vpx/vp9/decoder/vp9_decodframe.c

1386 lines
46 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
return (p[1] << 8) | p[0];
}
static int read_le32(const uint8_t *p) {
return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len,
const uint8_t *end) {
return start + len > start && start + len <= end;
}
static void setup_txfm_mode(VP9_COMMON *pc, int lossless, vp9_reader *r) {
if (lossless) {
pc->txfm_mode = ONLY_4X4;
} else {
pc->txfm_mode = vp9_read_literal(r, 2);
if (pc->txfm_mode == ALLOW_32X32)
pc->txfm_mode += vp9_read_bit(r);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_prob(r);
pc->prob_tx[1] = vp9_read_prob(r);
pc->prob_tx[2] = vp9_read_prob(r);
}
}
}
static int get_unsigned_bits(unsigned int num_values) {
int cat = 0;
if (num_values <= 1)
return 0;
num_values--;
while (num_values > 0) {
cat++;
num_values >>= 1;
}
return cat;
}
static int inv_recenter_nonneg(int v, int m) {
if (v > 2 * m)
return v;
return v % 2 ? m - (v + 1) / 2 : m + v / 2;
}
static int decode_uniform(vp9_reader *r, int n) {
int v;
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (!l)
return 0;
v = vp9_read_literal(r, l - 1);
return v < m ? v : (v << 1) - m + vp9_read_bit(r);
}
static int decode_term_subexp(vp9_reader *r, int k, int num_syms) {
int i = 0, mk = 0, word;
while (1) {
const int b = i ? k + i - 1 : k;
const int a = 1 << b;
if (num_syms <= mk + 3 * a) {
word = decode_uniform(r, num_syms - mk) + mk;
break;
} else {
if (vp9_read_bit(r)) {
i++;
mk += a;
} else {
word = vp9_read_literal(r, b) + mk;
break;
}
}
}
return word;
}
static int decode_unsigned_max(vp9_reader *r, int max) {
int data = 0, bit = 0, lmax = max;
while (lmax) {
data |= vp9_read_bit(r) << bit++;
lmax >>= 1;
}
return data > max ? max : data;
}
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) {
v = v * modulus + modulus / 2;
} else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
v = merge_index(v, n - 1, MODULUS_PARAM);
if ((m << 1) <= n) {
return inv_recenter_nonneg(v + 1, m);
} else {
return n - 1 - inv_recenter_nonneg(v + 1, n - 1 - m);
}
}
static vp9_prob read_prob_diff_update(vp9_reader *r, int oldp) {
int delp = decode_term_subexp(r, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_dequantizer(VP9_COMMON *pc) {
int q;
for (q = 0; q < QINDEX_RANGE; q++) {
// DC value
pc->y_dequant[q][0] = vp9_dc_quant(q, pc->y_dc_delta_q);
pc->uv_dequant[q][0] = vp9_dc_quant(q, pc->uv_dc_delta_q);
// AC values
pc->y_dequant[q][1] = vp9_ac_quant(q, 0);
pc->uv_dequant[q][1] = vp9_ac_quant(q, pc->uv_ac_delta_q);
}
}
static void mb_init_dequantizer(VP9_COMMON *pc, MACROBLOCKD *xd) {
int i;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
xd->q_index = vp9_get_qindex(xd, segment_id, pc->base_qindex);
xd->plane[0].dequant = pc->y_dequant[xd->q_index];
for (i = 1; i < MAX_MB_PLANE; i++)
xd->plane[i].dequant = pc->uv_dequant[xd->q_index];
}
#if !CONFIG_SB8X8
static void decode_8x8(MACROBLOCKD *xd) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// luma
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, 0);
int i;
assert(mode == I8X8_PRED);
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
int16_t *q = BLOCK_OFFSET(xd->plane[0].qcoeff, idx, 16);
uint8_t* const dst =
raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 0, ib,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
int stride = xd->plane[0].dst.stride;
if (mode == I8X8_PRED) {
int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first;
vp9_intra8x8_predict(xd, ib, i8x8mode, dst, stride);
