559166acfe
For reference frames: enable scale partition for superblocks with low source sad or if bsize on lower-resoln is at least 32x32. Keep feature disabled for base temporal layer. Small regression in avgPNSR/SSIM metrics, ~0.5-1%. Speedup ~2-3% on mac for SVC (3 spatial/3 temporal layers) at speed 7. Change-Id: I5987eb7763845b680059128b538bb5188be0cca5
5158 lines
195 KiB
C
5158 lines
195 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "./vpx_config.h"
|
|
|
|
#include "vpx_dsp/vpx_dsp_common.h"
|
|
#include "vpx_ports/mem.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#include "vpx_ports/system_state.h"
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_idct.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/encoder/vp9_aq_360.h"
|
|
#include "vp9/encoder/vp9_aq_complexity.h"
|
|
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
|
|
#include "vp9/encoder/vp9_aq_variance.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_ethread.h"
|
|
#include "vp9/encoder/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_pickmode.h"
|
|
#include "vp9/encoder/vp9_rd.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
|
|
int output_enabled, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
|
|
|
|
// Machine learning-based early termination parameters.
|
|
static const double train_mean[24] = {
|
|
303501.697372, 3042630.372158, 24.694696, 1.392182,
|
|
689.413511, 162.027012, 1.478213, 0.0,
|
|
135382.260230, 912738.513263, 28.845217, 1.515230,
|
|
544.158492, 131.807995, 1.436863, 0.0,
|
|
43682.377587, 208131.711766, 28.084737, 1.356677,
|
|
138.254122, 119.522553, 1.252322, 0.0
|
|
};
|
|
|
|
static const double train_stdm[24] = {
|
|
673689.212982, 5996652.516628, 0.024449, 1.989792,
|
|
985.880847, 0.014638, 2.001898, 0.0,
|
|
208798.775332, 1812548.443284, 0.018693, 1.838009,
|
|
396.986910, 0.015657, 1.332541, 0.0,
|
|
55888.847031, 448587.962714, 0.017900, 1.904776,
|
|
98.652832, 0.016598, 1.320992, 0.0
|
|
};
|
|
|
|
// Error tolerance: 0.01%-0.0.05%-0.1%
|
|
static const double classifiers[24] = {
|
|
0.111736, 0.289977, 0.042219, 0.204765, 0.120410, -0.143863,
|
|
0.282376, 0.847811, 0.637161, 0.131570, 0.018636, 0.202134,
|
|
0.112797, 0.028162, 0.182450, 1.124367, 0.386133, 0.083700,
|
|
0.050028, 0.150873, 0.061119, 0.109318, 0.127255, 0.625211
|
|
};
|
|
|
|
// This is used as a reference when computing the source variance for the
|
|
// purpose of activity masking.
|
|
// Eventually this should be replaced by custom no-reference routines,
|
|
// which will be faster.
|
|
static const uint8_t VP9_VAR_OFFS[64] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
|
|
};
|
|
|
|
static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16
|
|
};
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse;
|
|
const unsigned int var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
|
|
return var;
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
|
|
BLOCK_SIZE bs, int bd) {
|
|
unsigned int var, sse;
|
|
switch (bd) {
|
|
case 10:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
|
|
break;
|
|
case 12:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
|
|
break;
|
|
case 8:
|
|
default:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
|
|
break;
|
|
}
|
|
return var;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
BLOCK_SIZE bs) {
|
|
return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
|
|
num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
BLOCK_SIZE bs, int bd) {
|
|
return (unsigned int)ROUND64_POWER_OF_TWO(
|
|
(int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
|
|
num_pels_log2_lookup[bs]);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse, var;
|
|
uint8_t *last_y;
|
|
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
|
|
assert(last != NULL);
|
|
last_y =
|
|
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int mi_row, int mi_col) {
|
|
unsigned int var = get_sby_perpixel_diff_variance(
|
|
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
|
|
if (var < 8)
|
|
return BLOCK_64X64;
|
|
else if (var < 128)
|
|
return BLOCK_32X32;
|
|
else if (var < 2048)
|
|
return BLOCK_16X16;
|
|
else
|
|
return BLOCK_8X8;
|
|
}
|
|
|
|
// Lighter version of set_offsets that only sets the mode info
|
|
// pointers.
|
|
static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
|
|
MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, int mi_row,
|
|
int mi_col) {
|
|
const int idx_str = xd->mi_stride * mi_row + mi_col;
|
|
xd->mi = cm->mi_grid_visible + idx_str;
|
|
xd->mi[0] = cm->mi + idx_str;
|
|
x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
|
|
}
|
|
|
|
static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
MvLimits *const mv_limits = &x->mv_limits;
|
|
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
|
|
mi = xd->mi[0];
|
|
|
|
// Set up destination pointers.
|
|
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
|
|
// Set up limit values for MV components.
|
|
// Mv beyond the range do not produce new/different prediction block.
|
|
mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units.
|
|
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
|
|
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
|
|
cm->mi_cols);
|
|
|
|
// Set up source buffers.
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
// R/D setup.
|
|
x->rddiv = cpi->rd.RDDIV;
|
|
x->rdmult = cpi->rd.RDMULT;
|
|
|
|
// Setup segment ID.
|
|
if (seg->enabled) {
|
|
if (cpi->oxcf.aq_mode != VARIANCE_AQ && cpi->oxcf.aq_mode != LOOKAHEAD_AQ &&
|
|
cpi->oxcf.aq_mode != EQUATOR360_AQ) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
|
|
x->encode_breakout = cpi->segment_encode_breakout[mi->segment_id];
|
|
} else {
|
|
mi->segment_id = 0;
|
|
x->encode_breakout = cpi->encode_breakout;
|
|
}
|
|
|
|
// required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
|
|
xd->tile = *tile;
|
|
}
|
|
|
|
static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const int block_width =
|
|
VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
|
|
const int block_height =
|
|
VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
|
|
const int mi_stride = xd->mi_stride;
|
|
MODE_INFO *const src_mi = xd->mi[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < block_height; ++j)
|
|
for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
|
|
}
|
|
|
|
static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
|
|
set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
|
|
xd->mi[0]->sb_type = bsize;
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
// This struct is used for computing variance in choose_partitioning(), where
|
|
// the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
|
|
// in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
|
|
// * 16 = 2^32).
|
|
uint32_t sum_square_error;
|
|
int32_t sum_error;
|
|
int log2_count;
|
|
int variance;
|
|
} var;
|
|
|
|
typedef struct {
|
|
var none;
|
|
var horz[2];
|
|
var vert[2];
|
|
} partition_variance;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
var split[4];
|
|
} v4x4;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v4x4 split[4];
|
|
} v8x8;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v8x8 split[4];
|
|
} v16x16;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v16x16 split[4];
|
|
} v32x32;
|
|
|
|
typedef struct {
|
|
partition_variance part_variances;
|
|
v32x32 split[4];
|
|
} v64x64;
|
|
|
|
typedef struct {
|
|
partition_variance *part_variances;
|
|
var *split[4];
|
|
} variance_node;
|
|
|
|
typedef enum {
|
|
V16X16,
|
|
V32X32,
|
|
V64X64,
|
|
} TREE_LEVEL;
|
|
|
|
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
|
|
int i;
|
|
node->part_variances = NULL;
|
|
switch (bsize) {
|
|
case BLOCK_64X64: {
|
|
v64x64 *vt = (v64x64 *)data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_32X32: {
|
|
v32x32 *vt = (v32x32 *)data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_16X16: {
|
|
v16x16 *vt = (v16x16 *)data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_8X8: {
|
|
v8x8 *vt = (v8x8 *)data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].part_variances.none;
|
|
break;
|
|
}
|
|
case BLOCK_4X4: {
|
|
v4x4 *vt = (v4x4 *)data;
|
|
node->part_variances = &vt->part_variances;
|
|
for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
|
|
break;
|
|
}
|
|
default: {
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set variance values given sum square error, sum error, count.
|
|
static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
|
|
v->sum_square_error = s2;
|
|
v->sum_error = s;
|
|
v->log2_count = c;
|
|
}
|
|
|
|
static void get_variance(var *v) {
|
|
v->variance =
|
|
(int)(256 * (v->sum_square_error -
|
|
((v->sum_error * v->sum_error) >> v->log2_count)) >>
|
|
v->log2_count);
|
|
}
|
|
|
|
static void sum_2_variances(const var *a, const var *b, var *r) {
|
|
assert(a->log2_count == b->log2_count);
|
|
fill_variance(a->sum_square_error + b->sum_square_error,
|
|
a->sum_error + b->sum_error, a->log2_count + 1, r);
|
|
}
|
|
|
|
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
|
|
variance_node node;
|
|
memset(&node, 0, sizeof(node));
|
|
tree_to_node(data, bsize, &node);
|
|
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
|
|
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
|
|
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
|
|
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
|
|
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
|
|
&node.part_variances->none);
|
|
}
|
|
|
|
static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, void *data,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col,
|
|
int64_t threshold, BLOCK_SIZE bsize_min,
|
|
int force_split) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
variance_node vt;
|
|
const int block_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int block_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
assert(block_height == block_width);
|
|
tree_to_node(data, bsize, &vt);
|
|
|
|
if (force_split == 1) return 0;
|
|
|
|
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
|
|
// variance is below threshold, otherwise split will be selected.
|
|
// No check for vert/horiz split as too few samples for variance.
|
|
if (bsize == bsize_min) {
|
|
// Variance already computed to set the force_split.
|
|
if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none);
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows &&
|
|
vt.part_variances->none.variance < threshold) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
} else if (bsize > bsize_min) {
|
|
// Variance already computed to set the force_split.
|
|
if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none);
|
|
// For key frame: take split for bsize above 32X32 or very high variance.
|
|
if (cm->frame_type == KEY_FRAME &&
|
|
(bsize > BLOCK_32X32 ||
|
|
vt.part_variances->none.variance > (threshold << 4))) {
|
|
return 0;
|
|
}
|
|
// If variance is low, take the bsize (no split).
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows &&
|
|
vt.part_variances->none.variance < threshold) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
return 1;
|
|
}
|
|
|
|
// Check vertical split.
|
|
if (mi_row + block_height / 2 < cm->mi_rows) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
|
|
get_variance(&vt.part_variances->vert[0]);
|
|
get_variance(&vt.part_variances->vert[1]);
|
|
if (vt.part_variances->vert[0].variance < threshold &&
|
|
vt.part_variances->vert[1].variance < threshold &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
|
|
return 1;
|
|
}
|
|
}
|
|
// Check horizontal split.
|
|
if (mi_col + block_width / 2 < cm->mi_cols) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
get_variance(&vt.part_variances->horz[0]);
|
|
get_variance(&vt.part_variances->horz[1]);
|
|
if (vt.part_variances->horz[0].variance < threshold &&
|
|
vt.part_variances->horz[1].variance < threshold &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
|
|
int width, int height,
|
|
int content_state) {
|
|
if (speed >= 8) {
|
|
if (width <= 640 && height <= 480)
|
|
return (5 * threshold_base) >> 2;
|
|
else if ((content_state == kLowSadLowSumdiff) ||
|
|
(content_state == kHighSadLowSumdiff) ||
|
|
(content_state == kLowVarHighSumdiff))
|
|
return (5 * threshold_base) >> 2;
|
|
} else if (speed == 7) {
|
|
if ((content_state == kLowSadLowSumdiff) ||
|
|
(content_state == kHighSadLowSumdiff) ||
|
|
(content_state == kLowVarHighSumdiff)) {
|
|
return (5 * threshold_base) >> 2;
|
|
}
|
|
}
|
|
return threshold_base;
|
|
}
|
|
|
|
// Set the variance split thresholds for following the block sizes:
|
|
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
|
|
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
|
|
// currently only used on key frame.
|
|
static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
|
|
int content_state) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
const int threshold_multiplier = is_key_frame ? 20 : 1;
|
|
int64_t threshold_base =
|
|
(int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
|
|
|
|
if (is_key_frame) {
|
|
thresholds[0] = threshold_base;
|
|
thresholds[1] = threshold_base >> 2;
|
|
thresholds[2] = threshold_base >> 2;
|
|
thresholds[3] = threshold_base << 2;
|
|
} else {
|
|
// Increase base variance threshold based on estimated noise level.
|
|
if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
|
|
NOISE_LEVEL noise_level =
|
|
vp9_noise_estimate_extract_level(&cpi->noise_estimate);
|
|
if (noise_level == kHigh)
|
|
threshold_base = 3 * threshold_base;
|
|
else if (noise_level == kMedium)
|
|
threshold_base = threshold_base << 1;
|
|
else if (noise_level < kLow)
|
|
threshold_base = (7 * threshold_base) >> 3;
|
|
}
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
|
|
cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
|
|
threshold_base =
|
|
vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
|
|
content_state, cpi->svc.temporal_layer_id);
|
|
else
|
|
threshold_base =
|
|
scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
|
|
cm->height, content_state);
|
|
#else
|
|
// Increase base variance threshold based on content_state/sum_diff level.
|
|
threshold_base = scale_part_thresh_sumdiff(
|
|
threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
|
|
#endif
|
|
thresholds[0] = threshold_base;
|
|
thresholds[2] = threshold_base << cpi->oxcf.speed;
|
|
if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
|
|
thresholds[2] = thresholds[2] << 1;
|
|
if (cm->width <= 352 && cm->height <= 288) {
|
|
thresholds[0] = threshold_base >> 3;
|
|
thresholds[1] = threshold_base >> 1;
|
|
thresholds[2] = threshold_base << 3;
|
|
} else if (cm->width < 1280 && cm->height < 720) {
|
|
thresholds[1] = (5 * threshold_base) >> 2;
|
|
} else if (cm->width < 1920 && cm->height < 1080) {
|
|
thresholds[1] = threshold_base << 1;
|
|
} else {
|
|
thresholds[1] = (5 * threshold_base) >> 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
|
|
int content_state) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
if (sf->partition_search_type != VAR_BASED_PARTITION &&
|
|
sf->partition_search_type != REFERENCE_PARTITION) {
|
|
return;
|
|
} else {
|
|
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
|
|
// The thresholds below are not changed locally.
|
|
if (is_key_frame) {
|
|
cpi->vbp_threshold_sad = 0;
|
|
cpi->vbp_threshold_copy = 0;
|
|
cpi->vbp_bsize_min = BLOCK_8X8;
|
|
} else {
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
cpi->vbp_threshold_sad = 10;
|
|
else
|
|
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
|
|
? (cpi->y_dequant[q][1] << 1)
|
|
: 1000;
|
|
cpi->vbp_bsize_min = BLOCK_16X16;
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
cpi->vbp_threshold_copy = 4000;
|
|
else if (cm->width <= 640 && cm->height <= 360)
|
|
cpi->vbp_threshold_copy = 8000;
|
|
else
|
|
cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
|
|
? (cpi->y_dequant[q][1] << 3)
|
|
: 8000;
|
|
}
|
|
cpi->vbp_threshold_minmax = 15 + (q >> 3);
|
|
}
|
|
}
|
|
|
|
// Compute the minmax over the 8x8 subblocks.
|
|
static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x16_idx, int y16_idx,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide, int pixels_high) {
|
|
int k;
|
|
int minmax_max = 0;
|
|
int minmax_min = 255;
|
|
// Loop over the 4 8x8 subblocks.
