize, ctx);
|
|
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
struct macroblockd_plane *pd = &xd->plane[plane];
|
|
memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
|
|
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
|
|
memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
|
|
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
|
|
}
|
|
|
|
if (rd_cost->rate == INT_MAX)
|
|
vp9_rd_cost_reset(rd_cost);
|
|
|
|
ctx->rate = rd_cost->rate;
|
|
ctx->dist = rd_cost->dist;
|
|
}
|
|
|
|
static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
PARTITION_TYPE partition = pc_tree->partitioning;
|
|
BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
|
|
assert(bsize >= BLOCK_8X8);
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->none.mic;
|
|
*(x->mbmi_ext) = pc_tree->none.mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
|
|
break;
|
|
case PARTITION_VERT:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->vertical[0].mic;
|
|
*(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
|
|
|
|
if (mi_col + hbs < cm->mi_cols) {
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
|
|
*(xd->mi[0]) = pc_tree->vertical[1].mic;
|
|
*(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->horizontal[0].mic;
|
|
*(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
|
|
*(xd->mi[0]) = pc_tree->horizontal[1].mic;
|
|
*(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT: {
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
|
|
pc_tree->split[1]);
|
|
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
|
|
pc_tree->split[2]);
|
|
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
|
|
pc_tree->split[3]);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Reset the prediction pixel ready flag recursively.
|
|
static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
|
|
pc_tree->none.pred_pixel_ready = 0;
|
|
pc_tree->horizontal[0].pred_pixel_ready = 0;
|
|
pc_tree->horizontal[1].pred_pixel_ready = 0;
|
|
pc_tree->vertical[0].pred_pixel_ready = 0;
|
|
pc_tree->vertical[1].pred_pixel_ready = 0;
|
|
|
|
if (bsize > BLOCK_8X8) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
int i;
|
|
for (i = 0; i < 4; ++i)
|
|
pred_pixel_ready_reset(pc_tree->split[i], subsize);
|
|
}
|
|
}
|
|
|
|
static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
TOKENEXTRA **tp, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize, RD_COST *rd_cost,
|
|
int do_recon, int64_t best_rd,
|
|
PC_TREE *pc_tree) {
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
int i;
|
|
BLOCK_SIZE subsize = bsize;
|
|
RD_COST this_rdc, sum_rdc, best_rdc;
|
|
int do_split = bsize >= BLOCK_8X8;
|
|
int do_rect = 1;
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
|
|
const int xss = x->e_mbd.plane[1].subsampling_x;
|
|
const int yss = x->e_mbd.plane[1].subsampling_y;
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed = !force_vert_split && yss <= xss &&
|
|
bsize >= BLOCK_8X8;
|
|
int partition_vert_allowed = !force_horz_split && xss <= yss &&
|
|
bsize >= BLOCK_8X8;
|
|
(void) *tp_orig;
|
|
|
|
assert(num_8x8_blocks_wide_lookup[bsize] ==
|
|
num_8x8_blocks_high_lookup[bsize]);
|
|
|
|
vp9_rd_cost_init(&sum_rdc);
|
|
vp9_rd_cost_reset(&best_rdc);
|
|
best_rdc.rdcost = best_rd;
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (sf->auto_min_max_partition_size) {
|
|
partition_none_allowed &= (bsize <= x->max_partition_size &&
|
|
bsize >= x->min_partition_size);
|
|
partition_horz_allowed &= ((bsize <= x->max_partition_size &&
|
|
bsize > x->min_partition_size) ||
|
|
force_horz_split);
|
|
partition_vert_allowed &= ((bsize <= x->max_partition_size &&
|
|
bsize > x->min_partition_size) ||
|
|
force_vert_split);
|
|
do_split &= bsize > x->min_partition_size;
|
|
}
|
|
if (sf->use_square_partition_only) {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
|
|
ctx->pred_pixel_ready = !(partition_vert_allowed ||
|
|
partition_horz_allowed ||
|
|
do_split);
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col,
|
|
&this_rdc, bsize, ctx);
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
ctx->skip_txfm[0] = x->skip_txfm[0];
|
|
ctx->skip = x->skip;
|
|
|
|
if (this_rdc.rate != INT_MAX) {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
this_rdc.rate, this_rdc.dist);
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
int64_t dist_breakout_thr = sf->partition_search_breakout_dist_thr;
|
|
int64_t rate_breakout_thr = sf->partition_search_breakout_rate_thr;
|
|
|
|
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