}
tx_type = get_tx_type_8x8(xd, ib);
vp9_iht_add_8x8_c(tx_type, q, dst, stride, xd->plane[0].eobs[idx]);
}
// chroma
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first;
uint8_t* dst;
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 1, i,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride);
vp9_intra_uv4x4_predict(xd, 16 + i, i8x8mode,
dst, xd->plane[1].dst.stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
dst, xd->plane[1].dst.stride,
xd->plane[1].eobs[i]);
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 2, i,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride);
vp9_intra_uv4x4_predict(xd, 20 + i, i8x8mode,
dst, xd->plane[1].dst.stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
dst, xd->plane[1].dst.stride,
xd->plane[2].eobs[i]);
}
}
#endif
static INLINE void dequant_add_y(MACROBLOCKD *xd, TX_TYPE tx_type, int idx,
BLOCK_SIZE_TYPE bsize) {
struct macroblockd_plane *const y = &xd->plane[0];
uint8_t* const dst = raster_block_offset_uint8(xd, bsize, 0, idx,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
if (tx_type != DCT_DCT) {
vp9_iht_add_c(tx_type, BLOCK_OFFSET(y->qcoeff, idx, 16),
dst, xd->plane[0].dst.stride, y->eobs[idx]);
} else {
xd->itxm_add(BLOCK_OFFSET(y->qcoeff, idx, 16),
dst, xd->plane[0].dst.stride, y->eobs[idx]);
}
}
#if !CONFIG_SB8X8
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, vp9_reader *r) {
TX_TYPE tx_type;
int i = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
assert(mode == I8X8_PRED);
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
uint8_t* dst;
int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first;
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 0, ib,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
vp9_intra8x8_predict(xd, ib, i8x8mode, dst, xd->plane[0].dst.stride);
for (j = 0; j < 4; j++) {
tx_type = get_tx_type_4x4(xd, ib + iblock[j]);
dequant_add_y(xd, tx_type, ib + iblock[j], BLOCK_SIZE_MB16X16);
}
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 1, i,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride);
vp9_intra_uv4x4_predict(xd, 16 + i, i8x8mode,
dst, xd->plane[1].dst.stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
dst, xd->plane[1].dst.stride,
xd->plane[1].eobs[i]);
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 2, i,
xd->plane[2].dst.buf,
xd->plane[2].dst.stride);
vp9_intra_uv4x4_predict(xd, 20 + i, i8x8mode,
dst, xd->plane[1].dst.stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
dst, xd->plane[1].dst.stride,
xd->plane[2].eobs[i]);
}
}
#endif
static void decode_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
MACROBLOCKD* const xd = arg;
int16_t* const qcoeff = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16);
const int stride = xd->plane[plane].dst.stride;
const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane,
block, ss_txfrm_size);
uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane,
raster_block,
xd->plane[plane].dst.buf,
stride);
TX_TYPE tx_type;
switch (ss_txfrm_size / 2) {
case TX_4X4:
tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT;
if (tx_type == DCT_DCT)
xd->itxm_add(qcoeff, dst, stride, xd->plane[plane].eobs[block]);
else
vp9_iht_add_c(tx_type, qcoeff, dst, stride,
xd->plane[plane].eobs[block]);
break;
case TX_8X8:
tx_type = plane == 0 ? get_tx_type_8x8(xd, raster_block) : DCT_DCT;
vp9_iht_add_8x8_c(tx_type, qcoeff, dst, stride,
xd->plane[plane].eobs[block]);
break;
case TX_16X16:
