a43ff15399
* New probs for subpel filters/tx_count * Makes a change to not reset to defaults for the tx_size probs if an intermediate frame reverts to using a fixed tx_size. * A few updates to the parameters for backward adaptation for mode/mv * some cosmetic cleanups derf300: +0.06% Change-Id: I22994d659bc31ca7a4fc8820fde24001e64a2920
521 lines
20 KiB
C
521 lines
20 KiB
C
|
|
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_treecoder.h"
|
|
|
|
// TBD prediction functions for various bitstream signals
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MODE_INFO *const above_mi = mi - cm->mode_info_stride;
|
|
const MODE_INFO *const left_mi = mi - 1;
|
|
const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_context = above_mi->mbmi.seg_id_predicted;
|
|
if (xd->left_available)
|
|
pred_context += left_mi->mbmi.seg_id_predicted;
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_context = above_mi->mbmi.mb_skip_coeff;
|
|
if (xd->left_available)
|
|
pred_context += left_mi->mbmi.mb_skip_coeff;
|
|
break;
|
|
|
|
case PRED_SWITCHABLE_INTERP: {
|
|
// left
|
|
const int left_mv_pred = is_inter_mode(left_mi->mbmi.mode);
|
|
const int left_interp = left_in_image && left_mv_pred ?
|
|
vp9_switchable_interp_map[left_mi->mbmi.interp_filter] :
|
|
VP9_SWITCHABLE_FILTERS;
|
|
|
|
// above
|
|
const int above_mv_pred = is_inter_mode(above_mi->mbmi.mode);
|
|
const int above_interp = above_in_image && above_mv_pred ?
|
|
vp9_switchable_interp_map[above_mi->mbmi.interp_filter] :
|
|
VP9_SWITCHABLE_FILTERS;
|
|
|
|
assert(left_interp != -1);
|
|
assert(above_interp != -1);
|
|
|
|
if (left_interp == above_interp)
|
|
pred_context = left_interp;
|
|
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
|
|
above_interp != VP9_SWITCHABLE_FILTERS)
|
|
pred_context = above_interp;
|
|
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
|
|
above_interp == VP9_SWITCHABLE_FILTERS)
|
|
pred_context = left_interp;
|
|
else
|
|
pred_context = VP9_SWITCHABLE_FILTERS;
|
|
|
|
break;
|
|
}
|
|
|
|
case PRED_INTRA_INTER: {
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (left_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
|
|
above_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (3)
|
|
pred_context = 3;
|
|
} else { // intra/inter (1) or inter/inter (0)
|
|
pred_context = left_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
|
|
above_mi->mbmi.ref_frame[0] == INTRA_FRAME;
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
|
|
|
|
// inter: 0, intra: 2
|
|
pred_context = 2 * (edge->mbmi.ref_frame[0] == INTRA_FRAME);
|
|
} else {
|
|
pred_context = 0;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS);
|
|
break;
|
|
}
|
|
|
|
case PRED_COMP_INTER_INTER: {
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
// neither edge uses comp pred (0/1)
|
|
pred_context = ((above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref) ^
|
|
(left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref));
|
|
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
// one of two edges uses comp pred (2/3)
|
|
pred_context = 2 +
|
|
(above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref ||
|
|
above_mi->mbmi.ref_frame[0] == INTRA_FRAME);
|
|
} else if (left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
// one of two edges uses comp pred (2/3)
|
|
pred_context = 2 +
|
|
(left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref ||
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME);
|
|
} else { // both edges use comp pred (4)
|
|
pred_context = 4;
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
|
|
|
|
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
// edge does not use comp pred (0/1)
|
|
pred_context = edge->mbmi.ref_frame[0] == cm->comp_fixed_ref;
|
|
} else { // edge uses comp pred (3)
|
|
pred_context = 3;
|
|
}
|
|
} else { // no edges available (1)
|
|
pred_context = 1;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS);
|
|
break;
|
|
}
|
|
|
|
case PRED_COMP_REF_P: {
|
|
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
|
|
const int var_ref_idx = !fix_ref_idx;
|
|
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (2)
|
|
pred_context = 2;
|
|
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/inter
|
|
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
|
|
left_mi : above_mi;
|
|
|
|
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { // single pred (1/3)
|
|
pred_context = 1 +
|
|
2 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1];
|
|
} else { // comp pred (1/3)
|
|
pred_context = 1 +
|
|
2 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1];
|
|
}
|
|
} else { // inter/inter
|
|
int l_sg = left_mi->mbmi.ref_frame[1] <= INTRA_FRAME;
|
|
int a_sg = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME;
|
|
MV_REFERENCE_FRAME vrfa = a_sg ? above_mi->mbmi.ref_frame[0] :
|
|
above_mi->mbmi.ref_frame[var_ref_idx];
|
|
MV_REFERENCE_FRAME vrfl = l_sg ? left_mi->mbmi.ref_frame[0] :
|
|
left_mi->mbmi.ref_frame[var_ref_idx];
|
|
|
|
if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) {
|
|
pred_context = 0;
|
|
} else if (l_sg && a_sg) { // single/single
|
|
if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) ||
|
|
(vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) {
|
|
pred_context = 4;
|
|
} else if (vrfa == vrfl) {
|
|
pred_context = 3;
|
|
} else {
|
|
pred_context = 1;
|
|
}
|
|
} else if (l_sg || a_sg) { // single/comp
|
|
MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl;
|
|
MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl;