|
|
b_height_log2_lookup[bsize]);
|
|
|
|
rate_breakout_thr *= num_pels_log2_lookup[bsize];
|
|
|
|
best_rdc = this_rdc;
|
|
if (bsize >= BLOCK_8X8)
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
|
|
if (!x->e_mbd.lossless &&
|
|
this_rdc.rate < rate_breakout_thr &&
|
|
this_rdc.dist < dist_breakout_thr) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// store estimated motion vector
|
|
store_pred_mv(x, ctx);
|
|
|
|
// PARTITION_SPLIT
|
|
if (do_split) {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
|
|
const int x_idx = (i & 1) * ms;
|
|
const int y_idx = (i >> 1) * ms;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
load_pred_mv(x, ctx);
|
|
nonrd_pick_partition(cpi, td, tile_data, tp,
|
|
mi_row + y_idx, mi_col + x_idx,
|
|
subsize, &this_rdc, 0,
|
|
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
} else {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
if (sf->less_rectangular_check)
|
|
do_rect &= !partition_none_allowed;
|
|
}
|
|
}
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
if (sf->adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col,
|
|
&this_rdc, subsize,
|
|
&pc_tree->horizontal[1]);
|
|
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
sum_rdc.rate, sum_rdc.dist);
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
} else {
|
|
pred_pixel_ready_reset(pc_tree, bsize);
|
|
}
|
|
}
|
|
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
if (sf->adaptive_motion_search)
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms,
|
|
&this_rdc, subsize,
|
|
&pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
|
|
sum_rdc.rate, sum_rdc.dist);
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
} else {
|
|
pred_pixel_ready_reset(pc_tree, bsize);
|
|
}
|
|
}
|
|
|
|
*rd_cost = best_rdc;
|
|
|
|
if (best_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(rd_cost);
|
|
return;
|
|
}
|
|
|
|
// update mode info array
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
|
|
|
|
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
bsize, pc_tree);
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64 && do_recon) {
|
|
assert(tp_orig < *tp);
|
|
assert(best_rdc.rate < INT_MAX);
|
|
assert(best_rdc.dist < INT64_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
static void nonrd_select_partition(VP9_COMP *cpi,
|
|
ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
MODE_INFO **mi,
|
|
TOKENEXTRA **tp,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int output_enabled,
|
|
RD_COST *rd_cost, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
const int mis = cm->mi_stride;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
RD_COST this_rdc;
|
|
|
|
vp9_rd_cost_reset(&this_rdc);
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
|
|
partition = partition_lookup[bsl][subsize];
|
|
|
|
if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
|
|
x->max_partition_size = BLOCK_32X32;
|
|
x->min_partition_size = BLOCK_16X16;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
|
|
rd_cost, 0, INT64_MAX, pc_tree);
|
|
} else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
|
|
subsize >= BLOCK_16X16) {
|
|
x->max_partition_size = BLOCK_32X32;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
|
|
rd_cost, 0, INT64_MAX, pc_tree);
|
|
} else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
|
|
x->max_partition_size = BLOCK_16X16;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
|
|
rd_cost, 0, INT64_MAX, pc_tree);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
pc_tree->none.pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
subsize, &pc_tree->none);
|
|
pc_tree->none.mic = *xd->mi[0];
|
|
pc_tree->none.mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->none.skip = x->skip;
|
|
break;
|
|
case PARTITION_VERT:
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
subsize, &pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
if (mi_col + hbs < cm->mi_cols) {
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
|
|
&this_rdc, subsize, &pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
subsize, &pc_tree->horizontal[0]);
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
|
|
&this_rdc, subsize, &pc_tree->horizontal[1]);
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
subsize, output_enabled, rd_cost,
|
|
pc_tree->split[0]);
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp,
|
|
mi_row, mi_col + hbs, subsize, output_enabled,
|
|
&this_rdc, pc_tree->split[1]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