tx_type = plane == 0 ? get_tx_type_16x16(xd, raster_block) : DCT_DCT;
vp9_iht_add_16x16_c(tx_type, qcoeff, dst, stride,
xd->plane[plane].eobs[block]);
break;
case TX_32X32:
vp9_idct_add_32x32(qcoeff, dst, stride, xd->plane[plane].eobs[block]);
break;
}
}
static void decode_atom_intra(VP9D_COMP *pbi, MACROBLOCKD *xd,
vp9_reader *r,
BLOCK_SIZE_TYPE bsize) {
int i = 0;
int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
int bc = 1 << (bwl + bhl);
int tx_type;
for (i = 0; i < bc; i++) {
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
uint8_t* dst;
dst = raster_block_offset_uint8(xd, bsize, 0, i,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context =
vp9_find_bpred_context(xd, i, dst, xd->plane[0].dst.stride);
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_coefs_4x4(pbi, xd, r, PLANE_TYPE_Y_WITH_DC, i);
#endif
vp9_intra4x4_predict(xd, i, bsize, b_mode, dst, xd->plane[0].dst.stride);
// TODO(jingning): refactor to use foreach_transformed_block_in_plane_
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i, bsize);
}
#if CONFIG_NEWBINTRAMODES
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_mb_tokens_4x4_uv(pbi, xd, r);
#endif
foreach_transformed_block_uv(xd, bsize, decode_block, xd);
}
static void decode_atom(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, mbmi->interp_filter, &pbi->common);
// prediction
if (mbmi->ref_frame == INTRA_FRAME)
vp9_build_intra_predictors_sbuv_s(xd, bsize);
else
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
if (mbmi->mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(&pbi->common, xd);
if (!vp9_reader_has_error(r)) {
#if CONFIG_NEWBINTRAMODES
if (mbmi->mode != I4X4_PRED)
#endif
vp9_decode_tokens(pbi, xd, r, bsize);
}
}
if (mbmi->ref_frame == INTRA_FRAME)
decode_atom_intra(pbi, xd, r, bsize);
else
foreach_transformed_block(xd, bsize, decode_block, xd);
}
static void decode_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
const int bwl = mi_width_log2(bsize), bhl = mi_height_log2(bsize);
const int bw = 1 << bwl, bh = 1 << bhl;
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *const mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const int mis = pc->mode_info_stride;
assert(mbmi->sb_type == bsize);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, mbmi->interp_filter, pc);
// generate prediction
if (mbmi->ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd, bsize);
vp9_build_intra_predictors_sbuv_s(xd, bsize);
} else {
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
if (mbmi->mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pc, xd);
// dequantization and idct
eobtotal = vp9_decode_tokens(pbi, xd, r, bsize);
if (eobtotal == 0) { // skip loopfilter
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mi_col + x_idx < pc->mi_cols && mi_row + y_idx < pc->mi_rows)
mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = 1;
}
} else {
foreach_transformed_block(xd, bsize, decode_block, xd);
}
}
}
#if !CONFIG_SB8X8
// TODO(jingning): This only performs I8X8_PRED decoding process, which will be
// automatically covered by decode_sb, when SB8X8 is on.
static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mi_row, int mi_col,
vp9_reader *r) {
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const int tx_size = mbmi->txfm_size;
assert(mbmi->sb_type == BLOCK_SIZE_MB16X16);
if (mbmi->mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, BLOCK_SIZE_MB16X16);
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(&pbi->common, xd);
