vpx/vp9/encoder/vp9_speed_features.h
paulwilkins 8ba98516fd Changes to best quality settings.
Small changes to the best quality default speed trade off.
Some speedup settings are worth while even for best quality as they
have only a very small impact on quality but a significant impact on
encode time.

These changes give as much as a further 50-60% increase in encode
speed for my test animations clip with minimal impact on quality.

For this sequence these changes improve the best quality encode  speed
to about the same level as good quality speed 0 in Q3 2015 whilst
retaining the large quality gain of over 1 db

For many natural videos though the quality difference from good 0
to best is much smaller.

Change-Id: I28b3840009d77e129817a78a7c41e29cb03e1132
2015-11-17 16:20:20 +00:00

453 lines
15 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_ENCODER_VP9_SPEED_FEATURES_H_
#define VP9_ENCODER_VP9_SPEED_FEATURES_H_
#include "vp9/common/vp9_enums.h"
#ifdef __cplusplus
extern "C" {
#endif
enum {
INTRA_ALL = (1 << DC_PRED) |
(1 << V_PRED) | (1 << H_PRED) |
(1 << D45_PRED) | (1 << D135_PRED) |
(1 << D117_PRED) | (1 << D153_PRED) |
(1 << D207_PRED) | (1 << D63_PRED) |
(1 << TM_PRED),
INTRA_DC = (1 << DC_PRED),
INTRA_DC_TM = (1 << DC_PRED) | (1 << TM_PRED),
INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED),
INTRA_DC_TM_H_V = (1 << DC_PRED) | (1 << TM_PRED) | (1 << V_PRED) |
(1 << H_PRED)
};
enum {
INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV) | (1 << NEWMV),
INTER_NEAREST = (1 << NEARESTMV),
INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
INTER_NEAREST_ZERO = (1 << NEARESTMV) | (1 << ZEROMV),
INTER_NEAREST_NEW_ZERO = (1 << NEARESTMV) | (1 << ZEROMV) | (1 << NEWMV),
INTER_NEAREST_NEAR_NEW = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
INTER_NEAREST_NEAR_ZERO = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV),
};
enum {
DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) |
(1 << THR_COMP_LA) |
(1 << THR_ALTR) |
(1 << THR_GOLD) |
(1 << THR_LAST),
DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT,
DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA),
LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) |
(1 << THR_COMP_LA) |
(1 << THR_ALTR) |
(1 << THR_GOLD)
};
typedef enum {
DIAMOND = 0,
NSTEP = 1,
HEX = 2,
BIGDIA = 3,
SQUARE = 4,
FAST_HEX = 5,
FAST_DIAMOND = 6
} SEARCH_METHODS;
typedef enum {
// No recode.
DISALLOW_RECODE = 0,
// Allow recode for KF and exceeding maximum frame bandwidth.
ALLOW_RECODE_KFMAXBW = 1,
// Allow recode only for KF/ARF/GF frames.
ALLOW_RECODE_KFARFGF = 2,
// Allow recode for all frames based on bitrate constraints.
ALLOW_RECODE = 3,
} RECODE_LOOP_TYPE;
typedef enum {
SUBPEL_TREE = 0,
SUBPEL_TREE_PRUNED = 1, // Prunes 1/2-pel searches
SUBPEL_TREE_PRUNED_MORE = 2, // Prunes 1/2-pel searches more aggressively
SUBPEL_TREE_PRUNED_EVENMORE = 3, // Prunes 1/2- and 1/4-pel searches
// Other methods to come
} SUBPEL_SEARCH_METHODS;
typedef enum {
NO_MOTION_THRESHOLD = 0,
LOW_MOTION_THRESHOLD = 7
} MOTION_THRESHOLD;
typedef enum {
USE_FULL_RD = 0,
USE_LARGESTALL,
USE_TX_8X8
} TX_SIZE_SEARCH_METHOD;
typedef enum {
NOT_IN_USE = 0,
RELAXED_NEIGHBORING_MIN_MAX = 1,
STRICT_NEIGHBORING_MIN_MAX = 2
} AUTO_MIN_MAX_MODE;
typedef enum {
// Try the full image with different values.