|
|
mi_row + hbs, mi_col, subsize, output_enabled,
|
|
&this_rdc, pc_tree->split[2]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
|
|
mi_row + hbs, mi_col + hbs, subsize,
|
|
output_enabled, &this_rdc, pc_tree->split[3]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid partition type.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64 && output_enabled)
|
|
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
|
|
}
|
|
|
|
|
|
static void nonrd_use_partition(VP9_COMP *cpi,
|
|
ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
MODE_INFO **mi,
|
|
TOKENEXTRA **tp,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int output_enabled,
|
|
RD_COST *dummy_cost, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
const int mis = cm->mi_stride;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
|
|
partition = partition_lookup[bsl][subsize];
|
|
|
|
if (output_enabled && bsize != BLOCK_4X4) {
|
|
int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
td->counts->partition[ctx][partition]++;
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
pc_tree->none.pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->none);
|
|
pc_tree->none.mic = *xd->mi[0];
|
|
pc_tree->none.mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->none.skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
|
|
dummy_cost, subsize, &pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
|
|
output_enabled, subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->horizontal[0]);
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[0]);
|
|
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
|
|
dummy_cost, subsize, &pc_tree->horizontal[1]);
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
|
|
output_enabled, subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
if (bsize == BLOCK_8X8) {
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, pc_tree->leaf_split[0]);
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col,
|
|
output_enabled, subsize, pc_tree->leaf_split[0]);
|
|
} else {
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
subsize, output_enabled, dummy_cost,
|
|
pc_tree->split[0]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp,
|
|
mi_row, mi_col + hbs, subsize, output_enabled,
|
|
dummy_cost, pc_tree->split[1]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
|
|
mi_row + hbs, mi_col, subsize, output_enabled,
|
|
dummy_cost, pc_tree->split[2]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
|
|
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
|
|
dummy_cost, pc_tree->split[3]);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid partition type.");
|
|
break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
static void encode_nonrd_sb_row(VP9_COMP *cpi,
|
|
ThreadData *td,
|
|
TileDataEnc *tile_data,
|
|
int mi_row,
|
|
TOKENEXTRA **tp) {
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int mi_col;
|
|
|
|
// Initialize the left context for the new SB row
|
|
memset(&xd->left_context, 0, sizeof(xd->left_context));
|
|
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
RD_COST dummy_rdc;
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
|
|
PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
|
|
BLOCK_SIZE bsize = BLOCK_64X64;
|
|
int seg_skip = 0;
|
|
x->source_variance = UINT_MAX;
|
|
vp9_zero(x->pred_mv);
|
|
vp9_rd_cost_init(&dummy_rdc);
|
|
x->color_sensitivity[0] = 0;
|
|
x->color_sensitivity[1] = 0;
|
|
x->sb_is_skin = 0;
|
|
|
|
if (seg->enabled) {
|
|
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
|
|
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
|
|
if (seg_skip) {
|
|
partition_search_type = FIXED_PARTITION;
|
|
}
|
|
}
|
|
|
|
// Set the partition type of the 64X64 block
|
|
switch (partition_search_type) {
|
|
case VAR_BASED_PARTITION:
|
|
// TODO(jingning, marpan): The mode decision and encoding process
|
|
// support both intra and inter sub8x8 block coding for RTC mode.
|
|
// Tune the thresholds accordingly to use sub8x8 block coding for
|
|
// coding performance improvement.
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case SOURCE_VAR_BASED_PARTITION:
|
|
set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case FIXED_PARTITION:
|
|
if (!seg_skip)
|
|
bsize = sf->always_this_block_size;
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case REFERENCE_PARTITION:
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
|
|
xd->mi[0]->segment_id) {
|
|
// Use lower max_partition_size for low resoultions.