if (!vp9_reader_has_error(r))
vp9_decode_tokens(pbi, xd, r, BLOCK_SIZE_MB16X16);
}
if (tx_size == TX_8X8)
decode_8x8(xd);
else
decode_4x4(pbi, xd, r);
}
#endif
static int get_delta_q(vp9_reader *r, int *dq) {
const int old_value = *dq;
if (vp9_read_bit(r)) { // Update bit
const int value = vp9_read_literal(r, 4);
*dq = vp9_read_and_apply_sign(r, value);
}
// Trigger a quantizer update if the delta-q value has changed
return old_value != *dq;
}
static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col) {
const int bh = 1 << mi_height_log2(bsize);
const int bw = 1 << mi_width_log2(bsize);
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int i;
const int mi_idx = mi_row * cm->mode_info_stride + mi_col;
const YV12_BUFFER_CONFIG *dst_fb = &cm->yv12_fb[cm->new_fb_idx];
const int recon_yoffset =
(MI_SIZE * mi_row) * dst_fb->y_stride + (MI_SIZE * mi_col);
const int recon_uvoffset =
(MI_UV_SIZE * mi_row) * dst_fb->uv_stride + (MI_UV_SIZE * mi_col);
xd->mode_info_context = cm->mi + mi_idx;
xd->mode_info_context->mbmi.sb_type = bsize;
xd->prev_mode_info_context = cm->prev_mi + mi_idx;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].above_context = cm->above_context[i] +
(mi_col * 4 >> (xd->plane[i].subsampling_x + CONFIG_SB8X8));
xd->plane[i].left_context = cm->left_context[i] +
(((mi_row * 4 >> CONFIG_SB8X8) & 15) >> xd->plane[i].subsampling_y);
}
xd->above_seg_context = cm->above_seg_context + (mi_col >> CONFIG_SB8X8);
xd->left_seg_context = cm->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
xd->plane[0].dst.buf = dst_fb->y_buffer + recon_yoffset;
xd->plane[1].dst.buf = dst_fb->u_buffer + recon_uvoffset;
xd->plane[2].dst.buf = dst_fb->v_buffer + recon_uvoffset;
}
static void set_refs(VP9D_COMP *pbi, int mi_row, int mi_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1];
const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
setup_pre_planes(xd, cfg, NULL, mi_row, mi_col,
xd->scale_factor, xd->scale_factor_uv);
xd->corrupted |= cfg->corrupted;
if (mbmi->second_ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx];
xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
setup_pre_planes(xd, NULL, second_cfg, mi_row, mi_col,
xd->scale_factor, xd->scale_factor_uv);
xd->corrupted |= second_cfg->corrupted;
}
}
}
static void decode_modes_b(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &pbi->mb;
set_offsets(pbi, bsize, mi_row, mi_col);
vp9_decode_mb_mode_mv(pbi, xd, mi_row, mi_col, r);
set_refs(pbi, mi_row, mi_col);
#if CONFIG_SB8X8
if (bsize == BLOCK_SIZE_SB8X8 &&
(xd->mode_info_context->mbmi.mode == SPLITMV ||
xd->mode_info_context->mbmi.mode == I4X4_PRED))
decode_atom(pbi, xd, mi_row, mi_col, r, bsize);
else
decode_sb(pbi, xd, mi_row, mi_col, r, bsize);
#else
// TODO(jingning): merge decode_sb_ and decode_mb_
if (bsize > BLOCK_SIZE_MB16X16) {
decode_sb(pbi, xd, mi_row, mi_col, r, bsize);
} else {
// TODO(jingning): In transition of separating functionalities of decode_mb
// into decode_sb and decode_atom. Will remove decode_mb and clean this up
// when SB8X8 is on.
if (xd->mode_info_context->mbmi.mode == I4X4_PRED ||
(xd->mode_info_context->mbmi.mode == SPLITMV &&
xd->mode_info_context->mbmi.partitioning == PARTITIONING_4X4))
decode_atom(pbi, xd, mi_row, mi_col, r, bsize);
else if (xd->mode_info_context->mbmi.mode != I8X8_PRED)
decode_sb(pbi, xd, mi_row, mi_col, r, bsize);
else
// TODO(jingning): decode_mb still carries deocding process of I8X8_PRED.
// This will be covered by decode_sb when SB8X8 is on.