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
int min = 0;
|
|
int max = 0;
|
|
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
|
|
d + y8_idx * dp + x8_idx, dp, &min, &max);
|
|
} else {
|
|
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
|
|
dp, &min, &max);
|
|
}
|
|
#else
|
|
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
|
|
&min, &max);
|
|
#endif
|
|
if ((max - min) > minmax_max) minmax_max = (max - min);
|
|
if ((max - min) < minmax_min) minmax_min = (max - min);
|
|
}
|
|
}
|
|
return (minmax_max - minmax_min);
|
|
}
|
|
|
|
static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x8_idx, int y8_idx, v8x8 *vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide, int pixels_high,
|
|
int is_key_frame) {
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
int x4_idx = x8_idx + ((k & 1) << 2);
|
|
int y4_idx = y8_idx + ((k >> 1) << 2);
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
if (x4_idx < pixels_wide && y4_idx < pixels_high) {
|
|
int s_avg;
|
|
int d_avg = 128;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
} else {
|
|
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
}
|
|
#else
|
|
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
|
|
if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
|
|
#endif
|
|
sum = s_avg - d_avg;
|
|
sse = sum * sum;
|
|
}
|
|
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
|
|
}
|
|
}
|
|
|
|
static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
|
|
int dp, int x16_idx, int y16_idx, v16x16 *vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int highbd_flag,
|
|
#endif
|
|
int pixels_wide, int pixels_high,
|
|
int is_key_frame) {
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
|
|
int s_avg;
|
|
int d_avg = 128;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
|
|
s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame)
|
|
d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
} else {
|
|
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
}
|
|
#else
|
|
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
|
|
if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
|
|
#endif
|
|
sum = s_avg - d_avg;
|
|
sse = sum * sum;
|
|
}
|
|
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
|
|
}
|
|
}
|
|
|
|
// Check if most of the superblock is skin content, and if so, force split to
|
|
// 32x32, and set x->sb_is_skin for use in mode selection.
|
|
static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res,
|
|
int mi_row, int mi_col, int *force_split) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) return 0;
|
|
#endif
|
|
// Avoid checking superblocks on/near boundary and avoid low resolutions.
|
|
// Note superblock may still pick 64X64 if y_sad is very small
|
|
// (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
|
|
if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
|
|
mi_row + 8 < cm->mi_rows)) {
|
|
int num_16x16_skin = 0;
|
|
int num_16x16_nonskin = 0;
|
|
uint8_t *ysignal = x->plane[0].src.buf;
|
|
uint8_t *usignal = x->plane[1].src.buf;
|
|
uint8_t *vsignal = x->plane[2].src.buf;
|
|
int sp = x->plane[0].src.stride;
|
|
int spuv = x->plane[1].src.stride;
|
|
const int block_index = mi_row * cm->mi_cols + mi_col;
|
|
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
|
|
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
|
|
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
|
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
|
// Loop through the 16x16 sub-blocks.
|
|
int i, j;
|
|
for (i = 0; i < ymis; i += 2) {
|
|
for (j = 0; j < xmis; j += 2) {
|
|
int bl_index = block_index + i * cm->mi_cols + j;
|
|
int is_skin = cpi->skin_map[bl_index];
|
|
num_16x16_skin += is_skin;
|
|
num_16x16_nonskin += (1 - is_skin);
|
|
if (num_16x16_nonskin > 3) {
|
|
// Exit loop if at least 4 of the 16x16 blocks are not skin.
|
|
i = ymis;
|
|
break;
|
|
}
|
|
ysignal += 16;
|
|
usignal += 8;
|
|
vsignal += 8;
|
|
}
|
|
ysignal += (sp << 4) - 64;
|
|
usignal += (spuv << 3) - 32;
|
|
vsignal += (spuv << 3) - 32;
|
|
}
|
|
if (num_16x16_skin > 12) {
|
|
*force_split = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
|
|
v64x64 *vt, int64_t thresholds[],
|
|
MV_REFERENCE_FRAME ref_frame_partition,
|
|
int mi_col, int mi_row) {
|
|
int i, j;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mv_thr = cm->width > 640 ? 8 : 4;
|
|
// Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
|
|
// int_pro mv is small. If the temporal variance is small set the flag
|
|
// variance_low for the block. The variance threshold can be adjusted, the
|
|
// higher the more aggressive.
|
|
if (ref_frame_partition == LAST_FRAME &&
|
|
(cpi->sf.short_circuit_low_temp_var == 1 ||
|
|
(xd->mi[0]->mv[0].as_mv.col < mv_thr &&
|
|
xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
|
|
xd->mi[0]->mv[0].as_mv.row < mv_thr &&
|
|
xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
|
|
if (xd->mi[0]->sb_type == BLOCK_64X64) {
|
|
if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
|
|
x->variance_low[0] = 1;
|
|
} else if (xd->mi[0]->sb_type == BLOCK_64X32) {
|
|
for (i = 0; i < 2; i++) {
|
|
if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
|
|
x->variance_low[i + 1] = 1;
|
|
}
|
|
} else if (xd->mi[0]->sb_type == BLOCK_32X64) {
|
|
for (i = 0; i < 2; i++) {
|
|
if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
|
|
x->variance_low[i + 3] = 1;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 4; i++) {
|
|
const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
|
|
const int idx_str =
|
|
cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
|
|
MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
|
|
|
|
if (cm->mi_cols <= mi_col + idx[i][1] ||
|
|
cm->mi_rows <= mi_row + idx[i][0])
|
|
continue;
|
|
|
|
if ((*this_mi)->sb_type == BLOCK_32X32) {
|
|
int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
|
|
cpi->sf.short_circuit_low_temp_var == 3)
|
|
? ((5 * thresholds[1]) >> 3)
|
|
: (thresholds[1] >> 1);
|
|
if (vt->split[i].part_variances.none.variance < threshold_32x32)
|
|
x->variance_low[i + 5] = 1;
|
|
} else if (cpi->sf.short_circuit_low_temp_var >= 2) {
|
|
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
|
|
// inside.
|
|
if ((*this_mi)->sb_type == BLOCK_16X16 ||
|
|
(*this_mi)->sb_type == BLOCK_32X16 ||
|
|
(*this_mi)->sb_type == BLOCK_16X32) {
|
|
for (j = 0; j < 4; j++) {
|
|
if (vt->split[i].split[j].part_variances.none.variance <
|
|
(thresholds[2] >> 8))
|
|
x->variance_low[(i << 2) + j + 9] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
|
|
MACROBLOCKD *xd, BLOCK_SIZE bsize,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BLOCK_SIZE *prev_part = cpi->prev_partition;
|
|
int start_pos = mi_row * cm->mi_stride + mi_col;
|
|
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int bs = (1 << bsl) >> 2;
|
|
BLOCK_SIZE subsize;
|
|
PARTITION_TYPE partition;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
partition = partition_lookup[bsl][prev_part[start_pos]];
|
|
subsize = get_subsize(bsize, partition);
|
|
|
|
if (subsize < BLOCK_8X8) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
|
|
break;
|
|
case PARTITION_VERT:
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
|
|
copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
|
|
copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
|
|
copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
|
|
int mi_row, int mi_col, int segment_id,
|
|
int sb_offset) {
|
|
int svc_copy_allowed = 1;
|
|
int frames_since_key_thresh = 1;
|
|
if (cpi->use_svc) {
|
|
// For SVC, don't allow copy if base spatial layer is key frame, or if
|
|
// frame is not a temporal enhancement layer frame.
|
|
int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
|
|
cpi->svc.number_temporal_layers);
|
|
const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
|
|
if (lc->is_key_frame ||
|
|
(cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1 &&
|
|
cpi->svc.number_temporal_layers > 1))
|
|
svc_copy_allowed = 0;
|
|
frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
|
|
}
|
|
if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
|
|
!cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
|
|
cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
|
|
cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
|
|
if (cpi->prev_partition != NULL) {
|
|
copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
|
|
cpi->copied_frame_cnt[sb_offset] += 1;
|
|
memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
|
|
sizeof(x->variance_low));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col,
|
|
int mi_row_high, int mi_col_high) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
SVC *const svc = &cpi->svc;
|
|
BLOCK_SIZE *prev_part = svc->prev_partition_svc;
|
|
// Variables with _high are for higher resolution.
|
|
int bsize_high = 0;
|
|
int subsize_high = 0;
|
|
const int bsl_high = b_width_log2_lookup[bsize];
|
|
const int bs_high = (1 << bsl_high) >> 2;
|
|
const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
|
|
const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
|
|
|
|
const int row_boundary_block_scale_factor[BLOCK_SIZES] = {
|
|
13, 13, 13, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
|
|
};
|
|
const int col_boundary_block_scale_factor[BLOCK_SIZES] = {
|
|
13, 13, 13, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0
|
|
};
|
|
int start_pos;
|
|
BLOCK_SIZE bsize_low;
|
|
PARTITION_TYPE partition_high;
|
|
|
|
if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
|
|
if (mi_row >= (cm->mi_rows >> 1) || mi_col >= (cm->mi_cols >> 1)) return 0;
|
|
|
|
// Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
|
|
start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
|
|
bsize_low = prev_part[start_pos];
|
|
// The block size is too big for boundaries. Do variance based partitioning.
|
|
if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
|
|
|
|
// For reference frames: return 1 (do variance-based partitioning) if the
|
|
// superblock is not low source sad and lower-resoln bsize is below 32x32.
|
|
if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
|
|
bsize_low < BLOCK_32X32)
|
|
return 1;
|
|
|
|
// Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
|
|
if (bsize_low < BLOCK_32X32) {
|
|
bsize_high = bsize_low + 3;
|
|
} else if (bsize_low >= BLOCK_32X32) {
|
|
bsize_high = BLOCK_64X64;
|
|
}
|
|
// Scale up blocks on boundary.
|
|
if (!has_cols && has_rows) {
|
|
bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
|
|
} else if (has_cols && !has_rows) {
|
|
bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
|
|
} else if (!has_cols && !has_rows) {
|
|
bsize_high = bsize_low;
|
|
}
|
|
|
|
partition_high = partition_lookup[bsl_high][bsize_high];
|
|
subsize_high = get_subsize(bsize, partition_high);
|
|
|
|
if (subsize_high < BLOCK_8X8) {
|
|
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
|
|
} else {
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int bs = (1 << bsl) >> 2;
|
|
switch (partition_high) {
|
|
case PARTITION_NONE:
|
|
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
|
|
if (subsize_high < BLOCK_64X64)
|
|
set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
|
|
subsize_high);
|
|
break;
|
|
case PARTITION_VERT:
|
|
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
|
|
if (subsize_high < BLOCK_64X64)
|
|
set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
|
|
subsize_high);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
|
|
mi_row_high, mi_col_high))
|
|
return 1;
|
|
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
|
|
mi_col, mi_row_high + bs_high, mi_col_high))
|
|
return 1;
|
|
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
|
|
mi_col + (bs >> 1), mi_row_high,
|
|
mi_col_high + bs_high))
|
|
return 1;
|
|
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
|
|
mi_col + (bs >> 1), mi_row_high + bs_high,
|
|
mi_col_high + bs_high))
|
|
return 1;
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
|
|
int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
|
|
int start_pos = mi_row * cm->mi_stride + mi_col;
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int bs = (1 << bsl) >> 2;
|
|
BLOCK_SIZE subsize;
|
|
PARTITION_TYPE partition;
|
|
const MODE_INFO *mi = NULL;
|
|
int xx, yy;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
mi = cm->mi_grid_visible[start_pos];
|
|
partition = partition_lookup[bsl][mi->sb_type];
|
|
subsize = get_subsize(bsize, partition);
|
|
if (subsize < BLOCK_8X8) {
|
|
prev_part[start_pos] = bsize;
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
prev_part[start_pos] = bsize;
|
|
if (bsize == BLOCK_64X64) {
|
|
for (xx = 0; xx < 8; xx += 4)
|
|
for (yy = 0; yy < 8; yy += 4) {
|
|
if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
|
|
prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
prev_part[start_pos] = subsize;
|
|
if (mi_row + bs < cm->mi_rows)
|
|
prev_part[start_pos + bs * cm->mi_stride] = subsize;
|
|
break;
|
|
case PARTITION_VERT:
|
|
prev_part[start_pos] = subsize;
|
|
if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
update_partition_svc(cpi, subsize, mi_row, mi_col);
|
|
update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
|
|
update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
|
|
update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_prev_partition(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
|
|
int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BLOCK_SIZE *prev_part = cpi->prev_partition;
|
|
int start_pos = mi_row * cm->mi_stride + mi_col;
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int bs = (1 << bsl) >> 2;
|
|
BLOCK_SIZE subsize;
|
|
PARTITION_TYPE partition;
|
|
const MODE_INFO *mi = NULL;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
mi = cm->mi_grid_visible[start_pos];
|
|
partition = partition_lookup[bsl][mi->sb_type];
|
|
subsize = get_subsize(bsize, partition);
|
|
if (subsize < BLOCK_8X8) {
|
|
prev_part[start_pos] = bsize;
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE: prev_part[start_pos] = bsize; break;
|
|
case PARTITION_HORZ:
|
|
prev_part[start_pos] = subsize;
|
|
if (mi_row + bs < cm->mi_rows)
|
|
prev_part[start_pos + bs * cm->mi_stride] = subsize;
|
|
break;
|
|
case PARTITION_VERT:
|
|
prev_part[start_pos] = subsize;
|
|
if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
update_prev_partition(cpi, subsize, mi_row, mi_col);
|
|
update_prev_partition(cpi, subsize, mi_row + bs, mi_col);
|
|
update_prev_partition(cpi, subsize, mi_row, mi_col + bs);
|
|
update_prev_partition(cpi, subsize, mi_row + bs, mi_col + bs);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
|
|
unsigned int y_sad, int is_key_frame) {
|
|
int i;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
|
|
if (is_key_frame) return;
|
|
|
|
// For speed >= 8, avoid the chroma check if y_sad is above threshold.