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
x->max_partition_size = BLOCK_32X32;
|
|
else
|
|
x->max_partition_size = BLOCK_64X64;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
|
|
BLOCK_64X64, &dummy_rdc, 1,
|
|
INT64_MAX, td->pc_root);
|
|
} else {
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
// TODO(marpan): Seems like nonrd_select_partition does not support
|
|
// 4x4 partition. Since 4x4 is used on key frame, use this switch
|
|
// for now.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
else
|
|
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// end RTC play code
|
|
|
|
static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
|
|
const uint8_t *src = cpi->Source->y_buffer;
|
|
const uint8_t *last_src = cpi->Last_Source->y_buffer;
|
|
const int src_stride = cpi->Source->y_stride;
|
|
const int last_stride = cpi->Last_Source->y_stride;
|
|
|
|
// Pick cutoff threshold
|
|
const int cutoff = (VPXMIN(cm->width, cm->height) >= 720) ?
|
|
(cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
|
|
(cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
|
|
DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
|
|
diff *var16 = cpi->source_diff_var;
|
|
|
|
int sum = 0;
|
|
int i, j;
|
|
|
|
memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
|
|
|
|
for (i = 0; i < cm->mb_rows; i++) {
|
|
for (j = 0; j < cm->mb_cols; j++) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
switch (cm->bit_depth) {
|
|
case VPX_BITS_8:
|
|
vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
break;
|
|
case VPX_BITS_10:
|
|
vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
break;
|
|
case VPX_BITS_12:
|
|
vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
break;
|
|
default:
|
|
assert(0 && "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10"
|
|
" or VPX_BITS_12");
|
|
return -1;
|
|
}
|
|
} else {
|
|
vpx_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
}
|
|
#else
|
|
vpx_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
var16->var = var16->sse -
|
|
(((uint32_t)var16->sum * var16->sum) >> 8);
|
|
|
|
if (var16->var >= VAR_HIST_MAX_BG_VAR)
|
|
hist[VAR_HIST_BINS - 1]++;
|
|
else
|
|
hist[var16->var / VAR_HIST_FACTOR]++;
|
|
|
|
src += 16;
|
|
last_src += 16;
|
|
var16++;
|
|
}
|
|
|
|
src = src - cm->mb_cols * 16 + 16 * src_stride;
|
|
last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
|
|
}
|
|
|
|
cpi->source_var_thresh = 0;
|
|
|
|
if (hist[VAR_HIST_BINS - 1] < cutoff) {
|
|
for (i = 0; i < VAR_HIST_BINS - 1; i++) {
|
|
sum += hist[i];
|
|
|
|
if (sum > cutoff) {
|
|
cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sf->search_type_check_frequency;
|
|
}
|
|
|
|
static void source_var_based_partition_search_method(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// For key frame, use SEARCH_PARTITION.
|
|
sf->partition_search_type = SEARCH_PARTITION;
|
|
} else if (cm->intra_only) {
|
|
sf->partition_search_type = FIXED_PARTITION;
|
|
} else {
|
|
if (cm->last_width != cm->width || cm->last_height != cm->height) {
|
|
if (cpi->source_diff_var)
|
|
vpx_free(cpi->source_diff_var);
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
|
|
vpx_calloc(cm->MBs, sizeof(diff)));
|
|
}
|
|
|
|
if (!cpi->frames_till_next_var_check)
|
|
cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
|
|
|
|
if (cpi->frames_till_next_var_check > 0) {
|
|
sf->partition_search_type = FIXED_PARTITION;
|
|
cpi->frames_till_next_var_check--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
|
|
unsigned int intra_count = 0, inter_count = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
|
|
intra_count += td->counts->intra_inter[j][0];
|
|
inter_count += td->counts->intra_inter[j][1];
|
|
}
|
|
|
|
return (intra_count << 2) < inter_count &&
|
|
cm->frame_type != KEY_FRAME &&
|
|
cm->show_frame;
|
|
}
|
|
|
|
void vp9_init_tile_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
int tile_col, tile_row;
|
|
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
|
|
int tile_tok = 0;
|
|
|
|
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
|
|
if (cpi->tile_data != NULL)
|
|
vpx_free(cpi->tile_data);
|
|
CHECK_MEM_ERROR(cm, cpi->tile_data,
|
|
vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
|
|
cpi->allocated_tiles = tile_cols * tile_rows;
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileDataEnc *tile_data =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
int i, j;
|
|
for (i = 0; i < BLOCK_SIZES; ++i) {
|
|
for (j = 0; j < MAX_MODES; ++j) {
|
|
tile_data->thresh_freq_fact[i][j] = 32;
|
|
tile_data->mode_map[i][j] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileInfo *tile_info =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
|
|
vp9_tile_init(tile_info, cm, tile_row, tile_col);
|
|
|
|
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
|
|
pre_tok = cpi->tile_tok[tile_row][tile_col];
|
|
tile_tok = allocated_tokens(*tile_info);
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td,
|
|
int tile_row, int tile_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
TileDataEnc *this_tile =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
const TileInfo * const tile_info = &this_tile->tile_info;
|
|
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
|
|
int mi_row;
|
|
|
|
// Set up pointers to per thread motion search counters.