decode_mb(pbi, xd, mi_row, mi_col, r);
}
#endif
xd->corrupted |= vp9_reader_has_error(r);
}
static void decode_modes_sb(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int bsl = mi_width_log2(bsize), bs = (1 << bsl) / 2;
int n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mi_row >= pc->mi_rows || mi_col >= pc->mi_cols)
return;
#if CONFIG_SB8X8
if (bsize > BLOCK_SIZE_SB8X8) {
#else
if (bsize > BLOCK_SIZE_MB16X16) {
#endif
int pl;
// read the partition information
xd->left_seg_context =
pc->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3);
xd->above_seg_context = pc->above_seg_context + (mi_col >> CONFIG_SB8X8);
pl = partition_plane_context(xd, bsize);
partition = treed_read(r, vp9_partition_tree,
pc->fc.partition_prob[pl]);
pc->fc.partition_counts[pl][partition]++;
}
subsize = get_subsize(bsize, partition);
switch (partition) {
case PARTITION_NONE:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
break;
case PARTITION_HORZ:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
if ((mi_row + bs) < pc->mi_rows)
decode_modes_b(pbi, mi_row + bs, mi_col, r, subsize);
break;
case PARTITION_VERT:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
if ((mi_col + bs) < pc->mi_cols)
decode_modes_b(pbi, mi_row, mi_col + bs, r, subsize);
break;
case PARTITION_SPLIT:
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
if (subsize == BLOCK_SIZE_SB32X32)
xd->sb_index = n;
#if CONFIG_SB8X8
else if (subsize == BLOCK_SIZE_MB16X16)
xd->mb_index = n;
else
xd->b_index = n;
#else
else
xd->mb_index = n;
#endif
decode_modes_sb(pbi, mi_row + j * bs, mi_col + i * bs, r, subsize);
}
break;
default:
assert(0);
}
// update partition context
#if CONFIG_SB8X8
if ((partition == PARTITION_SPLIT) && (bsize > BLOCK_SIZE_MB16X16))
#else
if ((partition == PARTITION_SPLIT) && (bsize > BLOCK_SIZE_SB32X32))
#endif
return;
xd->left_seg_context = pc->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3);
xd->above_seg_context = pc->above_seg_context + (mi_col >> CONFIG_SB8X8);
update_partition_context(xd, subsize, bsize);
}
static void setup_token_decoder(VP9D_COMP *pbi,
const uint8_t *data,
vp9_reader *r) {
VP9_COMMON *pc = &pbi->common;
const uint8_t *data_end = pbi->source + pbi->source_sz;
const size_t partition_size = data_end - data;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
if (vp9_reader_init(r, data, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (pc->frame_type == KEY_FRAME) {
vp9_setup_past_independence(pc, xd);
// All buffers are implicitly updated on key frames.
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
}
#if CONFIG_CODE_ZEROGROUP
static void read_zpc_probs_common(VP9_COMMON *cm,
vp9_reader* bc,
TX_SIZE tx_size) {
int r, b, p, n;
vp9_zpc_probs *zpc_probs;
vp9_prob upd = ZPC_UPDATE_PROB;
if (!get_zpc_used(tx_size)) return;
if (!vp9_read_bit(bc)) return;
if (tx_size == TX_32X32) {
zpc_probs = &cm->fc.zpc_probs_32x32;
} else if (tx_size == TX_16X16) {
zpc_probs = &cm->fc.zpc_probs_16x16;
} else if (tx_size == TX_8X8) {
zpc_probs = &cm->fc.zpc_probs_8x8;
} else {
zpc_probs = &cm->fc.zpc_probs_4x4;
}
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob *q = &(*zpc_probs)[r][b][p][n];
#if USE_ZPC_EXTRA == 0
if (n == 1) continue;
#endif
if (vp9_read(bc, upd)) {
*q = read_prob_diff_update(bc, *q);
}
}
}
}
}
}
static void read_zpc_probs(VP9_COMMON *cm,
vp9_reader* bc) {
read_zpc_probs_common(cm, bc, TX_4X4);
if (cm->txfm_mode > ONLY_4X4)
read_zpc_probs_common(cm, bc, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_zpc_probs_common(cm, bc, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_zpc_probs_common(cm, bc, TX_32X32);
}
#endif // CONFIG_CODE_ZEROGROUP
static void read_coef_probs_common(vp9_coeff_probs *coef_probs,
TX_SIZE tx_size,
vp9_reader *r) {
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
int i, j, k, l, m;
if (vp9_read_bit(r)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