|
|
if (cpi->oxcf.speed >= 8) {
|
|
if (y_sad > cpi->vbp_thresholds[1] &&
|
|
(!cpi->noise_estimate.enabled ||
|
|
vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
|
|
return;
|
|
}
|
|
|
|
for (i = 1; i <= 2; ++i) {
|
|
unsigned int uv_sad = UINT_MAX;
|
|
struct macroblock_plane *p = &x->plane[i];
|
|
struct macroblockd_plane *pd = &xd->plane[i];
|
|
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
|
|
|
|
if (bs != BLOCK_INVALID)
|
|
uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
|
|
pd->dst.stride);
|
|
|
|
// TODO(marpan): Investigate if we should lower this threshold if
|
|
// superblock is detected as skin.
|
|
x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
|
|
}
|
|
}
|
|
|
|
static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
|
|
int sb_offset) {
|
|
unsigned int tmp_sse;
|
|
uint64_t tmp_sad;
|
|
unsigned int tmp_variance;
|
|
const BLOCK_SIZE bsize = BLOCK_64X64;
|
|
uint8_t *src_y = cpi->Source->y_buffer;
|
|
int src_ystride = cpi->Source->y_stride;
|
|
uint8_t *last_src_y = cpi->Last_Source->y_buffer;
|
|
int last_src_ystride = cpi->Last_Source->y_stride;
|
|
uint64_t avg_source_sad_threshold = 10000;
|
|
uint64_t avg_source_sad_threshold2 = 12000;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) return 0;
|
|
#endif
|
|
src_y += shift;
|
|
last_src_y += shift;
|
|
tmp_sad =
|
|
cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
|
|
tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
|
|
last_src_ystride, &tmp_sse);
|
|
// Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
|
|
if (tmp_sad < avg_source_sad_threshold)
|
|
x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
|
|
: kLowSadHighSumdiff;
|
|
else
|
|
x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
|
|
: kHighSadHighSumdiff;
|
|
|
|
// Detect large lighting change.
|
|
if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
|
|
cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
|
|
(tmp_sse - tmp_variance) > 10000)
|
|
x->content_state_sb = kLowVarHighSumdiff;
|
|
else if (tmp_sad > (avg_source_sad_threshold << 1))
|
|
x->content_state_sb = kVeryHighSad;
|
|
|
|
if (cpi->content_state_sb_fd != NULL) {
|
|
if (tmp_sad < avg_source_sad_threshold2) {
|
|
// Cap the increment to 255.
|
|
if (cpi->content_state_sb_fd[sb_offset] < 255)
|
|
cpi->content_state_sb_fd[sb_offset]++;
|
|
} else {
|
|
cpi->content_state_sb_fd[sb_offset] = 0;
|
|
}
|
|
}
|
|
return tmp_sad;
|
|
}
|
|
|
|
// This function chooses partitioning based on the variance between source and
|
|
// reconstructed last, where variance is computed for down-sampled inputs.
|
|
static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCK *x, int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int i, j, k, m;
|
|
v64x64 vt;
|
|
v16x16 *vt2 = NULL;
|
|
int force_split[21];
|
|
int avg_32x32;
|
|
int max_var_32x32 = 0;
|
|
int min_var_32x32 = INT_MAX;
|
|
int var_32x32;
|
|
int avg_16x16[4];
|
|
int maxvar_16x16[4];
|
|
int minvar_16x16[4];
|
|
int64_t threshold_4x4avg;
|
|
NOISE_LEVEL noise_level = kLow;
|
|
int content_state = 0;
|
|
uint8_t *s;
|
|
const uint8_t *d;
|
|
int sp;
|
|
int dp;
|
|
int compute_minmax_variance = 1;
|
|
unsigned int y_sad = UINT_MAX;
|
|
BLOCK_SIZE bsize = BLOCK_64X64;
|
|
// Ref frame used in partitioning.
|
|
MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
|
|
int pixels_wide = 64, pixels_high = 64;
|
|
int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
|
|
cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
|
|
|
|
// For the variance computation under SVC mode, we treat the frame as key if
|
|
// the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
|
|
const int is_key_frame =
|
|
(cm->frame_type == KEY_FRAME ||
|
|
(is_one_pass_cbr_svc(cpi) &&
|
|
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
|
|
// Always use 4x4 partition for key frame.
|
|
const int use_4x4_partition = cm->frame_type == KEY_FRAME;
|
|
const int low_res = (cm->width <= 352 && cm->height <= 288);
|
|
int variance4x4downsample[16];
|
|
int segment_id;
|
|
int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
|
|
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
|
|
segment_id = xd->mi[0]->segment_id;
|
|
|
|
if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
|
|
compute_minmax_variance = 0;
|
|
|
|
if (cpi->sf.use_source_sad && !is_key_frame) {
|
|
int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
|
|
content_state = x->content_state_sb;
|
|
x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
|
|
content_state == kLowSadHighSumdiff)
|
|
? 1
|
|
: 0;
|
|
x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
|
|
if (cpi->content_state_sb_fd != NULL)
|
|
x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
|
|
|
|
// For SVC on top spatial layer: use/scale the partition from
|
|
// the lower spatial resolution if svc_use_lowres_part is enabled.
|
|
if (cpi->sf.svc_use_lowres_part &&
|
|
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
|
|
cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
|
|
if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
|
|
mi_col >> 1, mi_row, mi_col))
|
|
return 0;
|
|
}
|
|
// If source_sad is low copy the partition without computing the y_sad.
|
|
if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
|
|
copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
|
|
x->sb_use_mv_part = 1;
|
|
if (cpi->sf.svc_use_lowres_part &&
|
|
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
|
|
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
|
|
cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
set_vbp_thresholds(cpi, thresholds, q, content_state);
|
|
} else {
|
|
set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
|
|
}
|
|
|
|
// For non keyframes, disable 4x4 average for low resolution when speed = 8
|
|
threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
|
|
|
|
memset(x->variance_low, 0, sizeof(x->variance_low));
|
|
|
|
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
|
|
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
|
|
|
|
s = x->plane[0].src.buf;
|
|
sp = x->plane[0].src.stride;
|
|
|
|
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
|
|
// 5-20 for the 16x16 blocks.
|
|
force_split[0] = 0;
|
|
|
|
if (!is_key_frame) {
|
|
// In the case of spatial/temporal scalable coding, the assumption here is
|
|
// that the temporal reference frame will always be of type LAST_FRAME.
|
|
// TODO(marpan): If that assumption is broken, we need to revisit this code.
|
|
MODE_INFO *mi = xd->mi[0];
|
|
YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
|
|
const YV12_BUFFER_CONFIG *yv12_g = NULL;
|
|
unsigned int y_sad_g, y_sad_thr, y_sad_last;
|
|
bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
|
|
(mi_row + 4 < cm->mi_rows);
|
|
|
|
assert(yv12 != NULL);
|
|
|
|
if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) {
|
|
// For now, GOLDEN will not be used for non-zero spatial layers, since
|
|
// it may not be a temporal reference.
|
|
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
|
|
}
|
|
|
|
// Only compute y_sad_g (sad for golden reference) for speed < 8.
|
|
if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
|
|
(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
|
|
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
y_sad_g = cpi->fn_ptr[bsize].sdf(
|
|
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
|
|
xd->plane[0].pre[0].stride);
|
|
} else {
|
|
y_sad_g = UINT_MAX;
|
|
}
|
|
|
|
if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
|
|
cpi->rc.is_src_frame_alt_ref) {
|
|
yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
|
|
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
|
|
&cm->frame_refs[ALTREF_FRAME - 1].sf);
|
|
mi->ref_frame[0] = ALTREF_FRAME;
|
|
y_sad_g = UINT_MAX;
|
|
} else {
|
|
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
|
|
&cm->frame_refs[LAST_FRAME - 1].sf);
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
}
|
|
mi->ref_frame[1] = NONE;
|
|
mi->sb_type = BLOCK_64X64;
|
|
mi->mv[0].as_int = 0;
|
|
mi->interp_filter = BILINEAR;
|
|
|
|
if (cpi->oxcf.speed >= 8 && !low_res &&
|
|
x->content_state_sb != kVeryHighSad) {
|
|
y_sad = cpi->fn_ptr[bsize].sdf(
|
|
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
|
|
xd->plane[0].pre[0].stride);
|
|
} else {
|
|
y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
|
|
x->sb_use_mv_part = 1;
|
|
x->sb_mvcol_part = mi->mv[0].as_mv.col;
|
|
x->sb_mvrow_part = mi->mv[0].as_mv.row;
|
|
}
|
|
|
|
y_sad_last = y_sad;
|
|
// Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
|
|
// are close if short_circuit_low_temp_var is on.
|
|
y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
|
|
if (y_sad_g < y_sad_thr) {
|
|
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
mi->ref_frame[0] = GOLDEN_FRAME;
|
|
mi->mv[0].as_int = 0;
|
|
y_sad = y_sad_g;
|
|
ref_frame_partition = GOLDEN_FRAME;
|
|
} else {
|
|
x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
|
|
ref_frame_partition = LAST_FRAME;
|
|
}
|
|
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
|
|
|
|
if (cpi->use_skin_detection)
|
|
x->sb_is_skin =
|
|
skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split);
|
|
|
|
d = xd->plane[0].dst.buf;
|
|
dp = xd->plane[0].dst.stride;
|
|
|
|
// If the y_sad is very small, take 64x64 as partition and exit.
|
|
// Don't check on boosted segment for now, as 64x64 is suppressed there.
|
|
if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
|
|
const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
|
|
const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
|
|
if (mi_col + block_width / 2 < cm->mi_cols &&
|
|
mi_row + block_height / 2 < cm->mi_rows) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
|
|
x->variance_low[0] = 1;
|
|
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
|
|
if (cpi->sf.svc_use_lowres_part &&
|
|
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
|
|
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// If the y_sad is small enough, copy the partition of the superblock in the
|
|
// last frame to current frame only if the last frame is not a keyframe.
|
|
// Stop the copy every cpi->max_copied_frame to refresh the partition.
|
|
// TODO(jianj) : tune the threshold.
|
|
if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
|
|
copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
|
|
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
|
|
if (cpi->sf.svc_use_lowres_part &&
|
|
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
|
|
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
|
|
return 0;
|
|
}
|
|
} else {
|
|
d = VP9_VAR_OFFS;
|
|
dp = 0;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
switch (xd->bd) {
|
|
case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
|
|
case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
|
|
case 8:
|
|
default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
|
|
}
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
|
|
if (low_res && threshold_4x4avg < INT64_MAX)
|
|
CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
|
|
// Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
|
|
// for splits.
|
|
for (i = 0; i < 4; i++) {
|
|
const int x32_idx = ((i & 1) << 5);
|
|
const int y32_idx = ((i >> 1) << 5);
|
|
const int i2 = i << 2;
|
|
force_split[i + 1] = 0;
|
|
avg_16x16[i] = 0;
|
|
maxvar_16x16[i] = 0;
|
|
minvar_16x16[i] = INT_MAX;
|
|
for (j = 0; j < 4; j++) {
|
|
const int x16_idx = x32_idx + ((j & 1) << 4);
|
|
const int y16_idx = y32_idx + ((j >> 1) << 4);
|
|
const int split_index = 5 + i2 + j;
|
|
v16x16 *vst = &vt.split[i].split[j];
|
|
force_split[split_index] = 0;
|
|
variance4x4downsample[i2 + j] = 0;
|
|
if (!is_key_frame) {
|
|
fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide, pixels_high, is_key_frame);
|
|
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
|
|
get_variance(&vt.split[i].split[j].part_variances.none);
|
|
avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
|
|
if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
|
|
minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
|
|
if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
|
|
maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
|
|
if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
|
|
// 16X16 variance is above threshold for split, so force split to 8x8
|
|
// for this 16x16 block (this also forces splits for upper levels).
|
|
force_split[split_index] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
} else if (compute_minmax_variance &&
|
|
vt.split[i].split[j].part_variances.none.variance >
|
|
thresholds[1] &&
|
|
!cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
// We have some nominal amount of 16x16 variance (based on average),
|
|
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
|
|
// force split to 8x8 block for this 16x16 block.
|
|
int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide, pixels_high);
|
|
int thresh_minmax = (int)cpi->vbp_threshold_minmax;
|
|
if (x->content_state_sb == kVeryHighSad)
|
|
thresh_minmax = thresh_minmax << 1;
|
|
if (minmax > thresh_minmax) {
|
|
force_split[split_index] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
}
|
|
}
|
|
if (is_key_frame || (low_res &&
|
|
vt.split[i].split[j].part_variances.none.variance >
|
|
threshold_4x4avg)) {
|
|
force_split[split_index] = 0;
|
|
// Go down to 4x4 down-sampling for variance.
|
|
variance4x4downsample[i2 + j] = 1;
|
|
for (k = 0; k < 4; k++) {
|
|
int x8_idx = x16_idx + ((k & 1) << 3);
|
|
int y8_idx = y16_idx + ((k >> 1) << 3);
|
|
v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
|
|
fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
xd->cur_buf->flags,
|
|
#endif
|
|
pixels_wide, pixels_high, is_key_frame);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (cpi->noise_estimate.enabled)
|
|
noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
|
|
// Fill the rest of the variance tree by summing split partition values.
|
|
avg_32x32 = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
const int i2 = i << 2;
|
|
for (j = 0; j < 4; j++) {
|
|
if (variance4x4downsample[i2 + j] == 1) {
|
|
v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
|
|
for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
|
|
fill_variance_tree(vtemp, BLOCK_16X16);
|
|
// If variance of this 16x16 block is above the threshold, force block
|
|
// to split. This also forces a split on the upper levels.
|
|
get_variance(&vtemp->part_variances.none);
|
|
if (vtemp->part_variances.none.variance > thresholds[2]) {
|
|
force_split[5 + i2 + j] = 1;
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
}
|
|
}
|
|
fill_variance_tree(&vt.split[i], BLOCK_32X32);
|
|
// If variance of this 32x32 block is above the threshold, or if its above
|
|
// (some threshold of) the average variance over the sub-16x16 blocks, then
|
|
// force this block to split. This also forces a split on the upper
|
|
// (64x64) level.