|
|
td->mb.m_search_count_ptr = &td->rd_counts.m_search_count;
|
|
td->mb.ex_search_count_ptr = &td->rd_counts.ex_search_count;
|
|
|
|
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
|
|
mi_row += MI_BLOCK_SIZE) {
|
|
if (cpi->sf.use_nonrd_pick_mode)
|
|
encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
|
|
else
|
|
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
|
|
}
|
|
cpi->tok_count[tile_row][tile_col] =
|
|
(unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
|
|
assert(tok - cpi->tile_tok[tile_row][tile_col] <=
|
|
allocated_tokens(*tile_info));
|
|
}
|
|
|
|
static void encode_tiles(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
int tile_col, tile_row;
|
|
|
|
vp9_init_tile_data(cpi);
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col)
|
|
vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
|
|
VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
|
|
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
|
|
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
|
|
|
|
if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
|
|
return EOF;
|
|
|
|
*this_frame_mb_stats = mb_stats_in;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void encode_frame_internal(VP9_COMP *cpi) {
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
ThreadData *const td = &cpi->td;
|
|
MACROBLOCK *const x = &td->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
RD_COUNTS *const rdc = &cpi->td.rd_counts;
|
|
|
|
xd->mi = cm->mi_grid_visible;
|
|
xd->mi[0] = cm->mi;
|
|
|
|
vp9_zero(*td->counts);
|
|
vp9_zero(rdc->coef_counts);
|
|
vp9_zero(rdc->comp_pred_diff);
|
|
vp9_zero(rdc->filter_diff);
|
|
rdc->m_search_count = 0; // Count of motion search hits.
|
|
rdc->ex_search_count = 0; // Exhaustive mesh search hits.
|
|
|
|
|
|
xd->lossless = cm->base_qindex == 0 &&
|
|
cm->y_dc_delta_q == 0 &&
|
|
cm->uv_dc_delta_q == 0 &&
|
|
cm->uv_ac_delta_q == 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth)
|
|
x->fwd_txm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
|
|
else
|
|
x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
x->highbd_itxm_add = xd->lossless ? vp9_highbd_iwht4x4_add :
|
|
vp9_highbd_idct4x4_add;
|
|
#else
|
|
x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
x->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
|
|
|
|
if (xd->lossless)
|
|
x->optimize = 0;
|
|
|
|
cm->tx_mode = select_tx_mode(cpi, xd);
|
|
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
vp9_initialize_rd_consts(cpi);
|
|
vp9_initialize_me_consts(cpi, x, cm->base_qindex);
|
|
init_encode_frame_mb_context(cpi);
|
|
cm->use_prev_frame_mvs = !cm->error_resilient_mode &&
|
|
cm->width == cm->last_width &&
|
|
cm->height == cm->last_height &&
|
|
!cm->intra_only &&
|
|
cm->last_show_frame;
|
|
// Special case: set prev_mi to NULL when the previous mode info
|
|
// context cannot be used.
|
|
cm->prev_mi = cm->use_prev_frame_mvs ?
|
|
cm->prev_mip + cm->mi_stride + 1 : NULL;
|
|
|
|
x->quant_fp = cpi->sf.use_quant_fp;
|
|
vp9_zero(x->skip_txfm);
|
|
if (sf->use_nonrd_pick_mode) {
|
|
// Initialize internal buffer pointers for rtc coding, where non-RD
|
|
// mode decision is used and hence no buffer pointer swap needed.