const int mstart = 0;
if (l >= 3 && k == 0)
continue;
for (m = mstart; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(r, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(r, *p);
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (m == UNCONSTRAINED_NODES - 1)
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
}
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) {
const TXFM_MODE mode = pbi->common.txfm_mode;
FRAME_CONTEXT *const fc = &pbi->common.fc;
read_coef_probs_common(fc->coef_probs_4x4, TX_4X4, r);
if (mode > ONLY_4X4)
read_coef_probs_common(fc->coef_probs_8x8, TX_8X8, r);
if (mode > ALLOW_8X8)
read_coef_probs_common(fc->coef_probs_16x16, TX_16X16, r);
if (mode > ALLOW_16X16)
read_coef_probs_common(fc->coef_probs_32x32, TX_32X32, r);
}
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
int i, j;
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
#if CONFIG_IMPLICIT_SEGMENTATION
xd->allow_implicit_segment_update = 0;
#endif
xd->segmentation_enabled = vp9_read_bit(r);
if (!xd->segmentation_enabled)
return;
// Segmentation map update
xd->update_mb_segmentation_map = vp9_read_bit(r);
#if CONFIG_IMPLICIT_SEGMENTATION
xd->allow_implicit_segment_update = vp9_read_bit(r);
#endif
if (xd->update_mb_segmentation_map) {
for (i = 0; i < MB_SEG_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r)
: MAX_PROB;
pc->temporal_update = vp9_read_bit(r);
if (pc->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r)
: MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
xd->update_mb_segmentation_data = vp9_read_bit(r);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_read_bit(r);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_read_bit(r);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = decode_unsigned_max(r, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_read_and_apply_sign(r, data);
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) {
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = DEFAULT_PRED_PROB_0;
pc->ref_pred_probs[1] = DEFAULT_PRED_PROB_1;
pc->ref_pred_probs[2] = DEFAULT_PRED_PROB_2;
} else {
int i;
for (i = 0; i < PREDICTION_PROBS; ++i)
if (vp9_read_bit(r))
pc->ref_pred_probs[i] = vp9_read_prob(r);
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r);
pc->filter_level = vp9_read_literal(r, 6);
pc->sharpness_level = vp9_read_literal(r, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(r))
pc->dering_enabled = 1 + vp9_read_literal(r, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->ref_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->mode_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
}
}
}
static void setup_quantization(VP9D_COMP *pbi, vp9_reader *r) {
// Read the default quantizers
VP9_COMMON *const pc = &pbi->common;
pc->base_qindex = vp9_read_literal(r, QINDEX_BITS);
if (get_delta_q(r, &pc->y_dc_delta_q) |
get_delta_q(r, &pc->uv_dc_delta_q) |
get_delta_q(r, &pc->uv_ac_delta_q))
vp9_init_dequantizer(pc);
mb_init_dequantizer(pc, &pbi->mb); // MB level dequantizer setup
}
static INTERPOLATIONFILTERTYPE read_mcomp_filter_type(vp9_reader *r) {
return vp9_read_bit(r) ? SWITCHABLE
: vp9_read_literal(r, 2);
}
static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data,
const uint8_t *data_end,
int *width, int *height) {
if (data + 4 < data_end) {
const int w = read_le16(data);
const int h = read_le16(data + 2);
if (w <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
if (h <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
*width = w;
*height = h;
data += 4;
} else {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to read frame size");
}
return data;
}
static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active,
const uint8_t *data,
const uint8_t *data_end) {
// If error concealment is enabled we should only parse the new size
// if we have enough data. Otherwise we will end up with the wrong size.