|
|
if (!force_split[i + 1]) {
|
|
get_variance(&vt.split[i].part_variances.none);
|
|
var_32x32 = vt.split[i].part_variances.none.variance;
|
|
max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
|
|
min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
|
|
if (vt.split[i].part_variances.none.variance > thresholds[1] ||
|
|
(!is_key_frame &&
|
|
vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
|
|
vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
} else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
|
|
(maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
|
|
maxvar_16x16[i] > thresholds[1]) {
|
|
force_split[i + 1] = 1;
|
|
force_split[0] = 1;
|
|
}
|
|
avg_32x32 += var_32x32;
|
|
}
|
|
}
|
|
if (!force_split[0]) {
|
|
fill_variance_tree(&vt, BLOCK_64X64);
|
|
get_variance(&vt.part_variances.none);
|
|
// If variance of this 64x64 block is above (some threshold of) the average
|
|
// variance over the sub-32x32 blocks, then force this block to split.
|
|
// Only checking this for noise level >= medium for now.
|
|
if (!is_key_frame && noise_level >= kMedium &&
|
|
vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
|
|
force_split[0] = 1;
|
|
// Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
|
|
// a 64x64 block is greater than threshold and the maximum 32x32 variance is
|
|
// above a miniumum threshold, then force the split of a 64x64 block
|
|
// Only check this for low noise.
|
|
else if (!is_key_frame && noise_level < kMedium &&
|
|
(max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
|
|
max_var_32x32 > thresholds[0] >> 1)
|
|
force_split[0] = 1;
|
|
}
|
|
|
|
// Now go through the entire structure, splitting every block size until
|
|
// we get to one that's got a variance lower than our threshold.
|
|
if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
|
|
!set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
|
|
thresholds[0], BLOCK_16X16, force_split[0])) {
|
|
for (i = 0; i < 4; ++i) {
|
|
const int x32_idx = ((i & 1) << 2);
|
|
const int y32_idx = ((i >> 1) << 2);
|
|
const int i2 = i << 2;
|
|
if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
|
|
(mi_row + y32_idx), (mi_col + x32_idx),
|
|
thresholds[1], BLOCK_16X16,
|
|
force_split[i + 1])) {
|
|
for (j = 0; j < 4; ++j) {
|
|
const int x16_idx = ((j & 1) << 1);
|
|
const int y16_idx = ((j >> 1) << 1);
|
|
// For inter frames: if variance4x4downsample[] == 1 for this 16x16
|
|
// block, then the variance is based on 4x4 down-sampling, so use vt2
|
|
// in set_vt_partioning(), otherwise use vt.
|
|
v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
|
|
? &vt2[i2 + j]
|
|
: &vt.split[i].split[j];
|
|
if (!set_vt_partitioning(
|
|
cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
|
|
mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
|
|
force_split[5 + i2 + j])) {
|
|
for (k = 0; k < 4; ++k) {
|
|
const int x8_idx = (k & 1);
|
|
const int y8_idx = (k >> 1);
|
|
if (use_4x4_partition) {
|
|
if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
|
|
BLOCK_8X8,
|
|
mi_row + y32_idx + y16_idx + y8_idx,
|
|
mi_col + x32_idx + x16_idx + x8_idx,
|
|
thresholds[3], BLOCK_8X8, 0)) {
|
|
set_block_size(
|
|
cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
|
|
(mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
|
|
}
|
|
} else {
|
|
set_block_size(
|
|
cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
|
|
(mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME && cpi->sf.copy_partition_flag) {
|
|
update_prev_partition(cpi, BLOCK_64X64, mi_row, mi_col);
|
|
cpi->prev_segment_id[sb_offset] = segment_id;
|
|
memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
|
|
sizeof(x->variance_low));
|
|
// Reset the counter for copy partitioning
|
|
if (cpi->copied_frame_cnt[sb_offset] == cpi->max_copied_frame)
|
|
cpi->copied_frame_cnt[sb_offset] = 0;
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME && cpi->sf.svc_use_lowres_part &&
|
|
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
|
|
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
|
|
|
|
if (cpi->sf.short_circuit_low_temp_var) {
|
|
set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
|
|
mi_col, mi_row);
|
|
}
|
|
|
|
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
|
|
if (vt2) vpx_free(vt2);
|
|
return 0;
|
|
}
|
|
|
|
static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int output_enabled) {
|
|
int i, x_idx, y;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RD_COUNTS *const rdc = &td->rd_counts;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MODE_INFO *const xdmi = xd->mi[0];
|
|
MODE_INFO *mi_addr = xd->mi[0];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
|
|
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
|
|
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
|
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
int max_plane;
|
|
|
|
assert(mi->sb_type == bsize);
|
|
|
|
*mi_addr = *mi;
|
|
*x->mbmi_ext = ctx->mbmi_ext;
|
|
|
|
// If segmentation in use
|
|
if (seg->enabled) {
|
|
// For in frame complexity AQ copy the segment id from the segment map.
|
|
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
// Else for cyclic refresh mode update the segment map, set the segment id
|
|
// and then update the quantizer.
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
|
|
ctx->rate, ctx->dist, x->skip, p);
|
|
}
|
|
}
|
|
|
|
max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
|
|
for (i = 0; i < max_plane; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][1];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
|
|
p[i].eobs = ctx->eobs_pbuf[i][1];
|
|
}
|
|
|
|
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][2];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
|
|
p[i].eobs = ctx->eobs_pbuf[i][2];
|
|
}
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
|
|
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
|
|
xd->mi[x_idx + y * mis] = mi_addr;
|
|
}
|
|
|
|
if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
|
|
|
|
if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
|
|
xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
|
|
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
|
|
|
|
if (!output_enabled) return;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
if (frame_is_intra_only(cm)) {
|
|
static const int kf_mode_index[] = {
|
|
THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/,
|
|
THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/,
|
|
THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
|
|
THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
|
|
THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/,
|
|
};
|
|
++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
|
|
} else {
|
|
// Note how often each mode chosen as best
|
|
++cpi->mode_chosen_counts[ctx->best_mode_index];
|
|
}
|
|
#endif
|
|
if (!frame_is_intra_only(cm)) {
|
|
if (is_inter_block(xdmi)) {
|
|
vp9_update_mv_count(td);
|
|
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
const int ctx = get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[ctx][xdmi->interp_filter];
|
|
}
|
|
}
|
|
|
|
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
|
|
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
|
|
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
rdc->filter_diff[i] += ctx->best_filter_diff[i];
|
|
}
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->ref_frame[0];
|
|
mv->ref_frame[1] = mi->ref_frame[1];
|
|
mv->mv[0].as_int = mi->mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
|
|
int mi_row, int mi_col) {
|
|
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
|
|
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
|
|
int i;
|
|
|
|
// Set current frame pointer.
|
|
x->e_mbd.cur_buf = src;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
|
|
NULL, x->e_mbd.plane[i].subsampling_x,
|
|
x->e_mbd.plane[i].subsampling_y);
|
|
}
|
|
|
|
static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
INTERP_FILTER filter_ref;
|
|
|
|
filter_ref = get_pred_context_switchable_interp(xd);
|
|
if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP;
|
|
|
|
mi->sb_type = bsize;
|
|
mi->mode = ZEROMV;
|
|
mi->tx_size =
|
|
VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
|
|
mi->skip = 1;
|
|
mi->uv_mode = DC_PRED;
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
mi->ref_frame[1] = NONE;
|
|
mi->mv[0].as_int = 0;
|
|
mi->interp_filter = filter_ref;
|
|
|
|
xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
|
|
x->skip = 1;
|
|
|
|
vp9_rd_cost_init(rd_cost);
|
|
}
|
|
|
|
static int set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
|
|
int8_t segment_id) {
|
|
int segment_qindex;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
vpx_clear_system_state();
|
|
segment_qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
|
|
}
|
|
|
|
static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
|
|
int i, orig_rdmult;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
// Use the lower precision, but faster, 32x32 fdct for mode selection.
|
|
x->use_lp32x32fdct = 1;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
mi = xd->mi[0];
|
|
mi->sb_type = bsize;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][0];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
|
|
p[i].eobs = ctx->eobs_pbuf[i][0];
|
|
}
|
|
ctx->is_coded = 0;
|
|
ctx->skippable = 0;
|
|
ctx->pred_pixel_ready = 0;
|
|
x->skip_recode = 0;
|
|
|
|
// Set to zero to make sure we do not use the previous encoded frame stats
|
|
mi->skip = 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->source_variance = vp9_high_get_sby_perpixel_variance(
|
|
cpi, &x->plane[0].src, bsize, xd->bd);
|
|
} else {
|
|
x->source_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
}
|
|
#else
|
|
x->source_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Save rdmult before it might be changed, so it can be restored later.
|
|
orig_rdmult = x->rdmult;
|
|
|
|
if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
|
|
double logvar = vp9_log_block_var(cpi, x, bsize);
|
|
// Check block complexity as part of descision on using pixel or transform
|
|
// domain distortion in rd tests.
|
|
x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
|
|
(logvar >= cpi->sf.tx_domain_thresh);
|
|
|
|
// Check block complexity as part of descision on using quantized
|
|
// coefficient optimisation inside the rd loop.
|
|
x->block_qcoeff_opt =
|
|
cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
|
|
} else {
|
|
x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
|
|
x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
|
|
}
|
|
|
|
if (aq_mode == VARIANCE_AQ) {
|
|
const int energy =
|
|
bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize);
|
|
|
|
if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
|
|
cpi->force_update_segmentation ||
|
|
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
|
|
mi->segment_id = vp9_vaq_segment_id(energy);
|
|
} else {
|
|
const uint8_t *const map =
|
|
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == LOOKAHEAD_AQ) {
|
|
const uint8_t *const map = cpi->segmentation_map;
|
|
|
|
// I do not change rdmult here consciously.
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
} else if (aq_mode == EQUATOR360_AQ) {
|
|
if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation) {
|
|
mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
|
|
} else {
|
|
const uint8_t *const map =
|
|
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == COMPLEXITY_AQ) {
|
|
x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
|
|
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
|
|
const uint8_t *const map =
|
|
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
// If segment is boosted, use rdmult for that segment.
|
|
if (cyclic_refresh_segment_id_boosted(
|
|
get_segment_id(cm, map, bsize, mi_row, mi_col)))
|
|
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
|
|
}
|
|
|
|
// Find best coding mode & reconstruct the MB so it is available
|
|
// as a predictor for MBs that follow in the SB
|
|
if (frame_is_intra_only(cm)) {
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
|
|
} else {
|
|
if (bsize >= BLOCK_8X8) {
|
|
if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
|
|
vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
|
|
ctx, best_rd);
|
|
else
|
|
vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
bsize, ctx, best_rd);
|
|
} else {
|
|
vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
bsize, ctx, best_rd);
|
|
}
|
|
}
|
|
|
|
// Examine the resulting rate and for AQ mode 2 make a segment choice.
|
|
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
|
|
(bsize >= BLOCK_16X16) &&
|
|
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
|
|
vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
|
|
}
|
|
|
|
x->rdmult = orig_rdmult;
|
|
|
|
// TODO(jingning) The rate-distortion optimization flow needs to be
|
|
// refactored to provide proper exit/return handle.
|
|
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
|
|
|
|
ctx->rate = rd_cost->rate;
|
|
ctx->dist = rd_cost->dist;
|
|
}
|
|
|
|
static void update_stats(VP9_COMMON *cm, ThreadData *td) {
|
|
const MACROBLOCK *x = &td->mb;
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
const MODE_INFO *const mi = xd->mi[0];
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const BLOCK_SIZE bsize = mi->sb_type;
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
FRAME_COUNTS *const counts = td->counts;
|
|
const int inter_block = is_inter_block(mi);
|
|
const int seg_ref_active =
|
|
segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
|
|
if (!seg_ref_active) {
|
|
counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
|
|
// If the segment reference feature is enabled we have only a single
|
|
// reference frame allowed for the segment so exclude it from
|
|
// the reference frame counts used to work out probabilities.
|
|
if (inter_block) {
|
|
const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
|
|
[has_second_ref(mi)]++;
|
|
|
|
if (has_second_ref(mi)) {
|
|
counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
|
|
[ref0 == GOLDEN_FRAME]++;
|
|
} else {
|
|
counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
|
|
[ref0 != LAST_FRAME]++;
|
|
if (ref0 != LAST_FRAME)
|
|
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
|
|
[ref0 != GOLDEN_FRAME]++;
|
|
}
|
|
}
|
|
}
|
|
if (inter_block &&
|
|
!segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
|
|
const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
|
|
if (bsize >= BLOCK_8X8) {
|
|
const PREDICTION_MODE mode = mi->mode;
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
|
|
a + num_4x4_blocks_wide * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(xd->left_context[p] +
|
|
((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
l + num_4x4_blocks_high * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(xd->above_seg_context + mi_col, sa,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
}
|
|
|
|
static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
// buffer the above/left context information of the block in search.
|
|
for (p = 0; p < MAX_MB_PLANE; ++p) {
|
|
memcpy(a + num_4x4_blocks_wide * p,
|
|
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(l + num_4x4_blocks_high * p,
|
|
xd->left_context[p] +
|
|
((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(sa, xd->above_seg_context + mi_col,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
}
|
|
|
|
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
|
|
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
|
|
|
|
if (output_enabled) {
|
|
update_stats(&cpi->common, td);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
}
|
|
|
|
static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
int ctx;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize = bsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
subsize = get_subsize(bsize, pc_tree->partitioning);
|
|
} else {
|
|
ctx = 0;
|
|
subsize = BLOCK_4X4;
|
|
}
|
|
|
|
partition = partition_lookup[bsl][subsize];
|
|
if (output_enabled && bsize != BLOCK_4X4)
|
|
td->counts->partition[ctx][partition]++;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->leaf_split[0]);
|
|
} else {
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->split[0]);
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[1]);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, pc_tree->split[2]);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[3]);
|
|
}
|
|
break;
|
|
default: assert(0 && "Invalid partition type."); break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
// Check to see if the given partition size is allowed for a specified number
|
|
// of 8x8 block rows and columns remaining in the image.
|
|
// If not then return the largest allowed partition size
|
|
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
|
|
int cols_left, int *bh, int *bw) {
|
|
if (rows_left <= 0 || cols_left <= 0) {
|
|
return VPXMIN(bsize, BLOCK_8X8);
|
|
} else {
|
|
for (; bsize > 0; bsize -= 3) {
|
|
*bh = num_8x8_blocks_high_lookup[bsize];
|
|
*bw = num_8x8_blocks_wide_lookup[bsize];
|
|
if ((*bh <= rows_left) && (*bw <= cols_left)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return bsize;
|
|
}
|
|
|
|
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
|
|
int bw_in, int row8x8_remaining,
|
|
int col8x8_remaining, BLOCK_SIZE bsize,
|
|
MODE_INFO **mi_8x8) {
|
|
int bh = bh_in;
|
|
int r, c;
|
|
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
|
|
int bw = bw_in;
|
|
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
|
|
const int index = r * mis + c;
|
|
mi_8x8[index] = mi + index;
|
|
mi_8x8[index]->sb_type = find_partition_size(
|
|
bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function attempts to set all mode info entries in a given SB64
|
|
// to the same block partition size.