LPF_PICK_FROM_FULL_IMAGE,
// Try a small portion of the image with different values.
LPF_PICK_FROM_SUBIMAGE,
// Estimate the level based on quantizer and frame type
LPF_PICK_FROM_Q,
// Pick 0 to disable LPF if LPF was enabled last frame
LPF_PICK_MINIMAL_LPF
} LPF_PICK_METHOD;
typedef enum {
// Terminate search early based on distortion so far compared to
// qp step, distortion in the neighborhood of the frame, etc.
FLAG_EARLY_TERMINATE = 1 << 0,
// Skips comp inter modes if the best so far is an intra mode.
FLAG_SKIP_COMP_BESTINTRA = 1 << 1,
// Skips oblique intra modes if the best so far is an inter mode.
FLAG_SKIP_INTRA_BESTINTER = 1 << 3,
// Skips oblique intra modes at angles 27, 63, 117, 153 if the best
// intra so far is not one of the neighboring directions.
FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4,
// Skips intra modes other than DC_PRED if the source variance is small
FLAG_SKIP_INTRA_LOWVAR = 1 << 5,
} MODE_SEARCH_SKIP_LOGIC;
typedef enum {
FLAG_SKIP_EIGHTTAP = 1 << EIGHTTAP,
FLAG_SKIP_EIGHTTAP_SMOOTH = 1 << EIGHTTAP_SMOOTH,
FLAG_SKIP_EIGHTTAP_SHARP = 1 << EIGHTTAP_SHARP,
} INTERP_FILTER_MASK;
typedef enum {
// Search partitions using RD/NONRD criterion
SEARCH_PARTITION,
// Always use a fixed size partition
FIXED_PARTITION,
REFERENCE_PARTITION,
// Use an arbitrary partitioning scheme based on source variance within
// a 64X64 SB
VAR_BASED_PARTITION,
// Use non-fixed partitions based on source variance
SOURCE_VAR_BASED_PARTITION
} PARTITION_SEARCH_TYPE;
typedef enum {
// Does a dry run to see if any of the contexts need to be updated or not,
// before the final run.
TWO_LOOP = 0,
// No dry run, also only half the coef contexts and bands are updated.
// The rest are not updated at all.
ONE_LOOP_REDUCED = 1
} FAST_COEFF_UPDATE;
typedef struct MV_SPEED_FEATURES {
// Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc).
SEARCH_METHODS search_method;
// This parameter controls which step in the n-step process we start at.
// It's changed adaptively based on circumstances.
int reduce_first_step_size;
// If this is set to 1, we limit the motion search range to 2 times the
// largest motion vector found in the last frame.
int auto_mv_step_size;
// Subpel_search_method can only be subpel_tree which does a subpixel
// logarithmic search that keeps stepping at 1/2 pixel units until
// you stop getting a gain, and then goes on to 1/4 and repeats
// the same process. Along the way it skips many diagonals.
SUBPEL_SEARCH_METHODS subpel_search_method;
// Maximum number of steps in logarithmic subpel search before giving up.
int subpel_iters_per_step;
// Control when to stop subpel search
int subpel_force_stop;
// This variable sets the step_param used in full pel motion search.
int fullpel_search_step_param;
} MV_SPEED_FEATURES;
#define MAX_MESH_STEP 4
typedef struct MESH_PATTERN {
int range;
int interval;
} MESH_PATTERN;
typedef struct SPEED_FEATURES {
MV_SPEED_FEATURES mv;
// Frame level coding parameter update
int frame_parameter_update;
RECODE_LOOP_TYPE recode_loop;
// Trellis (dynamic programming) optimization of quantized values (+1, 0).
int optimize_coefficients;
// Always set to 0. If on it enables 0 cost background transmission
// (except for the initial transmission of the segmentation). The feature is
// disabled because the addition of very large block sizes make the
// backgrounds very to cheap to encode, and the segmentation we have
// adds overhead.
int static_segmentation;
// If 1 we iterate finding a best reference for 2 ref frames together - via
// a log search that iterates 4 times (check around mv for last for best
// error of combined predictor then check around mv for alt). If 0 we
// we just use the best motion vector found for each frame by itself.