VP9_COMMON *const pc = &pbi->common;
int display_width = pc->display_width;
int display_height = pc->display_height;
int width = pc->width;
int height = pc->height;
if (scaling_active)
data = read_frame_size(pc, data, data_end, &display_width, &display_height);
data = read_frame_size(pc, data, data_end, &width, &height);
if (pc->width != width || pc->height != height) {
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, width, height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
pc->width = width;
pc->height = height;
pc->display_width = scaling_active ? display_width : width;
pc->display_height = scaling_active ? display_height : height;
vp9_update_frame_size(pc);
}
return data;
}
static void update_frame_context(FRAME_CONTEXT *fc) {
vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4);
vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8);
vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16);
vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32);
vp9_copy(fc->pre_ymode_prob, fc->ymode_prob);
vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_bmode_prob, fc->bmode_prob);
#if !CONFIG_SB8X8
vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob);
#endif
vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob);
#if !CONFIG_SB8X8
vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
#endif
vp9_copy(fc->pre_partition_prob, fc->partition_prob);
fc->pre_nmvc = fc->nmvc;
vp9_zero(fc->coef_counts_4x4);
vp9_zero(fc->coef_counts_8x8);
vp9_zero(fc->coef_counts_16x16);
vp9_zero(fc->coef_counts_32x32);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->ymode_counts);
vp9_zero(fc->sb_ymode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->bmode_counts);
#if !CONFIG_SB8X8
vp9_zero(fc->i8x8_mode_counts);
#endif
vp9_zero(fc->sub_mv_ref_counts);
#if !CONFIG_SB8X8
vp9_zero(fc->mbsplit_counts);
#endif
vp9_zero(fc->NMVcount);
vp9_zero(fc->mv_ref_ct);
vp9_zero(fc->partition_counts);
#if CONFIG_COMP_INTERINTRA_PRED
fc->pre_interintra_prob = fc->interintra_prob;
vp9_zero(fc->interintra_counts);
#endif
#if CONFIG_CODE_ZEROGROUP
vp9_copy(fc->pre_zpc_probs_4x4, fc->zpc_probs_4x4);
vp9_copy(fc->pre_zpc_probs_8x8, fc->zpc_probs_8x8);
vp9_copy(fc->pre_zpc_probs_16x16, fc->zpc_probs_16x16);
vp9_copy(fc->pre_zpc_probs_32x32, fc->zpc_probs_32x32);
vp9_zero(fc->zpc_counts_4x4);
vp9_zero(fc->zpc_counts_8x8);
vp9_zero(fc->zpc_counts_16x16);
vp9_zero(fc->zpc_counts_32x32);
#endif
}
static void decode_tile(VP9D_COMP *pbi, vp9_reader *r) {
VP9_COMMON *const pc = &pbi->common;
int mi_row, mi_col;
for (mi_row = pc->cur_tile_mi_row_start;
mi_row < pc->cur_tile_mi_row_end; mi_row += (4 << CONFIG_SB8X8)) {
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
vpx_memset(pc->left_seg_context, 0, sizeof(pc->left_seg_context));
for (mi_col = pc->cur_tile_mi_col_start;
mi_col < pc->cur_tile_mi_col_end; mi_col += (4 << CONFIG_SB8X8)) {
decode_modes_sb(pbi, mi_row, mi_col, r, BLOCK_SIZE_SB64X64);
}
}
}
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, int first_partition_size,
vp9_reader *header_bc, vp9_reader *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
int tile_row, tile_col, delta_log2_tiles;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(pc->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 4 *
MAX_MB_PLANE * mb_cols_aligned_to_sb(pc));
vpx_memset(pc->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mb_cols_aligned_to_sb(pc));
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
vp9_reader bc_bak = {0};
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc);
decode_tile(pbi, residual_bc);
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc);
decode_tile(pbi, residual_bc);
if (has_more) {
const int size = read_le32(data_ptr);
data_ptr += 4 + size;
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
vp9_reader header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *data_end = data + pbi->source_sz;
size_t first_partition_size = 0;
YV12_BUFFER_CONFIG *new_fb = &pc->yv12_fb[pc->new_fb_idx];
int i;
xd->corrupted = 0; // start with no corruption of current frame
new_fb->corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
} else {
int scaling_active;
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
first_partition_size = read_le16(data + 1);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
// When error concealment is enabled we should only check the sync