|
|
// However, at the bottom and right borders of the image the requested size
|
|
// may not be allowed in which case this code attempts to choose the largest
|
|
// allowable partition.
|
|
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MODE_INFO **mi_8x8, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mi_stride;
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
int block_row, block_col;
|
|
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
|
|
int bh = num_8x8_blocks_high_lookup[bsize];
|
|
int bw = num_8x8_blocks_wide_lookup[bsize];
|
|
|
|
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
|
|
|
|
// Apply the requested partition size to the SB64 if it is all "in image"
|
|
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
|
|
(row8x8_remaining >= MI_BLOCK_SIZE)) {
|
|
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
|
|
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
|
|
int index = block_row * mis + block_col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = bsize;
|
|
}
|
|
}
|
|
} else {
|
|
// Else this is a partial SB64.
|
|
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
|
|
col8x8_remaining, bsize, mi_8x8);
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
int row;
|
|
int col;
|
|
} coord_lookup[16] = {
|
|
// 32x32 index = 0
|
|
{ 0, 0 },
|
|
{ 0, 2 },
|
|
{ 2, 0 },
|
|
{ 2, 2 },
|
|
// 32x32 index = 1
|
|
{ 0, 4 },
|
|
{ 0, 6 },
|
|
{ 2, 4 },
|
|
{ 2, 6 },
|
|
// 32x32 index = 2
|
|
{ 4, 0 },
|
|
{ 4, 2 },
|
|
{ 6, 0 },
|
|
{ 6, 2 },
|
|
// 32x32 index = 3
|
|
{ 4, 4 },
|
|
{ 4, 6 },
|
|
{ 6, 4 },
|
|
{ 6, 6 },
|
|
};
|
|
|
|
static void set_source_var_based_partition(VP9_COMP *cpi,
|
|
const TileInfo *const tile,
|
|
MACROBLOCK *const x,
|
|
MODE_INFO **mi_8x8, int mi_row,
|
|
int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mi_stride;
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
|
|
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
|
|
|
|
// In-image SB64
|
|
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
|
|
(row8x8_remaining >= MI_BLOCK_SIZE)) {
|
|
int i, j;
|
|
int index;
|
|
diff d32[4];
|
|
const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
|
|
int is_larger_better = 0;
|
|
int use32x32 = 0;
|
|
unsigned int thr = cpi->source_var_thresh;
|
|
|
|
memset(d32, 0, 4 * sizeof(diff));
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
diff *d16[4];
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
int b_mi_row = coord_lookup[i * 4 + j].row;
|
|
int b_mi_col = coord_lookup[i * 4 + j].col;
|
|
int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
|
|
|
|
d16[j] = cpi->source_diff_var + offset + boffset;
|
|
|
|
index = b_mi_row * mis + b_mi_col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = BLOCK_16X16;
|
|
|
|
// TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
|
|
// size to further improve quality.
|
|
}
|
|
|
|
is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
|
|
(d16[2]->var < thr) && (d16[3]->var < thr);
|
|
|
|
// Use 32x32 partition
|
|
if (is_larger_better) {
|
|
use32x32 += 1;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
d32[i].sse += d16[j]->sse;
|
|
d32[i].sum += d16[j]->sum;
|
|
}
|
|
|
|
d32[i].var =
|
|
(unsigned int)(d32[i].sse -
|
|
(unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
|
|
10));
|
|
|
|
index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
|
|
mi_8x8[index] = mi_upper_left + index;
|
|
mi_8x8[index]->sb_type = BLOCK_32X32;
|
|
}
|
|
}
|
|
|
|
if (use32x32 == 4) {
|
|
thr <<= 1;
|
|
is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
|
|
(d32[2].var < thr) && (d32[3].var < thr);
|
|
|
|
// Use 64x64 partition
|
|
if (is_larger_better) {
|
|
mi_8x8[0] = mi_upper_left;
|
|
mi_8x8[0]->sb_type = BLOCK_64X64;
|
|
}
|
|
}
|
|
} else { // partial in-image SB64
|
|
int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
|
|
int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
|
|
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
|
|
col8x8_remaining, BLOCK_16X16, mi_8x8);
|
|
}
|
|
}
|
|
|
|
static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
|
|
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
|
|
int bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
struct macroblock_plane *const p = x->plane;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
|
|
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
|
|
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
|
|
|
*(xd->mi[0]) = ctx->mic;
|
|
*(x->mbmi_ext) = ctx->mbmi_ext;
|
|
|
|
if (seg->enabled && cpi->oxcf.aq_mode != NO_AQ) {
|
|
// For in frame complexity AQ or variance AQ, copy segment_id from
|
|
// segmentation_map.
|
|
if (cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
} else {
|
|
// Setting segmentation map for cyclic_refresh.
|
|
vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
|
|
ctx->rate, ctx->dist, x->skip, p);
|
|
}
|
|
vp9_init_plane_quantizers(cpi, x);
|
|
}
|
|
|
|
if (is_inter_block(mi)) {
|
|
vp9_update_mv_count(td);
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
const int pred_ctx = get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
|
|
}
|
|
|
|
if (mi->sb_type < BLOCK_8X8) {
|
|
mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
}
|
|
|
|
if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
|
|
(cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
|
|
cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
|
|
MV_REF *const frame_mvs =
|
|
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->ref_frame[0];
|
|
mv->ref_frame[1] = mi->ref_frame[1];
|
|
mv->mv[0].as_int = mi->mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
x->skip_txfm[0] = mi->segment_id ? 0 : ctx->skip_txfm[0];
|
|
}
|
|
|
|
static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
|
|
const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
|
|
int mi_col, int output_enabled, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
|
|
update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
|
|
|
|
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
|
|
update_stats(&cpi->common, td);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
|
|
static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
|
|
const TileInfo *const tile, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, int output_enabled,
|
|
BLOCK_SIZE bsize, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
int ctx;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
const int idx_str = xd->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
|
|
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
subsize = mi_8x8[0]->sb_type;
|
|
} else {
|
|
ctx = 0;
|
|
subsize = BLOCK_4X4;
|
|
}
|
|
|
|
partition = partition_lookup[bsl][subsize];
|
|
if (output_enabled && bsize != BLOCK_4X4)
|
|
td->counts->partition[ctx][partition]++;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
|
|
pc_tree->split[0]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
|
|
subsize, pc_tree->split[1]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
|
|
subsize, pc_tree->split[2]);
|
|
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
|
|
output_enabled, subsize, pc_tree->split[3]);
|
|
break;
|
|
default: assert(0 && "Invalid partition type."); break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, MODE_INFO **mi_8x8,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int *rate, int64_t *dist,
|
|
int do_recon, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mis = cm->mi_stride;
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
|
|
const int bss = (1 << bsl) / 4;
|
|
int i, pl;
|
|
PARTITION_TYPE partition = PARTITION_NONE;
|
|
BLOCK_SIZE subsize;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
RD_COST last_part_rdc, none_rdc, chosen_rdc;
|
|
BLOCK_SIZE sub_subsize = BLOCK_4X4;
|
|
int splits_below = 0;
|
|
BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
|
|
int do_partition_search = 1;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
assert(num_4x4_blocks_wide_lookup[bsize] ==
|
|
num_4x4_blocks_high_lookup[bsize]);
|
|
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
vp9_rd_cost_reset(&none_rdc);
|
|
vp9_rd_cost_reset(&chosen_rdc);
|
|
|
|
partition = partition_lookup[bsl][bs_type];
|
|
subsize = get_subsize(bsize, partition);
|
|
|
|
pc_tree->partitioning = partition;
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
x->mb_energy = vp9_block_energy(cpi, x, bsize);
|
|
}
|
|
|
|
if (do_partition_search &&
|
|
cpi->sf.partition_search_type == SEARCH_PARTITION &&
|
|
cpi->sf.adjust_partitioning_from_last_frame) {
|
|
// Check if any of the sub blocks are further split.
|
|
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
|
|
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
|
|
splits_below = 1;
|
|
for (i = 0; i < 4; i++) {
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
|
|
if (this_mi && this_mi->sb_type >= sub_subsize) {
|
|
splits_below = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If partition is not none try none unless each of the 4 splits are split
|
|
// even further..
|
|
if (partition != PARTITION_NONE && !splits_below &&
|
|
mi_row + (mi_step >> 1) < cm->mi_rows &&
|
|
mi_col + (mi_step >> 1) < cm->mi_cols) {
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
|
|
INT64_MAX);
|
|
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
|
|
if (none_rdc.rate < INT_MAX) {
|
|
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
none_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
|
|
}
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
mi_8x8[0]->sb_type = bs_type;
|
|
pc_tree->partitioning = partition;
|
|
}
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
|
|
ctx, INT64_MAX);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, &pc_tree->horizontal[0], INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
|
|
mi_row + (mi_step >> 1) < cm->mi_rows) {
|
|
RD_COST tmp_rdc;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
|
|
&tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
}
|
|
break;
|
|
case PARTITION_VERT:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, &pc_tree->vertical[0], INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
|
|
mi_col + (mi_step >> 1) < cm->mi_cols) {
|
|
RD_COST tmp_rdc;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1),
|
|
&tmp_rdc, subsize,
|
|
&pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
subsize, pc_tree->leaf_split[0], INT64_MAX);
|
|
break;
|
|
}
|
|
last_part_rdc.rate = 0;
|
|
last_part_rdc.dist = 0;
|
|
last_part_rdc.rdcost = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (mi_step >> 1);
|
|
int y_idx = (i >> 1) * (mi_step >> 1);
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
RD_COST tmp_rdc;
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
vp9_rd_cost_init(&tmp_rdc);
|
|
rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
|
|
tp, mi_row + y_idx, mi_col + x_idx, subsize,
|
|
&tmp_rdc.rate, &tmp_rdc.dist, i != 3,
|
|
pc_tree->split[i]);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&last_part_rdc);
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
}
|
|
break;
|
|
default: assert(0); break;
|
|
}
|
|
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
if (last_part_rdc.rate < INT_MAX) {
|
|
last_part_rdc.rate += cpi->partition_cost[pl][partition];
|
|
last_part_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
|
|
}
|
|
|
|
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
|
|
cpi->sf.partition_search_type == SEARCH_PARTITION &&
|
|
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
|
|
(mi_row + mi_step < cm->mi_rows ||
|
|
mi_row + (mi_step >> 1) == cm->mi_rows) &&
|
|
(mi_col + mi_step < cm->mi_cols ||
|
|
mi_col + (mi_step >> 1) == cm->mi_cols)) {
|
|
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
chosen_rdc.rate = 0;
|
|
chosen_rdc.dist = 0;
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
// Split partition.
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (mi_step >> 1);
|
|
int y_idx = (i >> 1) * (mi_step >> 1);
|
|
RD_COST tmp_rdc;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
pc_tree->split[i]->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
|
|
&tmp_rdc, split_subsize, &pc_tree->split[i]->none,
|
|
INT64_MAX);
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
vp9_rd_cost_reset(&chosen_rdc);
|
|
break;
|
|
}
|
|
|
|
chosen_rdc.rate += tmp_rdc.rate;
|
|
chosen_rdc.dist += tmp_rdc.dist;
|
|
|
|
if (i != 3)
|
|
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
|
|
split_subsize, pc_tree->split[i]);
|
|
|
|
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
|
|
split_subsize);
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
}
|
|
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
if (chosen_rdc.rate < INT_MAX) {
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
chosen_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
|
|
}
|
|
}
|
|
|
|
// If last_part is better set the partitioning to that.
|
|
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
|
|
mi_8x8[0]->sb_type = bsize;
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
|
|
chosen_rdc = last_part_rdc;
|
|
}
|
|
// If none was better set the partitioning to that.
|
|
if (none_rdc.rdcost < chosen_rdc.rdcost) {
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
|
|
chosen_rdc = none_rdc;
|
|
}
|
|
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
// We must have chosen a partitioning and encoding or we'll fail later on.
|
|
// No other opportunities for success.
|
|
if (bsize == BLOCK_64X64)
|
|
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
|
|
|
|
if (do_recon) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
|
|
pc_tree);
|
|
}
|
|
|
|
*rate = chosen_rdc.rate;
|
|
*dist = chosen_rdc.dist;
|
|
}
|
|
|
|
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
|
|
BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16,
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
|
|
};
|
|
|
|
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
|
|
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
|
|
};
|
|
|
|
// Look at all the mode_info entries for blocks that are part of this
|
|
// partition and find the min and max values for sb_type.
|
|
// At the moment this is designed to work on a 64x64 SB but could be
|
|
// adjusted to use a size parameter.
|
|
//
|
|
// The min and max are assumed to have been initialized prior to calling this
|
|
// function so repeat calls can accumulate a min and max of more than one sb64.
|
|
static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size,
|
|
int bs_hist[BLOCK_SIZES]) {
|
|
int sb_width_in_blocks = MI_BLOCK_SIZE;
|
|
int sb_height_in_blocks = MI_BLOCK_SIZE;
|
|
int i, j;
|
|
int index = 0;
|
|
|
|
// Check the sb_type for each block that belongs to this region.
|
|
for (i = 0; i < sb_height_in_blocks; ++i) {
|
|
for (j = 0; j < sb_width_in_blocks; ++j) {
|
|
MODE_INFO *mi = mi_8x8[index + j];
|
|
BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
|
|
bs_hist[sb_type]++;
|
|
*min_block_size = VPXMIN(*min_block_size, sb_type);
|
|
*max_block_size = VPXMAX(*max_block_size, sb_type);
|
|
}
|
|
index += xd->mi_stride;
|
|
}
|
|
}
|
|
|
|
// Next square block size less or equal than current block size.
|
|
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
|
|
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
|
|
};
|
|
|
|
// Look at neighboring blocks and set a min and max partition size based on
|
|
// what they chose.
|
|
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCKD *const xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MODE_INFO **mi = xd->mi;
|
|
const int left_in_image = !!xd->left_mi;
|
|
const int above_in_image = !!xd->above_mi;
|
|
const int row8x8_remaining = tile->mi_row_end - mi_row;
|
|
const int col8x8_remaining = tile->mi_col_end - mi_col;
|
|
int bh, bw;
|
|
BLOCK_SIZE min_size = BLOCK_4X4;
|
|
BLOCK_SIZE max_size = BLOCK_64X64;
|
|
int bs_hist[BLOCK_SIZES] = { 0 };
|
|
|
|
// Trap case where we do not have a prediction.