BLOCK_SIZE comp_inter_joint_search_thresh;
// This variable is used to cap the maximum number of times we skip testing a
// mode to be evaluated. A high value means we will be faster.
int adaptive_rd_thresh;
// Enables skipping the reconstruction step (idct, recon) in the
// intermediate steps assuming the last frame didn't have too many intra
// blocks and the q is less than a threshold.
int skip_encode_sb;
int skip_encode_frame;
// Speed feature to allow or disallow skipping of recode at block
// level within a frame.
int allow_skip_recode;
// Coefficient probability model approximation step size
int coeff_prob_appx_step;
// The threshold is to determine how slow the motino is, it is used when
// use_lastframe_partitioning is set to LAST_FRAME_PARTITION_LOW_MOTION
MOTION_THRESHOLD lf_motion_threshold;
// Determine which method we use to determine transform size. We can choose
// between options like full rd, largest for prediction size, largest
// for intra and model coefs for the rest.
TX_SIZE_SEARCH_METHOD tx_size_search_method;
// Low precision 32x32 fdct keeps everything in 16 bits and thus is less
// precise but significantly faster than the non lp version.
int use_lp32x32fdct;
// After looking at the first set of modes (set by index here), skip
// checking modes for reference frames that don't match the reference frame
// of the best so far.
int mode_skip_start;
// TODO(JBB): Remove this.
int reference_masking;
PARTITION_SEARCH_TYPE partition_search_type;
// Used if partition_search_type = FIXED_SIZE_PARTITION
BLOCK_SIZE always_this_block_size;
// Skip rectangular partition test when partition type none gives better
// rd than partition type split.
int less_rectangular_check;
// Disable testing non square partitions. (eg 16x32)
int use_square_partition_only;
BLOCK_SIZE use_square_only_threshold;
// Sets min and max partition sizes for this 64x64 region based on the
// same 64x64 in last encoded frame, and the left and above neighbor.
AUTO_MIN_MAX_MODE auto_min_max_partition_size;
// Ensures the rd based auto partition search will always
// go down at least to the specified level.
BLOCK_SIZE rd_auto_partition_min_limit;
// Min and max partition size we enable (block_size) as per auto
// min max, but also used by adjust partitioning, and pick_partitioning.
BLOCK_SIZE default_min_partition_size;
BLOCK_SIZE default_max_partition_size;
// Whether or not we allow partitions one smaller or one greater than the last
// frame's partitioning. Only used if use_lastframe_partitioning is set.
int adjust_partitioning_from_last_frame;
// How frequently we re do the partitioning from scratch. Only used if
// use_lastframe_partitioning is set.
int last_partitioning_redo_frequency;
// Disables sub 8x8 blocksizes in different scenarios: Choices are to disable
// it always, to allow it for only Last frame and Intra, disable it for all
// inter modes or to enable it always.
int disable_split_mask;
// TODO(jingning): combine the related motion search speed features
// This allows us to use motion search at other sizes as a starting
// point for this motion search and limits the search range around it.
int adaptive_motion_search;
// Flag for allowing some use of exhaustive searches;
int allow_exhaustive_searches;
// Threshold for allowing exhaistive motion search.
int exhaustive_searches_thresh;
// Maximum number of exhaustive searches for a frame.
int max_exaustive_pct;
// Pattern to be used for any exhaustive mesh searches.