|
|
|
|
if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) {
|
|
pred_context = 1;
|
|
} else if (rfs == cm->comp_var_ref[1] &&
|
|
vrfc != cm->comp_var_ref[1]) {
|
|
pred_context = 2;
|
|
} else {
|
|
pred_context = 4;
|
|
}
|
|
} else if (vrfa == vrfl) { // comp/comp
|
|
pred_context = 4;
|
|
} else {
|
|
pred_context = 2;
|
|
}
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
|
|
|
|
if (edge->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (edge->mbmi.ref_frame[1] > INTRA_FRAME) {
|
|
pred_context =
|
|
4 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1];
|
|
} else {
|
|
pred_context = 3 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1];
|
|
}
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
break;
|
|
}
|
|
|
|
case PRED_SINGLE_REF_P1: {
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
|
|
left_mi : above_mi;
|
|
|
|
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME);
|
|
} else {
|
|
pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME ||
|
|
edge->mbmi.ref_frame[1] == LAST_FRAME);
|
|
}
|
|
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
pred_context = 2 * (above_mi->mbmi.ref_frame[0] == LAST_FRAME) +
|
|
2 * (left_mi->mbmi.ref_frame[0] == LAST_FRAME);
|
|
} else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[1] > INTRA_FRAME) {
|
|
pred_context = 1 + (above_mi->mbmi.ref_frame[0] == LAST_FRAME ||
|
|
above_mi->mbmi.ref_frame[1] == LAST_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == LAST_FRAME ||
|
|
left_mi->mbmi.ref_frame[1] == LAST_FRAME);
|
|
} else {
|
|
MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
|
|
MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
|
|
MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1];
|
|
|
|
if (rfs == LAST_FRAME) {
|
|
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
|
|
} else {
|
|
pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME;
|
|
}
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
|
|
|
|
if (edge->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME);
|
|
} else {
|
|
pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME ||
|
|
edge->mbmi.ref_frame[1] == LAST_FRAME);
|
|
}
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
break;
|
|
}
|
|
|
|
case PRED_SINGLE_REF_P2: {
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
|
|
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
|
|
left_mi : above_mi;
|
|
|
|
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
if (edge->mbmi.ref_frame[0] == LAST_FRAME) {
|
|
pred_context = 3;
|
|
} else {
|
|
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
|
|
}
|
|
} else {
|
|
pred_context = 1 + 2 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME ||
|
|
edge->mbmi.ref_frame[1] == GOLDEN_FRAME);
|
|
}
|
|
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
if (above_mi->mbmi.ref_frame[0] == LAST_FRAME &&
|
|
left_mi->mbmi.ref_frame[0] == LAST_FRAME) {
|
|
pred_context = 3;
|
|
} else if (above_mi->mbmi.ref_frame[0] == LAST_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == LAST_FRAME) {
|
|
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == LAST_FRAME ?
|
|
left_mi : above_mi;
|
|
|
|
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
|
|
} else {
|
|
pred_context = 2 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME) +
|
|
2 * (left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME);
|
|
}
|
|
} else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME &&
|
|
left_mi->mbmi.ref_frame[1] > INTRA_FRAME) {
|
|
if (above_mi->mbmi.ref_frame[0] == left_mi->mbmi.ref_frame[0] &&
|
|
above_mi->mbmi.ref_frame[1] == left_mi->mbmi.ref_frame[1]) {
|
|
pred_context = 3 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME ||
|
|
above_mi->mbmi.ref_frame[1] == GOLDEN_FRAME ||
|
|
left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME ||
|
|
left_mi->mbmi.ref_frame[1] == GOLDEN_FRAME);
|
|
} else {
|
|
pred_context = 2;
|
|
}
|
|
} else {
|
|
MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
|
|
MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
|
|
MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
|
|
above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1];
|
|
|
|
if (rfs == GOLDEN_FRAME) {
|
|
pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
|
|
} else if (rfs == ALTREF_FRAME) {
|
|
pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME;
|
|
} else {
|
|
pred_context =
|
|
1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
|
|
}
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
|
|
|
|
if (edge->mbmi.ref_frame[0] == INTRA_FRAME ||
|
|
(edge->mbmi.ref_frame[0] == LAST_FRAME &&
|
|
edge->mbmi.ref_frame[1] <= INTRA_FRAME)) {
|
|
pred_context = 2;
|
|
} else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
|
|
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
|
|
} else {
|
|
pred_context = 3 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME ||
|
|
edge->mbmi.ref_frame[1] == GOLDEN_FRAME);
|
|
}
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
break;
|
|
}
|
|
|
|
case PRED_TX_SIZE: {
|
|
int above_context, left_context;
|
|
int max_tx_size;
|
|
if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
|
|
max_tx_size = TX_4X4;
|
|
else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
|
|
max_tx_size = TX_8X8;
|
|
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
|
|
max_tx_size = TX_16X16;
|
|
else
|
|
max_tx_size = TX_32X32;
|
|
above_context = left_context = max_tx_size;
|
|
if (above_in_image) {
|
|
above_context = (above_mi->mbmi.mb_skip_coeff ?