|
|
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
|
|
// Default "min to max" and "max to min"
|
|
min_size = BLOCK_64X64;
|
|
max_size = BLOCK_4X4;
|
|
|
|
// NOTE: each call to get_sb_partition_size_range() uses the previous
|
|
// passed in values for min and max as a starting point.
|
|
// Find the min and max partition used in previous frame at this location
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
MODE_INFO **prev_mi =
|
|
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
|
|
get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
|
|
}
|
|
// Find the min and max partition sizes used in the left SB64
|
|
if (left_in_image) {
|
|
MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
|
|
bs_hist);
|
|
}
|
|
// Find the min and max partition sizes used in the above SB64.
|
|
if (above_in_image) {
|
|
MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
|
|
bs_hist);
|
|
}
|
|
|
|
// Adjust observed min and max for "relaxed" auto partition case.
|
|
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
}
|
|
|
|
// Check border cases where max and min from neighbors may not be legal.
|
|
max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
|
|
&bh, &bw);
|
|
// Test for blocks at the edge of the active image.
|
|
// This may be the actual edge of the image or where there are formatting
|
|
// bars.
|
|
if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
|
|
min_size = BLOCK_4X4;
|
|
} else {
|
|
min_size =
|
|
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
|
|
}
|
|
|
|
// When use_square_partition_only is true, make sure at least one square
|
|
// partition is allowed by selecting the next smaller square size as
|
|
// *min_block_size.
|
|
if (cpi->sf.use_square_partition_only &&
|
|
next_square_size[max_size] < min_size) {
|
|
min_size = next_square_size[max_size];
|
|
}
|
|
|
|
*min_block_size = min_size;
|
|
*max_block_size = max_size;
|
|
}
|
|
|
|
// TODO(jingning) refactor functions setting partition search range
|
|
static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
|
|
MODE_INFO *mi;
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
|
|
BLOCK_SIZE bs, min_size, max_size;
|
|
|
|
min_size = BLOCK_64X64;
|
|
max_size = BLOCK_4X4;
|
|
|
|
if (prev_mi) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
mi = prev_mi[idy * cm->mi_stride + idx];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xd->left_mi) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
mi = xd->mi[idy * cm->mi_stride - 1];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (xd->above_mi) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
mi = xd->mi[idx - cm->mi_stride];
|
|
bs = mi ? mi->sb_type : bsize;
|
|
min_size = VPXMIN(min_size, bs);
|
|
max_size = VPXMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (min_size == max_size) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
|
|
*min_bs = min_size;
|
|
*max_bs = max_size;
|
|
}
|
|
|
|
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
|
|
1, 2, 2, 2, 4, 4 };
|
|
const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
|
|
2, 1, 2, 4, 2, 4 };
|
|
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
|
|
0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120
|
|
};
|
|
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
|
|
0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120
|
|
};
|
|
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6
|
|
};
|
|
|
|
typedef enum {
|
|
MV_ZERO = 0,
|
|
MV_LEFT = 1,
|
|
MV_UP = 2,
|
|
MV_RIGHT = 3,
|
|
MV_DOWN = 4,
|
|
MV_INVALID
|
|
} MOTION_DIRECTION;
|
|
|
|
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
|
|
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
|
|
return MV_ZERO;
|
|
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
|
|
return MV_LEFT;
|
|
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
|
|
return MV_RIGHT;
|
|
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
|
|
return MV_UP;
|
|
} else {
|
|
return MV_DOWN;
|
|
}
|
|
}
|
|
|
|
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
|
|
MOTION_DIRECTION that_mv) {
|
|
if (this_mv == that_mv) {
|
|
return 0;
|
|
} else {
|
|
return abs(this_mv - that_mv) == 2 ? 2 : 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Calculate the score used in machine-learning based partition search early
|
|
// termination.
|
|
static double compute_score(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const double *clf;
|
|
const double *mean;
|
|
const double *sd;
|
|
const int mag_mv =
|
|
abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
|
|
const int left_in_image = !!xd->left_mi;
|
|
const int above_in_image = !!xd->above_mi;
|
|
MODE_INFO **prev_mi =
|
|
&cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
|
|
int above_par = 0; // above_partitioning
|
|
int left_par = 0; // left_partitioning
|
|
int last_par = 0; // last_partitioning
|
|
BLOCK_SIZE context_size;
|
|
double score;
|
|
int offset = 0;
|
|
|
|
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
|
|
|
|
if (above_in_image) {
|
|
context_size = xd->above_mi->sb_type;
|
|
if (context_size < bsize)
|
|
above_par = 2;
|
|
else if (context_size == bsize)
|
|
above_par = 1;
|
|
}
|
|
|
|
if (left_in_image) {
|
|
context_size = xd->left_mi->sb_type;
|
|
if (context_size < bsize)
|
|
left_par = 2;
|
|
else if (context_size == bsize)
|
|
left_par = 1;
|
|
}
|
|
|
|
if (prev_mi) {
|
|
context_size = prev_mi[0]->sb_type;
|
|
if (context_size < bsize)
|
|
last_par = 2;
|
|
else if (context_size == bsize)
|
|
last_par = 1;
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64)
|
|
offset = 0;
|
|
else if (bsize == BLOCK_32X32)
|
|
offset = 8;
|
|
else if (bsize == BLOCK_16X16)
|
|
offset = 16;
|
|
|
|
// early termination score calculation
|
|
clf = &classifiers[offset];
|
|
mean = &train_mean[offset];
|
|
sd = &train_stdm[offset];
|
|
score = clf[0] * (((double)ctx->rate - mean[0]) / sd[0]) +
|
|
clf[1] * (((double)ctx->dist - mean[1]) / sd[1]) +
|
|
clf[2] * (((double)mag_mv / 2 - mean[2]) * sd[2]) +
|
|
clf[3] * (((double)(left_par + above_par) / 2 - mean[3]) * sd[3]) +
|
|
clf[4] * (((double)ctx->sum_y_eobs - mean[4]) / sd[4]) +
|
|
clf[5] * (((double)cm->base_qindex - mean[5]) * sd[5]) +
|
|
clf[6] * (((double)last_par - mean[6]) * sd[6]) + clf[7];
|
|
return score;
|
|
}
|
|
|
|
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
|
|
// unlikely to be selected depending on previous rate-distortion optimization
|
|
// results, for encoding speed-up.
|
|
static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
RD_COST *rd_cost, int64_t best_rd,
|
|
PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
int i;
|
|
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
BLOCK_SIZE subsize;
|
|
RD_COST this_rdc, sum_rdc, best_rdc;
|
|
int do_split = bsize >= BLOCK_8X8;
|
|
int do_rect = 1;
|
|
INTERP_FILTER pred_interp_filter;
|
|
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
|
|
const int xss = x->e_mbd.plane[1].subsampling_x;
|
|
const int yss = x->e_mbd.plane[1].subsampling_y;
|
|
|
|
BLOCK_SIZE min_size = x->min_partition_size;
|
|
BLOCK_SIZE max_size = x->max_partition_size;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
unsigned int src_diff_var = UINT_MAX;
|
|
int none_complexity = 0;
|
|
#endif
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed =
|
|
!force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
|
|
int partition_vert_allowed =
|
|
!force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
|
|
|
|
int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
|
|
int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
|
|
|
|
(void)*tp_orig;
|
|
|
|
assert(num_8x8_blocks_wide_lookup[bsize] ==
|
|
num_8x8_blocks_high_lookup[bsize]);
|
|
|
|
// Adjust dist breakout threshold according to the partition size.
|
|
dist_breakout_thr >>=
|
|
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
|
|
rate_breakout_thr *= num_pels_log2_lookup[bsize];
|
|
|
|
vp9_rd_cost_init(&this_rdc);
|
|
vp9_rd_cost_init(&sum_rdc);
|
|
vp9_rd_cost_reset(&best_rdc);
|
|
best_rdc.rdcost = best_rd;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
|
|
cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
|
|
x->mb_energy = vp9_block_energy(cpi, x, bsize);
|
|
|
|
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
|
|
int cb_partition_search_ctrl =
|
|
((pc_tree->index == 0 || pc_tree->index == 3) +
|
|
get_chessboard_index(cm->current_video_frame)) &
|
|
0x1;
|
|
|
|
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
|
|
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
|
|
}
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
|
|
partition_horz_allowed &=
|
|
((bsize <= max_size && bsize > min_size) || force_horz_split);
|
|
partition_vert_allowed &=
|
|
((bsize <= max_size && bsize > min_size) || force_vert_split);
|
|
do_split &= bsize > min_size;
|
|
}
|
|
|
|
if (cpi->sf.use_square_partition_only &&
|
|
bsize > cpi->sf.use_square_only_threshold) {
|
|
if (cpi->use_svc) {
|
|
if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
|
|
partition_horz_allowed &= force_horz_split;
|
|
if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
|
|
partition_vert_allowed &= force_vert_split;
|
|
} else {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
}
|
|
|
|
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
|
|
mi_col, bsize);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Decide whether we shall split directly and skip searching NONE by using
|
|
// the first pass block statistics
|
|
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
|
|
partition_none_allowed && src_diff_var > 4 &&
|
|
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
// compute a complexity measure, basically measure inconsistency of motion
|
|
// vectors obtained from the first pass in the current block
|
|
for (r = mb_row; r < mb_row_end; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
|
|
MOTION_DIRECTION this_mv;
|
|
MOTION_DIRECTION right_mv;
|
|
MOTION_DIRECTION bottom_mv;
|
|
|
|
this_mv =
|
|
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
|
|
|
|
// to its right
|
|
if (c != mb_col_end - 1) {
|
|
right_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
|
|
none_complexity += get_motion_inconsistency(this_mv, right_mv);
|
|
}
|
|
|
|
// to its bottom
|
|
if (r != mb_row_end - 1) {
|
|
bottom_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
|
|
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
|
|
}
|
|
|
|
// do not count its left and top neighbors to avoid double counting
|
|
}
|
|
}
|
|
|
|
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
|
|
partition_none_allowed = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
|
|
best_rdc.rdcost);
|
|
if (this_rdc.rate != INT_MAX) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
this_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
|
|
}
|
|
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
MODE_INFO *mi = xd->mi[0];
|
|
|
|
best_rdc = this_rdc;
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
|
|
|
|
if (!cpi->sf.ml_partition_search_early_termination) {
|
|
// If all y, u, v transform blocks in this partition are skippable,
|
|
// and the dist & rate are within the thresholds, the partition search
|
|
// is terminated for current branch of the partition search tree.
|
|
if (!x->e_mbd.lossless && ctx->skippable &&
|
|
((best_rdc.dist < (dist_breakout_thr >> 2)) ||
|
|
(best_rdc.dist < dist_breakout_thr &&
|
|
best_rdc.rate < rate_breakout_thr))) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
} else {
|
|
// Currently, the machine-learning based partition search early
|
|
// termination is only used while bsize is 16x16, 32x32 or 64x64,
|
|
// VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
|
|
if (!x->e_mbd.lossless &&
|
|
!segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
|
|
ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
|
|
if (compute_score(cm, xd, ctx, mi_row, mi_col, bsize) < 0.0) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Check if every 16x16 first pass block statistics has zero
|
|
// motion and the corresponding first pass residue is small enough.
|
|
// If that is the case, check the difference variance between the
|
|
// current frame and the last frame. If the variance is small enough,
|
|
// stop further splitting in RD optimization
|
|
if (cpi->use_fp_mb_stats && do_split != 0 &&
|
|
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
int skip = 1;
|
|
for (r = mb_row; r < mb_row_end; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_MOTION_ZERO_MASK) ||
|
|
!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_ERROR_SMALL_MASK)) {
|
|
skip = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (skip == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (skip) {
|
|
if (src_diff_var == UINT_MAX) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(
|
|
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
|
|
}
|
|
if (src_diff_var < 8) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// store estimated motion vector
|
|
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx);
|
|
|
|
// If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
|
|
// intra block and used for context purposes.
|
|
if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
|
|
pred_interp_filter = EIGHTTAP;
|
|
} else {
|
|
pred_interp_filter = ctx->mic.interp_filter;
|
|
}
|
|
|
|
// PARTITION_SPLIT
|
|
// TODO(jingning): use the motion vectors given by the above search as
|
|
// the starting point of motion search in the following partition type check.
|
|
if (do_split) {
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
if (bsize == BLOCK_8X8) {
|
|
i = 4;
|
|
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
|
|
pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
pc_tree->leaf_split[0], best_rdc.rdcost);
|
|
|
|
if (sum_rdc.rate == INT_MAX) sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
|
|
const int x_idx = (i & 1) * mi_step;
|
|
const int y_idx = (i >> 1) * mi_step;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
|
|
pc_tree->split[i]->index = i;
|
|
rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
|
|
mi_col + x_idx, subsize, &this_rdc,
|
|
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
break;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
// Rate and distortion based partition search termination clause.
|
|
if (!cpi->sf.ml_partition_search_early_termination &&
|
|
!x->e_mbd.lossless && ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
|
|
(best_rdc.dist < dist_breakout_thr &&
|
|
best_rdc.rate < rate_breakout_thr))) {
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
} else {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
if ((cpi->sf.less_rectangular_check) &&
|
|
((bsize > cpi->sf.use_square_only_threshold) ||
|
|
(best_rdc.dist < dist_breakout_thr)))
|
|
do_rect &= !partition_none_allowed;
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed &&
|
|
(do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->horizontal[0], best_rdc.rdcost);
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
|
|
bsize > BLOCK_8X8) {
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
|
|
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
|
|
subsize, &pc_tree->horizontal[1],
|
|
best_rdc.rdcost - sum_rdc.rdcost);
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
|
|
if ((cpi->sf.less_rectangular_check) &&
|
|
(bsize > cpi->sf.use_square_only_threshold))
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed &&
|
|
(do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->vertical[0], best_rdc.rdcost);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
|
|
bsize > BLOCK_8X8) {
|
|
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
|
|
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
|
|
&pc_tree->vertical[0]);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
|
|
subsize, &pc_tree->vertical[1],
|
|
best_rdc.rdcost - sum_rdc.rdcost);
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
}
|
|
}
|
|
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// TODO(jbb): This code added so that we avoid static analysis
|
|
// warning related to the fact that best_rd isn't used after this
|
|
// point. This code should be refactored so that the duplicate
|
|
// checks occur in some sub function and thus are used...