// code if we have enough bits available
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
data = setup_frame_size(pbi, scaling_active, data, data_end);
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
return -1;
}
init_frame(pbi);
// Reset the frame pointers to the current frame size
vp8_yv12_realloc_frame_buffer(new_fb, pc->width, pc->height,
VP9BORDERINPIXELS);
if (vp9_reader_init(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
xd->lossless = vp9_read_bit(&header_bc);
if (xd->lossless) {
xd->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
xd->inv_txm4x4 = vp9_short_iwalsh4x4;
xd->itxm_add = vp9_idct_add_lossless_c;
xd->itxm_add_y_block = vp9_idct_add_y_block_lossless_c;
xd->itxm_add_uv_block = vp9_idct_add_uv_block_lossless_c;
} else {
xd->inv_txm4x4_1 = vp9_short_idct4x4_1;
xd->inv_txm4x4 = vp9_short_idct4x4;
xd->itxm_add = vp9_idct_add;
xd->itxm_add_y_block = vp9_idct_add_y_block;
xd->itxm_add_uv_block = vp9_idct_add_uv_block;
}
setup_loopfilter(pc, xd, &header_bc);
setup_quantization(pbi, &header_bc);
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type == KEY_FRAME) {
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
pc->active_ref_idx[i] = pc->new_fb_idx;
} else {
// Should the GF or ARF be updated from the current frame
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
// Select active reference frames and calculate scaling factors
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int ref = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
const int mapped_ref = pc->ref_frame_map[ref];
YV12_BUFFER_CONFIG *const fb = &pc->yv12_fb[mapped_ref];
struct scale_factors *const sf = &pc->active_ref_scale[i];
pc->active_ref_idx[i] = mapped_ref;
if (mapped_ref >= NUM_YV12_BUFFERS)
memset(sf, 0, sizeof(*sf));
else
vp9_setup_scale_factors_for_frame(sf, fb, pc->width, pc->height);
}
// Read the sign bias for each reference frame buffer.
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
pc->ref_frame_sign_bias[i + 1] = vp9_read_bit(&header_bc);
}
xd->allow_high_precision_mv = vp9_read_bit(&header_bc);
pc->mcomp_filter_type = read_mcomp_filter_type(&header_bc);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
// To enable choice of different interpolation filters
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
if (!pc->error_resilient_mode) {
pc->refresh_frame_context = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_frame_context = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
pc->fc = pc->frame_contexts[pc->frame_context_idx];
setup_segmentation(pc, xd, &header_bc);
setup_pred_probs(pc, &header_bc);
setup_txfm_mode(pc, xd->lossless, &header_bc);
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
if (vp9_read(&header_bc, 252))
pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc);
}
#if CONFIG_MODELCOEFPROB
if (pc->frame_type == KEY_FRAME)
vp9_default_coef_probs(pc);
#endif
update_frame_context(&pc->fc);
read_coef_probs(pbi, &header_bc);
#if CONFIG_CODE_ZEROGROUP
read_zpc_probs(pc, &header_bc);
#endif
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
setup_pre_planes(xd, &pc->yv12_fb[pc->active_ref_idx[0]], NULL,
0, 0, NULL, NULL);
setup_dst_planes(xd, new_fb, 0, 0);
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mi_rows * pc->mi_cols), 1));
vp9_setup_block_dptrs(xd);
// clear out the coeff buffer
for (i = 0; i < MAX_MB_PLANE; ++i)
vp9_zero(xd->plane[i].qcoeff);
vp9_decode_mode_mvs_init(pbi, &header_bc);
decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc);
pc->last_width = pc->width;
pc->last_height = pc->height;
new_fb->corrupted = vp9_reader_has_error(&header_bc) | xd->corrupted;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME && !new_fb->corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
// Adaptation
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
#if CONFIG_CODE_ZEROGROUP
vp9_adapt_zpc_probs(pc);
#endif
if (pc->frame_type != KEY_FRAME) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(pc);
}
}
#if CONFIG_IMPLICIT_SEGMENTATION
// If signalled at the frame level apply implicit updates to the segment map.
if (!pc->error_resilient_mode && xd->allow_implicit_segment_update) {
vp9_implicit_segment_map_update(pc);
}
#endif
if (pc->refresh_frame_context)
pc->frame_contexts[pc->frame_context_idx] = pc->fc;
*p_data_end = vp9_reader_find_end(&residual_bc);
return 0;
}