MESH_PATTERN mesh_patterns[MAX_MESH_STEP];
int schedule_mode_search;
// Allows sub 8x8 modes to use the prediction filter that was determined
// best for 8x8 mode. If set to 0 we always re check all the filters for
// sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter
// was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected.
int adaptive_pred_interp_filter;
// Adaptive prediction mode search
int adaptive_mode_search;
// Chessboard pattern prediction filter type search
int cb_pred_filter_search;
int cb_partition_search;
int motion_field_mode_search;
int alt_ref_search_fp;
// Fast quantization process path
int use_quant_fp;
// Use finer quantizer in every other few frames that run variable block
// partition type search.
int force_frame_boost;
// Maximally allowed base quantization index fluctuation.
int max_delta_qindex;
// Implements various heuristics to skip searching modes
// The heuristics selected are based on flags
// defined in the MODE_SEARCH_SKIP_HEURISTICS enum
unsigned int mode_search_skip_flags;
// A source variance threshold below which filter search is disabled
// Choose a very large value (UINT_MAX) to use 8-tap always
unsigned int disable_filter_search_var_thresh;
// These bit masks allow you to enable or disable intra modes for each
// transform size separately.
int intra_y_mode_mask[TX_SIZES];
int intra_uv_mode_mask[TX_SIZES];
// These bit masks allow you to enable or disable intra modes for each
// prediction block size separately.
int intra_y_mode_bsize_mask[BLOCK_SIZES];
// This variable enables an early break out of mode testing if the model for
// rd built from the prediction signal indicates a value that's much
// higher than the best rd we've seen so far.
int use_rd_breakout;
// This enables us to use an estimate for intra rd based on dc mode rather
// than choosing an actual uv mode in the stage of encoding before the actual
// final encode.
int use_uv_intra_rd_estimate;
// This feature controls how the loop filter level is determined.
LPF_PICK_METHOD lpf_pick;
// This feature limits the number of coefficients updates we actually do
// by only looking at counts from 1/2 the bands.
FAST_COEFF_UPDATE use_fast_coef_updates;
// This flag controls the use of non-RD mode decision.
int use_nonrd_pick_mode;
// A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV
// modes are used in order from LSB to MSB for each BLOCK_SIZE.
int inter_mode_mask[BLOCK_SIZES];
// This feature controls whether we do the expensive context update and
// calculation in the rd coefficient costing loop.
int use_fast_coef_costing;
// This feature controls the tolerence vs target used in deciding whether to
// recode a frame. It has no meaning if recode is disabled.
int recode_tolerance;
// This variable controls the maximum block size where intra blocks can be
// used in inter frames.
// TODO(aconverse): Fold this into one of the other many mode skips
BLOCK_SIZE max_intra_bsize;
// The frequency that we check if SOURCE_VAR_BASED_PARTITION or
// FIXED_PARTITION search type should be used.
int search_type_check_frequency;
// When partition is pre-set, the inter prediction result from pick_inter_mode
// can be reused in final block encoding process. It is enabled only for real-
// time mode speed 6.
int reuse_inter_pred_sby;
// This variable sets the encode_breakout threshold. Currently, it is only
// enabled in real time mode.
int encode_breakout_thresh;
// default interp filter choice
INTERP_FILTER default_interp_filter;
// Early termination in transform size search, which only applies while
// tx_size_search_method is USE_FULL_RD.
int tx_size_search_breakout;
// adaptive interp_filter search to allow skip of certain filter types.
int adaptive_interp_filter_search;
// mask for skip evaluation of certain interp_filter type.
INTERP_FILTER_MASK interp_filter_search_mask;
// Partition search early breakout thresholds.
int64_t partition_search_breakout_dist_thr;
int partition_search_breakout_rate_thr;
// Allow skipping partition search for still image frame
int allow_partition_search_skip;
// Fast approximation of vp9_model_rd_from_var_lapndz
int simple_model_rd_from_var;
} SPEED_FEATURES;
struct VP9_COMP;
void vp9_set_speed_features_framesize_independent(struct VP9_COMP *cpi);
void vp9_set_speed_features_framesize_dependent(struct VP9_COMP *cpi);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP9_ENCODER_VP9_SPEED_FEATURES_H_