|
|
int i;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][0];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
|
|
p[i].eobs = ctx->eobs_pbuf[i][0];
|
|
}
|
|
vp9_zero(x->zcoeff_blk);
|
|
|
|
if (cm->frame_type != KEY_FRAME &&
|
|
cpi->rc.frames_since_golden == 0 &&
|
|
!cpi->use_svc)
|
|
cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
|
|
|
|
if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
|
|
source_var_based_partition_search_method(cpi);
|
|
}
|
|
|
|
{
|
|
struct vpx_usec_timer emr_timer;
|
|
vpx_usec_timer_start(&emr_timer);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
|
|
&cpi->twopass.this_frame_mb_stats);
|
|
}
|
|
#endif
|
|
|
|
// If allowed, encoding tiles in parallel with one thread handling one tile.
|
|
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
|
vp9_encode_tiles_mt(cpi);
|
|
else
|
|
encode_tiles(cpi);
|
|
|
|
vpx_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
|
|
}
|
|
|
|
sf->skip_encode_frame = sf->skip_encode_sb ?
|
|
get_skip_encode_frame(cm, td) : 0;
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
}
|
|
|
|
static INTERP_FILTER get_interp_filter(
|
|
const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
|
|
if (!is_alt_ref &&
|
|
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
|
|
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
|
|
threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP_SMOOTH;
|
|
} else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
|
|
threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP_SHARP;
|
|
} else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP;
|
|
} else {
|
|
return SWITCHABLE;
|
|
}
|
|
}
|
|
|
|
void vp9_encode_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// In the longer term the encoder should be generalized to match the
|
|
// decoder such that we allow compound where one of the 3 buffers has a
|
|
// different sign bias and that buffer is then the fixed ref. However, this
|
|
// requires further work in the rd loop. For now the only supported encoder
|
|
// side behavior is where the ALT ref buffer has opposite sign bias to
|
|
// the other two.
|
|
if (!frame_is_intra_only(cm)) {
|
|
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
|
|
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[LAST_FRAME])) {
|
|
cpi->allow_comp_inter_inter = 0;
|
|
} else {
|
|
cpi->allow_comp_inter_inter = 1;
|
|
cm->comp_fixed_ref = ALTREF_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = GOLDEN_FRAME;
|
|
}
|
|
}
|
|
|
|
if (cpi->sf.frame_parameter_update) {
|
|
int i;
|
|
RD_OPT *const rd_opt = &cpi->rd;
|
|
FRAME_COUNTS *counts = cpi->td.counts;
|
|
RD_COUNTS *const rdc = &cpi->td.rd_counts;
|
|
|
|
// This code does a single RD pass over the whole frame assuming
|
|
// either compound, single or hybrid prediction as per whatever has
|
|
// worked best for that type of frame in the past.
|
|
// It also predicts whether another coding mode would have worked
|
|
// better that this coding mode. If that is the case, it remembers
|
|
// that for subsequent frames.
|
|
// It does the same analysis for transform size selection also.