|
|
(void)best_rd;
|
|
*rd_cost = best_rdc;
|
|
|
|
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
|
|
pc_tree->index != 3) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
|
|
pc_tree);
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64) {
|
|
assert(tp_orig < *tp);
|
|
assert(best_rdc.rate < INT_MAX);
|
|
assert(best_rdc.dist < INT64_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, int mi_row,
|
|
TOKENEXTRA **tp) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
const int mi_col_start = tile_info->mi_col_start;
|
|
const int mi_col_end = tile_info->mi_col_end;
|
|
int mi_col;
|
|
const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
|
|
const int num_sb_cols =
|
|
get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
|
|
int sb_col_in_tile;
|
|
|
|
// Initialize the left context for the new SB row
|
|
memset(&xd->left_context, 0, sizeof(xd->left_context));
|
|
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
int dummy_rate;
|
|
int64_t dummy_dist;
|
|
RD_COST dummy_rdc;
|
|
int i;
|
|
int seg_skip = 0;
|
|
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
|
|
|
|
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
|
|
sb_col_in_tile);
|
|
|
|
if (sf->adaptive_pred_interp_filter) {
|
|
for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
|
|
|
|
for (i = 0; i < 64; ++i) {
|
|
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
|
|
}
|
|
}
|
|
|
|
vp9_zero(x->pred_mv);
|
|
td->pc_root->index = 0;
|
|
|
|
if (seg->enabled) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
|
|
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
|
|
}
|
|
|
|
x->source_variance = UINT_MAX;
|
|
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
|
|
const BLOCK_SIZE bsize =
|
|
seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else if (cpi->partition_search_skippable_frame) {
|
|
BLOCK_SIZE bsize;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else if (sf->partition_search_type == VAR_BASED_PARTITION &&
|
|
cm->frame_type != KEY_FRAME) {
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1, td->pc_root);
|
|
} else {
|
|
// If required set upper and lower partition size limits
|
|
if (sf->auto_min_max_partition_size) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
|
|
&x->min_partition_size, &x->max_partition_size);
|
|
}
|
|
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rdc, INT64_MAX, td->pc_root);
|
|
}
|
|
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
|
|
sb_col_in_tile, num_sb_cols);
|
|
}
|
|
}
|
|
|
|
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
|
|
|
// Copy data over into macro block data structures.
|
|
vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
|
|
|
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
memset(xd->above_context[0], 0,
|
|
sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
|
|
memset(xd->above_seg_context, 0,
|
|
sizeof(*xd->above_seg_context) * aligned_mi_cols);
|
|
}
|
|
|
|
static int check_dual_ref_flags(VP9_COMP *cpi) {
|
|
const int ref_flags = cpi->ref_frame_flags;
|
|
|
|
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
|
|
return 0;
|
|
} else {
|
|
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
|
|
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
|
|
}
|
|
}
|
|
|
|
static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
|
|
int mi_row, mi_col;
|
|
const int mis = cm->mi_stride;
|
|
MODE_INFO **mi_ptr = cm->mi_grid_visible;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
|
|
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
|
|
if (mi_ptr[mi_col]->tx_size > max_tx_size)
|
|
mi_ptr[mi_col]->tx_size = max_tx_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
|
|
if (frame_is_intra_only(&cpi->common))
|
|
return INTRA_FRAME;
|
|
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
|
|
return ALTREF_FRAME;
|
|
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
return GOLDEN_FRAME;
|
|
else
|
|
return LAST_FRAME;
|
|
}
|
|
|
|
static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
|
|
if (xd->lossless) return ONLY_4X4;
|
|
if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
|
|
return ALLOW_16X16;
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
|
|
return ALLOW_32X32;
|
|
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
|
|
cpi->sf.tx_size_search_method == USE_TX_8X8)
|
|
return TX_MODE_SELECT;
|
|
else
|
|
return cpi->common.tx_mode;
|
|
}
|
|
|
|
static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
|
|
else
|
|
vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
|
|
}
|
|
|
|
static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
|
|
int plane;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
mi = xd->mi[0];
|
|
mi->sb_type = bsize;
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
struct macroblockd_plane *pd = &xd->plane[plane];
|
|
memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
|
|
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
|
|
memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
|
|
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
|
|
}
|
|
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
|
|
if (cyclic_refresh_segment_id_boosted(mi->segment_id))
|
|
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
|
|
else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
|
|
set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
|
|
else if (bsize >= BLOCK_8X8)
|
|
vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
|
|
else
|
|
vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
|
|
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
struct macroblockd_plane *pd = &xd->plane[plane];
|
|
memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
|
|
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
|
|
memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
|
|
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
|
|
}
|
|
|
|
if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
|
|
|
|
ctx->rate = rd_cost->rate;
|
|
ctx->dist = rd_cost->dist;
|
|
}
|
|
|
|
static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
PARTITION_TYPE partition = pc_tree->partitioning;
|
|
BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
|
|
assert(bsize >= BLOCK_8X8);
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->none.mic;
|
|
*(x->mbmi_ext) = pc_tree->none.mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
|
|
break;
|
|
case PARTITION_VERT:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->vertical[0].mic;
|
|
*(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
|
|
|
|
if (mi_col + hbs < cm->mi_cols) {
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
|
|
*(xd->mi[0]) = pc_tree->vertical[1].mic;
|
|
*(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
|
|
*(xd->mi[0]) = pc_tree->horizontal[0].mic;
|
|
*(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
|
|
*(xd->mi[0]) = pc_tree->horizontal[1].mic;
|
|
*(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
|
|
duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT: {
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
|
|
pc_tree->split[1]);
|
|
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
|
|
pc_tree->split[2]);
|
|
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
|
|
pc_tree->split[3]);
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
// Reset the prediction pixel ready flag recursively.
|
|
static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
|
|
pc_tree->none.pred_pixel_ready = 0;
|
|
pc_tree->horizontal[0].pred_pixel_ready = 0;
|
|
pc_tree->horizontal[1].pred_pixel_ready = 0;
|
|
pc_tree->vertical[0].pred_pixel_ready = 0;
|
|
pc_tree->vertical[1].pred_pixel_ready = 0;
|
|
|
|
if (bsize > BLOCK_8X8) {
|
|
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
int i;
|
|
for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
|
|
}
|
|
}
|
|
|
|
static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
RD_COST *rd_cost, int do_recon,
|
|
int64_t best_rd, PC_TREE *pc_tree) {
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
|
|
int i;
|
|
BLOCK_SIZE subsize = bsize;
|
|
RD_COST this_rdc, sum_rdc, best_rdc;
|
|
int do_split = bsize >= BLOCK_8X8;
|
|
int do_rect = 1;
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
|
|
const int xss = x->e_mbd.plane[1].subsampling_x;
|
|
const int yss = x->e_mbd.plane[1].subsampling_y;
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed =
|
|
!force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
|
|
int partition_vert_allowed =
|
|
!force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
|
|
(void)*tp_orig;
|
|
|
|
// Avoid checking for rectangular partitions for speed >= 6.
|
|
if (cpi->oxcf.speed >= 6) do_rect = 0;
|
|
|
|
assert(num_8x8_blocks_wide_lookup[bsize] ==
|
|
num_8x8_blocks_high_lookup[bsize]);
|
|
|
|
vp9_rd_cost_init(&sum_rdc);
|
|
vp9_rd_cost_reset(&best_rdc);
|
|
best_rdc.rdcost = best_rd;
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (sf->auto_min_max_partition_size) {
|
|
partition_none_allowed &=
|
|
(bsize <= x->max_partition_size && bsize >= x->min_partition_size);
|
|
partition_horz_allowed &=
|
|
((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
|
|
force_horz_split);
|
|
partition_vert_allowed &=
|
|
((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
|
|
force_vert_split);
|
|
do_split &= bsize > x->min_partition_size;
|
|
}
|
|
if (sf->use_square_partition_only) {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
|
|
ctx->pred_pixel_ready =
|
|
!(partition_vert_allowed || partition_horz_allowed || do_split);
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
|
|
ctx);
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
ctx->skip_txfm[0] = x->skip_txfm[0];
|
|
ctx->skip = x->skip;
|
|
|
|
if (this_rdc.rate != INT_MAX) {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
this_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
|
|
int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
|
|
|
|
dist_breakout_thr >>=
|
|
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
|
|
|
|
rate_breakout_thr *= num_pels_log2_lookup[bsize];
|
|
|
|
best_rdc = this_rdc;
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
|
|
|
|
if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
|
|
this_rdc.dist < dist_breakout_thr) {
|
|
do_split = 0;
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// store estimated motion vector
|
|
store_pred_mv(x, ctx);
|
|
|
|
// PARTITION_SPLIT
|
|
if (do_split) {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
|
|
const int x_idx = (i & 1) * ms;
|
|
const int y_idx = (i >> 1) * ms;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
load_pred_mv(x, ctx);
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
|
|
mi_col + x_idx, subsize, &this_rdc, 0,
|
|
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
} else {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
|
|
}
|
|
}
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
if (sf->adaptive_motion_search) load_pred_mv(x, ctx);
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
} else {
|
|
pred_pixel_ready_reset(pc_tree, bsize);
|
|
}
|
|
}
|
|
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
if (sf->adaptive_motion_search) load_pred_mv(x, ctx);
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
|
|
&pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
|
|
load_pred_mv(x, ctx);
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
|
|
subsize, &pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(&sum_rdc);
|
|
} else {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
}
|
|
}
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
} else {
|
|
pred_pixel_ready_reset(pc_tree, bsize);
|
|
}
|
|
}
|
|
|
|
*rd_cost = best_rdc;
|
|
|
|
if (best_rdc.rate == INT_MAX) {
|
|
vp9_rd_cost_reset(rd_cost);
|
|
return;
|
|
}
|
|
|
|
// update mode info array
|
|
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
|
|
|
|
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
|
|
int output_enabled = (bsize == BLOCK_64X64);
|
|
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
|
|
pc_tree);
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64 && do_recon) {
|
|
assert(tp_orig < *tp);
|
|
assert(best_rdc.rate < INT_MAX);
|
|
assert(best_rdc.dist < INT64_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, MODE_INFO **mi,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int output_enabled,
|
|
RD_COST *rd_cost, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
const int mis = cm->mi_stride;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
RD_COST this_rdc;
|
|
BLOCK_SIZE subsize_ref =
|
|
(cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
|
|
|
|
vp9_rd_cost_reset(&this_rdc);
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
|
|
partition = partition_lookup[bsl][subsize];
|
|
|
|
if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
|
|
x->max_partition_size = BLOCK_32X32;
|
|
x->min_partition_size = BLOCK_16X16;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
|
|
0, INT64_MAX, pc_tree);
|
|
} else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
|
|
subsize >= subsize_ref) {
|
|
x->max_partition_size = BLOCK_32X32;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
|
|
0, INT64_MAX, pc_tree);
|
|
} else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
|
|
x->max_partition_size = BLOCK_16X16;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
|
|
0, INT64_MAX, pc_tree);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
pc_tree->none.pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
|
|
&pc_tree->none);
|
|
pc_tree->none.mic = *xd->mi[0];
|
|
pc_tree->none.mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->none.skip = x->skip;
|
|
break;
|
|
case PARTITION_VERT:
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
|
|
&pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
if (mi_col + hbs < cm->mi_cols) {
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
|
|
&this_rdc, subsize, &pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
|
|
&pc_tree->horizontal[0]);
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
|
|
&this_rdc, subsize, &pc_tree->horizontal[1]);
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
subsize, output_enabled, rd_cost,
|
|
pc_tree->split[0]);
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
|
|
mi_col + hbs, subsize, output_enabled, &this_rdc,
|
|
pc_tree->split[1]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
|
|
mi_row + hbs, mi_col, subsize, output_enabled,
|
|
&this_rdc, pc_tree->split[2]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
|
|
mi_row + hbs, mi_col + hbs, subsize,
|
|
output_enabled, &this_rdc, pc_tree->split[3]);
|
|
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
|
|
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
|
|
rd_cost->rate += this_rdc.rate;
|
|
rd_cost->dist += this_rdc.dist;
|
|
}
|
|
break;
|
|
default: assert(0 && "Invalid partition type."); break;
|
|
}
|
|
}
|
|
|
|
if (bsize == BLOCK_64X64 && output_enabled)
|
|
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
|
|
}
|
|
|
|
static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, MODE_INFO **mi,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int output_enabled,
|
|
RD_COST *dummy_cost, PC_TREE *pc_tree) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
|
|
const int mis = cm->mi_stride;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
|
|
partition = partition_lookup[bsl][subsize];
|
|
|
|
if (output_enabled && bsize != BLOCK_4X4) {
|
|
int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
td->counts->partition[ctx][partition]++;
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
pc_tree->none.pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->none);
|
|
pc_tree->none.mic = *xd->mi[0];
|
|
pc_tree->none.mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->none.skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->none);
|
|
break;
|
|
case PARTITION_VERT:
|
|
pc_tree->vertical[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->vertical[0]);
|
|
pc_tree->vertical[0].mic = *xd->mi[0];
|
|
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[0].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->vertical[0]);
|
|
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
|
|
pc_tree->vertical[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
|
|
subsize, &pc_tree->vertical[1]);
|
|
pc_tree->vertical[1].mic = *xd->mi[0];
|
|
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->vertical[1].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
|
|
output_enabled, subsize, &pc_tree->vertical[1]);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
pc_tree->horizontal[0].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, &pc_tree->horizontal[0]);
|
|
pc_tree->horizontal[0].mic = *xd->mi[0];
|
|
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[0].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, &pc_tree->horizontal[0]);
|
|
|
|
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
|
|
pc_tree->horizontal[1].pred_pixel_ready = 1;
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
|
|
subsize, &pc_tree->horizontal[1]);
|
|
pc_tree->horizontal[1].mic = *xd->mi[0];
|
|
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
|
|
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
|
|
pc_tree->horizontal[1].skip = x->skip;
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
|
|
output_enabled, subsize, &pc_tree->horizontal[1]);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
if (bsize == BLOCK_8X8) {
|
|
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
|
|
subsize, pc_tree->leaf_split[0]);
|
|
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
|
|
subsize, pc_tree->leaf_split[0]);
|
|
} else {
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
|
|
output_enabled, dummy_cost, pc_tree->split[0]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
|
|
mi_col + hbs, subsize, output_enabled, dummy_cost,
|
|
pc_tree->split[1]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
|
|
mi_row + hbs, mi_col, subsize, output_enabled,
|
|
dummy_cost, pc_tree->split[2]);
|
|
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
|
|
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
|
|
dummy_cost, pc_tree->split[3]);
|
|
}
|
|
break;
|
|
default: assert(0 && "Invalid partition type."); break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, int mi_row,
|
|
TOKENEXTRA **tp) {
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_col_start = tile_info->mi_col_start;
|
|
const int mi_col_end = tile_info->mi_col_end;
|
|
int mi_col;
|
|
const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
|
|
const int num_sb_cols =
|
|
get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
|
|
int sb_col_in_tile;
|
|
|
|
// Initialize the left context for the new SB row
|
|
memset(&xd->left_context, 0, sizeof(xd->left_context));
|
|
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
RD_COST dummy_rdc;
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
|
|
PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
|
|
BLOCK_SIZE bsize = BLOCK_64X64;
|
|
int seg_skip = 0;
|
|
|
|
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
|
|
sb_col_in_tile);
|
|
|
|
if (cpi->use_skin_detection) {
|
|
vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
|
|
}
|
|
|
|
x->source_variance = UINT_MAX;
|
|
vp9_zero(x->pred_mv);
|
|
vp9_rd_cost_init(&dummy_rdc);
|
|
x->color_sensitivity[0] = 0;
|
|
x->color_sensitivity[1] = 0;
|
|
x->sb_is_skin = 0;
|
|
x->skip_low_source_sad = 0;
|
|
x->lowvar_highsumdiff = 0;
|
|
x->content_state_sb = 0;
|
|
x->sb_use_mv_part = 0;
|
|
x->sb_mvcol_part = 0;
|
|
x->sb_mvrow_part = 0;
|
|
x->sb_pickmode_part = 0;
|
|
x->arf_frame_usage = 0;
|
|
x->lastgolden_frame_usage = 0;
|
|
|
|
if (seg->enabled) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
|
|
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
|
|
if (seg_skip) {
|
|
partition_search_type = FIXED_PARTITION;
|
|
}
|
|
}
|
|
|
|
if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
|
|
int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
|
|
int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
|
|
int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
|
|
if (sf->adapt_partition_source_sad &&
|
|
(cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
|
|
source_sad > sf->adapt_partition_thresh &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
|
|
partition_search_type = REFERENCE_PARTITION;
|
|
}
|
|
|
|
// Set the partition type of the 64X64 block
|
|
switch (partition_search_type) {
|
|
case VAR_BASED_PARTITION:
|
|
// TODO(jingning, marpan): The mode decision and encoding process
|
|
// support both intra and inter sub8x8 block coding for RTC mode.