|
|
max_tx_size : above_mi->mbmi.txfm_size);
|
|
}
|
|
if (left_in_image) {
|
|
left_context = (left_mi->mbmi.mb_skip_coeff ?
|
|
max_tx_size : left_mi->mbmi.txfm_size);
|
|
}
|
|
if (!left_in_image) {
|
|
left_context = above_context;
|
|
}
|
|
if (!above_in_image) {
|
|
above_context = left_context;
|
|
}
|
|
pred_context = (above_context + left_context > max_tx_size);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
pred_context = 0; // *** add error trap code.
|
|
break;
|
|
}
|
|
|
|
return pred_context;
|
|
}
|
|
|
|
// This function returns a context probability for coding a given
|
|
// prediction signal
|
|
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
return cm->segment_pred_probs[pred_context];
|
|
case PRED_MBSKIP:
|
|
return cm->fc.mbskip_probs[pred_context];
|
|
case PRED_INTRA_INTER:
|
|
return cm->fc.intra_inter_prob[pred_context];
|
|
case PRED_COMP_INTER_INTER:
|
|
return cm->fc.comp_inter_prob[pred_context];
|
|
case PRED_COMP_REF_P:
|
|
return cm->fc.comp_ref_prob[pred_context];
|
|
case PRED_SINGLE_REF_P1:
|
|
return cm->fc.single_ref_prob[pred_context][0];
|
|
case PRED_SINGLE_REF_P2:
|
|
return cm->fc.single_ref_prob[pred_context][1];
|
|
default:
|
|
assert(0);
|
|
return 128; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function returns a context probability ptr for coding a given
|
|
// prediction signal
|
|
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SWITCHABLE_INTERP:
|
|
return &cm->fc.switchable_interp_prob[pred_context][0];
|
|
|
|
case PRED_TX_SIZE:
|
|
if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
|
|
return cm->fc.tx_probs_8x8p[pred_context];
|
|
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
|
|
return cm->fc.tx_probs_16x16p[pred_context];
|
|
else
|
|
return cm->fc.tx_probs_32x32p[pred_context];
|
|
|
|
default:
|
|
assert(0);
|
|
return NULL; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function returns the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
return xd->mode_info_context->mbmi.seg_id_predicted;
|
|
case PRED_MBSKIP:
|
|
return xd->mode_info_context->mbmi.mb_skip_coeff;
|
|
default:
|
|
assert(0);
|
|
return 0; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function sets the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
void vp9_set_pred_flag(MACROBLOCKD *const xd,
|
|
PRED_ID pred_id,
|
|
unsigned char pred_flag) {
|
|
const int mis = xd->mode_info_stride;
|
|
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
|
|
const int bh = 1 << mi_height_log2(bsize);
|
|
const int bw = 1 << mi_width_log2(bsize);
|
|
#define sub(a, b) (b) < 0 ? (a) + (b) : (a)
|
|
const int x_mis = sub(bw, xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE));
|
|
const int y_mis = sub(bh, xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE));
|
|
#undef sub
|
|
int x, y;
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
for (y = 0; y < y_mis; y++) {
|
|
for (x = 0; x < x_mis; x++) {
|
|
xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted = pred_flag;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
for (y = 0; y < y_mis; y++) {
|
|
for (x = 0; x < x_mis; x++) {
|
|
xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
// *** add error trap code.
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// The following contain the guts of the prediction code used to
|
|
// peredict various bitstream signals.
|
|
|
|
// Macroblock segment id prediction function
|
|
int vp9_get_pred_mi_segid(VP9_COMMON *cm, BLOCK_SIZE_TYPE sb_type,
|
|
int mi_row, int mi_col) {
|
|
const int mi_index = mi_row * cm->mi_cols + mi_col;
|
|
const int bw = 1 << mi_width_log2(sb_type);
|
|
const int bh = 1 << mi_height_log2(sb_type);
|
|
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
|
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
|
int segment_id = INT_MAX;
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymis; y++) {
|
|
for (x = 0; x < xmis; x++) {
|
|
const int index = mi_index + (y * cm->mi_cols + x);
|
|
segment_id = MIN(segment_id, cm->last_frame_seg_map[index]);
|
|
}
|
|
}
|
|
return segment_id;
|
|
}
|