|
|
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
|
|
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
|
|
int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
|
|
const int is_alt_ref = frame_type == ALTREF_FRAME;
|
|
|
|
/* prediction (compound, single or hybrid) mode selection */
|
|
if (is_alt_ref || !cpi->allow_comp_inter_inter)
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
|
|
mode_thrs[COMPOUND_REFERENCE] >
|
|
mode_thrs[REFERENCE_MODE_SELECT] &&
|
|
check_dual_ref_flags(cpi) &&
|
|
cpi->static_mb_pct == 100)
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else
|
|
cm->reference_mode = REFERENCE_MODE_SELECT;
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
|
|
|
|
encode_frame_internal(cpi);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
|
|
single_count_zero += counts->comp_inter[i][0];
|
|
comp_count_zero += counts->comp_inter[i][1];
|
|
}
|
|
|
|
if (comp_count_zero == 0) {
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
} else if (single_count_zero == 0) {
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
}
|
|
}
|
|
|
|
if (cm->tx_mode == TX_MODE_SELECT) {
|
|
int count4x4 = 0;
|
|
int count8x8_lp = 0, count8x8_8x8p = 0;
|
|
int count16x16_16x16p = 0, count16x16_lp = 0;
|
|
int count32x32 = 0;
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
count4x4 += counts->tx.p32x32[i][TX_4X4];
|
|
count4x4 += counts->tx.p16x16[i][TX_4X4];
|
|
count4x4 += counts->tx.p8x8[i][TX_4X4];
|
|
|
|
count8x8_lp += counts->tx.p32x32[i][TX_8X8];
|
|
count8x8_lp += counts->tx.p16x16[i][TX_8X8];
|
|
count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
|
|
|
|
count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
|
|
count16x16_lp += counts->tx.p32x32[i][TX_16X16];
|
|
count32x32 += counts->tx.p32x32[i][TX_32X32];
|
|
}
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
|
|
count32x32 == 0) {
|
|
cm->tx_mode = ALLOW_8X8;
|
|
reset_skip_tx_size(cm, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
|
|
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
|
|
cm->tx_mode = ONLY_4X4;
|
|
reset_skip_tx_size(cm, TX_4X4);
|
|
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_32X32;
|
|
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_16X16;
|
|
reset_skip_tx_size(cm, TX_16X16);
|
|
}
|
|
}
|
|
} else {
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
encode_frame_internal(cpi);
|
|
}
|
|
}
|
|
|
|
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
|
|
const PREDICTION_MODE y_mode = mi->mode;
|
|
const PREDICTION_MODE uv_mode = mi->uv_mode;
|
|
const BLOCK_SIZE bsize = mi->sb_type;
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
int idx, idy;
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
for (idy = 0; idy < 2; idy += num_4x4_h)
|
|
for (idx = 0; idx < 2; idx += num_4x4_w)
|
|
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
|
|
} else {
|
|
++counts->y_mode[size_group_lookup[bsize]][y_mode];
|
|
}
|
|
|
|
++counts->uv_mode[y_mode][uv_mode];
|
|
}
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, ThreadData *td,
|
|
TOKENEXTRA **t, int output_enabled,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO **mi_8x8 = xd->mi;
|
|
MODE_INFO *mi = mi_8x8[0];
|
|
const int seg_skip = segfeature_active(&cm->seg, mi->segment_id,
|
|
SEG_LVL_SKIP);
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
|
|
cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
|
|
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
|
|
cpi->sf.allow_skip_recode;
|
|
|
|
if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
|
|
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
|
|
|
|
x->skip_optimize = ctx->is_coded;
|
|
ctx->is_coded = 1;
|
|
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
|
|
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
|
|
x->q_index < QIDX_SKIP_THRESH);
|
|
|
|
if (x->skip_encode)
|
|
return;
|
|
|
|
if (!is_inter_block(mi)) {
|
|
int plane;
|
|
mi->skip = 1;
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
|
|
vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane);
|
|
if (output_enabled)
|
|
sum_intra_stats(td->counts, mi);
|
|
vp9_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
|
} else {
|
|
int ref;
|
|
const int is_compound = has_second_ref(mi);
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
|
|
mi->ref_frame[ref]);
|
|
assert(cfg != NULL);
|
|
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
|
|
&xd->block_refs[ref]->sf);
|
|
}
|
|
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
|
|
vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
|
|
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
|
|
vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
|
|
vp9_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
|
}
|
|
|
|
if (output_enabled) {
|
|
if (cm->tx_mode == TX_MODE_SELECT &&
|
|
mi->sb_type >= BLOCK_8X8 &&
|
|
!(is_inter_block(mi) && (mi->skip || seg_skip))) {
|
|
++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
|
|
&td->counts->tx)[mi->tx_size];
|
|
} else {
|
|
int x, y;
|
|
TX_SIZE tx_size;
|
|
// The new intra coding scheme requires no change of transform size
|
|
if (is_inter_block(mi)) {
|
|
tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
|
max_txsize_lookup[bsize]);
|
|
} else {
|
|
tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
|
|
}
|
|
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x = 0; x < mi_width; x++)
|
|
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
|
|
mi_8x8[mis * y + x]->tx_size = tx_size;
|
|
}
|
|
++td->counts->tx.tx_totals[mi->tx_size];
|
|
++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
|
|
if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
|
|
vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
|
|
}
|
|
}
|