1fe85a35e0
This patch incorporates adaptive entropy coding of coefficient tokens, and mode/mv information based on distributions encountered in a frame. Specifically, there is an initial forward update to the probabilities in the bitstream as before for coding the symbols in the frame, however at the end of decoding each frame, the forward update to the probabilities is reverted and instead the probabilities are updated towards the actual distributions encountered within the frame. The amount of update is weighted by the number of hits within each context. Results on derf/hd/std-hd are all up by 1.6%. On derf, the most of the gains come from coefficients, however for the hd and std-hd sets, the most of the gains come from the mode/mv information updates. Change-Id: I708c0e11fdacafee04940fe7ae159ba6844005fd
115 lines
4.3 KiB
C
115 lines
4.3 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#ifndef __INC_ENTROPY_H
|
|
#define __INC_ENTROPY_H
|
|
|
|
#include "treecoder.h"
|
|
#include "blockd.h"
|
|
#include "common.h"
|
|
#include "coefupdateprobs.h"
|
|
/* Coefficient token alphabet */
|
|
|
|
#define ZERO_TOKEN 0 /* 0 Extra Bits 0+0 */
|
|
#define ONE_TOKEN 1 /* 1 Extra Bits 0+1 */
|
|
#define TWO_TOKEN 2 /* 2 Extra Bits 0+1 */
|
|
#define THREE_TOKEN 3 /* 3 Extra Bits 0+1 */
|
|
#define FOUR_TOKEN 4 /* 4 Extra Bits 0+1 */
|
|
#define DCT_VAL_CATEGORY1 5 /* 5-6 Extra Bits 1+1 */
|
|
#define DCT_VAL_CATEGORY2 6 /* 7-10 Extra Bits 2+1 */
|
|
#define DCT_VAL_CATEGORY3 7 /* 11-18 Extra Bits 3+1 */
|
|
#define DCT_VAL_CATEGORY4 8 /* 19-34 Extra Bits 4+1 */
|
|
#define DCT_VAL_CATEGORY5 9 /* 35-66 Extra Bits 5+1 */
|
|
#define DCT_VAL_CATEGORY6 10 /* 67+ Extra Bits 13+1 */
|
|
#define DCT_EOB_TOKEN 11 /* EOB Extra Bits 0+0 */
|
|
|
|
#define MAX_ENTROPY_TOKENS 12
|
|
#define ENTROPY_NODES 11
|
|
|
|
extern const vp8_tree_index vp8_coef_tree[];
|
|
|
|
extern struct vp8_token_struct vp8_coef_encodings[MAX_ENTROPY_TOKENS];
|
|
|
|
typedef struct
|
|
{
|
|
vp8_tree_p tree;
|
|
const vp8_prob *prob;
|
|
int Len;
|
|
int base_val;
|
|
} vp8_extra_bit_struct;
|
|
|
|
extern vp8_extra_bit_struct vp8_extra_bits[12]; /* indexed by token value */
|
|
|
|
#define PROB_UPDATE_BASELINE_COST 7
|
|
|
|
#define MAX_PROB 255
|
|
#define DCT_MAX_VALUE 8192
|
|
|
|
/* Coefficients are predicted via a 3-dimensional probability table. */
|
|
|
|
/* Outside dimension. 0 = Y no DC, 1 = Y2, 2 = UV, 3 = Y with DC */
|
|
|
|
#define BLOCK_TYPES 4
|
|
|
|
#define BLOCK_TYPES_8X8 3
|
|
|
|
/* Middle dimension is a coarsening of the coefficient's
|
|
position within the 4x4 DCT. */
|
|
|
|
#define COEF_BANDS 8
|
|
extern DECLARE_ALIGNED(16, const unsigned char, vp8_coef_bands[16]);
|
|
extern DECLARE_ALIGNED(64, const unsigned char, vp8_coef_bands_8x8[64]);
|
|
|
|
/* Inside dimension is 3-valued measure of nearby complexity, that is,
|
|
the extent to which nearby coefficients are nonzero. For the first
|
|
coefficient (DC, unless block type is 0), we look at the (already encoded)
|
|
blocks above and to the left of the current block. The context index is
|
|
then the number (0,1,or 2) of these blocks having nonzero coefficients.
|
|
After decoding a coefficient, the measure is roughly the size of the
|
|
most recently decoded coefficient (0 for 0, 1 for 1, 2 for >1).
|
|
Note that the intuitive meaning of this measure changes as coefficients
|
|
are decoded, e.g., prior to the first token, a zero means that my neighbors
|
|
are empty while, after the first token, because of the use of end-of-block,
|
|
a zero means we just decoded a zero and hence guarantees that a non-zero
|
|
coefficient will appear later in this block. However, this shift
|
|
in meaning is perfectly OK because our context depends also on the
|
|
coefficient band (and since zigzag positions 0, 1, and 2 are in
|
|
distinct bands). */
|
|
|
|
/*# define DC_TOKEN_CONTEXTS 3*/ /* 00, 0!0, !0!0 */
|
|
#if CONFIG_EXPANDED_COEF_CONTEXT
|
|
#define PREV_COEF_CONTEXTS 4
|
|
#else
|
|
#define PREV_COEF_CONTEXTS 3
|
|
#endif
|
|
|
|
#if CONFIG_NEWUPDATE
|
|
#define SUBEXP_PARAM 4 /* Subexponential code parameter */
|
|
#define MODULUS_PARAM 13 /* Modulus parameter */
|
|
#define COEFUPDATETYPE 1 /* coef update type to use (1/2/3) */
|
|
#endif
|
|
|
|
|
|
extern DECLARE_ALIGNED(16, const unsigned char, vp8_prev_token_class[MAX_ENTROPY_TOKENS]);
|
|
|
|
struct VP8Common;
|
|
void vp8_default_coef_probs(struct VP8Common *);
|
|
extern DECLARE_ALIGNED(16, const int, vp8_default_zig_zag1d[16]);
|
|
extern short vp8_default_zig_zag_mask[16];
|
|
extern DECLARE_ALIGNED(64, const int, vp8_default_zig_zag1d_8x8[64]);
|
|
extern short vp8_default_zig_zag_mask_8x8[64];//int64_t
|
|
void vp8_coef_tree_initialize(void);
|
|
|
|
#if CONFIG_ADAPTIVE_ENTROPY
|
|
void vp8_adapt_coef_probs(struct VP8Common *);
|
|
#endif
|
|
#endif
|