|
|
// Tune the thresholds accordingly to use sub8x8 block coding for
|
|
// coding performance improvement.
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case SOURCE_VAR_BASED_PARTITION:
|
|
set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case FIXED_PARTITION:
|
|
if (!seg_skip) bsize = sf->always_this_block_size;
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
break;
|
|
case REFERENCE_PARTITION:
|
|
x->sb_pickmode_part = 1;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
// Use nonrd_pick_partition on scene-cut for VBR mode.
|
|
// nonrd_pick_partition does not support 4x4 partition, so avoid it
|
|
// on key frame for now.
|
|
if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
|
|
cpi->oxcf.speed < 6 && cm->frame_type != KEY_FRAME &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
|
|
// Use lower max_partition_size for low resoultions.
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
x->max_partition_size = BLOCK_32X32;
|
|
else
|
|
x->max_partition_size = BLOCK_64X64;
|
|
x->min_partition_size = BLOCK_8X8;
|
|
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
|
|
BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
|
|
td->pc_root);
|
|
} else {
|
|
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
|
|
// TODO(marpan): Seems like nonrd_select_partition does not support
|
|
// 4x4 partition. Since 4x4 is used on key frame, use this switch
|
|
// for now.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
else
|
|
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
|
|
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
|
|
}
|
|
|
|
break;
|
|
default: assert(0); break;
|
|
}
|
|
|
|
// Update ref_frame usage for inter frame if this group is ARF group.
|
|
if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
|
|
!cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
|
|
cpi->sf.use_altref_onepass) {
|
|
int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
|
|
if (cpi->count_arf_frame_usage != NULL)
|
|
cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
|
|
if (cpi->count_lastgolden_frame_usage != NULL)
|
|
cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
|
|
}
|
|
|
|
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
|
|
sb_col_in_tile, num_sb_cols);
|
|
}
|
|
}
|
|
// end RTC play code
|
|
|
|
static INLINE uint32_t variance(const diff *const d) {
|
|
return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static INLINE uint32_t variance_highbd(diff *const d) {
|
|
const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
|
|
return (var >= 0) ? (uint32_t)var : 0;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
|
|
const uint8_t *src = cpi->Source->y_buffer;
|
|
const uint8_t *last_src = cpi->Last_Source->y_buffer;
|
|
const int src_stride = cpi->Source->y_stride;
|
|
const int last_stride = cpi->Last_Source->y_stride;
|
|
|
|
// Pick cutoff threshold
|
|
const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
|
|
? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
|
|
: (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
|
|
DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
|
|
diff *var16 = cpi->source_diff_var;
|
|
|
|
int sum = 0;
|
|
int i, j;
|
|
|
|
memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
|
|
|
|
for (i = 0; i < cm->mb_rows; i++) {
|
|
for (j = 0; j < cm->mb_cols; j++) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
switch (cm->bit_depth) {
|
|
case VPX_BITS_8:
|
|
vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
var16->var = variance(var16);
|
|
break;
|
|
case VPX_BITS_10:
|
|
vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
var16->var = variance_highbd(var16);
|
|
break;
|
|
case VPX_BITS_12:
|
|
vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
|
|
&var16->sse, &var16->sum);
|
|
var16->var = variance_highbd(var16);
|
|
break;
|
|
default:
|
|
assert(0 &&
|
|
"cm->bit_depth should be VPX_BITS_8, VPX_BITS_10"
|
|
" or VPX_BITS_12");
|
|
return -1;
|
|
}
|
|
} else {
|
|
vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
|
|
&var16->sum);
|
|
var16->var = variance(var16);
|
|
}
|
|
#else
|
|
vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
|
|
&var16->sum);
|
|
var16->var = variance(var16);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
if (var16->var >= VAR_HIST_MAX_BG_VAR)
|
|
hist[VAR_HIST_BINS - 1]++;
|
|
else
|
|
hist[var16->var / VAR_HIST_FACTOR]++;
|
|
|
|
src += 16;
|
|
last_src += 16;
|
|
var16++;
|
|
}
|
|
|
|
src = src - cm->mb_cols * 16 + 16 * src_stride;
|
|
last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
|
|
}
|
|
|
|
cpi->source_var_thresh = 0;
|
|
|
|
if (hist[VAR_HIST_BINS - 1] < cutoff) {
|
|
for (i = 0; i < VAR_HIST_BINS - 1; i++) {
|
|
sum += hist[i];
|
|
|
|
if (sum > cutoff) {
|
|
cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sf->search_type_check_frequency;
|
|
}
|
|
|
|
static void source_var_based_partition_search_method(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// For key frame, use SEARCH_PARTITION.
|
|
sf->partition_search_type = SEARCH_PARTITION;
|
|
} else if (cm->intra_only) {
|
|
sf->partition_search_type = FIXED_PARTITION;
|
|
} else {
|
|
if (cm->last_width != cm->width || cm->last_height != cm->height) {
|
|
if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
|
|
vpx_calloc(cm->MBs, sizeof(diff)));
|
|
}
|
|
|
|
if (!cpi->frames_till_next_var_check)
|
|
cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
|
|
|
|
if (cpi->frames_till_next_var_check > 0) {
|
|
sf->partition_search_type = FIXED_PARTITION;
|
|
cpi->frames_till_next_var_check--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
|
|
unsigned int intra_count = 0, inter_count = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
|
|
intra_count += td->counts->intra_inter[j][0];
|
|
inter_count += td->counts->intra_inter[j][1];
|
|
}
|
|
|
|
return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
|
|
cm->show_frame;
|
|
}
|
|
|
|
void vp9_init_tile_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
int tile_col, tile_row;
|
|
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
|
|
TOKENLIST *tplist = cpi->tplist[0][0];
|
|
int tile_tok = 0;
|
|
int tplist_count = 0;
|
|
|
|
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
|
|
if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
|
|
CHECK_MEM_ERROR(cm, cpi->tile_data, vpx_malloc(tile_cols * tile_rows *
|
|
sizeof(*cpi->tile_data)));
|
|
cpi->allocated_tiles = tile_cols * tile_rows;
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileDataEnc *tile_data =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
int i, j;
|
|
for (i = 0; i < BLOCK_SIZES; ++i) {
|
|
for (j = 0; j < MAX_MODES; ++j) {
|
|
tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
|
|
tile_data->mode_map[i][j] = j;
|
|
}
|
|
}
|
|
#if CONFIG_MULTITHREAD
|
|
tile_data->row_base_thresh_freq_fact = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
TileInfo *tile_info = &this_tile->tile_info;
|
|
vp9_tile_init(tile_info, cm, tile_row, tile_col);
|
|
|
|
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
|
|
pre_tok = cpi->tile_tok[tile_row][tile_col];
|
|
tile_tok = allocated_tokens(*tile_info);
|
|
|
|
cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
|
|
tplist = cpi->tplist[tile_row][tile_col];
|
|
tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
|
|
int tile_col, int mi_row) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
const TileInfo *const tile_info = &this_tile->tile_info;
|
|
TOKENEXTRA *tok = NULL;
|
|
int tile_sb_row;
|
|
int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
|
|
|
|
tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
|
|
MI_BLOCK_SIZE_LOG2;
|
|
get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
|
|
cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
|
|
|
|
if (cpi->sf.use_nonrd_pick_mode)
|
|
encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
|
|
else
|
|
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
|
|
|
|
cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
|
|
cpi->tplist[tile_row][tile_col][tile_sb_row].count =
|
|
(unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
|
|
cpi->tplist[tile_row][tile_col][tile_sb_row].start);
|
|
assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
|
|
get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
|
|
|
|
(void)tile_mb_cols;
|
|
}
|
|
|
|
void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
|
|
int tile_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
const TileInfo *const tile_info = &this_tile->tile_info;
|
|
const int mi_row_start = tile_info->mi_row_start;
|
|
const int mi_row_end = tile_info->mi_row_end;
|
|
int mi_row;
|
|
|
|
for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
|
|
vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
|
|
}
|
|
|
|
static void encode_tiles(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
int tile_col, tile_row;
|
|
|
|
vp9_init_tile_data(cpi);
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col)
|
|
vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
|
|
VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
|
|
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
|
|
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
|
|
|
|
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
|
|
|
|
*this_frame_mb_stats = mb_stats_in;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void encode_frame_internal(VP9_COMP *cpi) {
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
ThreadData *const td = &cpi->td;
|
|
MACROBLOCK *const x = &td->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
xd->mi = cm->mi_grid_visible;
|
|
xd->mi[0] = cm->mi;
|
|
|
|
vp9_zero(*td->counts);
|
|
vp9_zero(cpi->td.rd_counts);
|
|
|
|
xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
|
|
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth)
|
|
x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
|
|
else
|
|
x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
x->highbd_inv_txfm_add =
|
|
xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
|
|
#else
|
|
x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
|
|
|
|
if (xd->lossless) x->optimize = 0;
|
|
|
|
cm->tx_mode = select_tx_mode(cpi, xd);
|
|
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
vp9_initialize_rd_consts(cpi);
|
|
vp9_initialize_me_consts(cpi, x, cm->base_qindex);
|
|
init_encode_frame_mb_context(cpi);
|
|
cm->use_prev_frame_mvs =
|
|
!cm->error_resilient_mode && cm->width == cm->last_width &&
|
|
cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
|
|
// Special case: set prev_mi to NULL when the previous mode info
|
|
// context cannot be used.
|
|
cm->prev_mi =
|
|
cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
|
|
|
|
x->quant_fp = cpi->sf.use_quant_fp;
|
|
vp9_zero(x->skip_txfm);
|
|
if (sf->use_nonrd_pick_mode) {
|
|
// Initialize internal buffer pointers for rtc coding, where non-RD
|
|
// mode decision is used and hence no buffer pointer swap needed.
|
|
int i;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][0];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
|
|
p[i].eobs = ctx->eobs_pbuf[i][0];
|
|
}
|
|
vp9_zero(x->zcoeff_blk);
|
|
|
|
if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
|
|
!(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
|
|
!cpi->use_svc)
|
|
cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
|
|
|
|
if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
|
|
source_var_based_partition_search_method(cpi);
|
|
}
|
|
|
|
{
|
|
struct vpx_usec_timer emr_timer;
|
|
vpx_usec_timer_start(&emr_timer);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
|
|
&cpi->twopass.this_frame_mb_stats);
|
|
}
|
|
#endif
|
|
|
|
if (!cpi->row_mt) {
|
|
cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
|
|
cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
|
|
// If allowed, encoding tiles in parallel with one thread handling one
|
|
// tile when row based multi-threading is disabled.
|
|
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
|
vp9_encode_tiles_mt(cpi);
|
|
else
|
|
encode_tiles(cpi);
|
|
} else {
|
|
cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
|
|
cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
|
|
vp9_encode_tiles_row_mt(cpi);
|
|
}
|
|
|
|
vpx_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
|
|
}
|
|
|
|
sf->skip_encode_frame =
|
|
sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
}
|
|
|
|
static INTERP_FILTER get_interp_filter(
|
|
const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
|
|
if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
|
|
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
|
|
threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP_SMOOTH;
|
|
} else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
|
|
threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP_SHARP;
|
|
} else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
|
|
return EIGHTTAP;
|
|
} else {
|
|
return SWITCHABLE;
|
|
}
|
|
}
|
|
|
|
static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
|
|
struct segmentation *const seg = &cm->seg;
|
|
|
|
int mi_row, mi_col;
|
|
int sum_delta = 0;
|
|
int map_index = 0;
|
|
int qdelta_index;
|
|
int segment_id;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
|
|
MODE_INFO **mi_8x8 = mi_8x8_ptr;
|
|
for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
|
|
segment_id = mi_8x8[0]->segment_id;
|
|
qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
|
|
sum_delta += qdelta_index;
|
|
map_index++;
|
|
}
|
|
mi_8x8_ptr += cm->mi_stride;
|
|
}
|
|
|
|
return sum_delta / (cm->mi_rows * cm->mi_cols);
|
|
}
|
|
|
|
void vp9_encode_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// In the longer term the encoder should be generalized to match the
|
|
// decoder such that we allow compound where one of the 3 buffers has a
|
|
// different sign bias and that buffer is then the fixed ref. However, this
|
|
// requires further work in the rd loop. For now the only supported encoder
|
|
// side behavior is where the ALT ref buffer has opposite sign bias to
|
|
// the other two.
|
|
if (!frame_is_intra_only(cm)) {
|
|
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
|
|
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[LAST_FRAME])) {
|
|
cpi->allow_comp_inter_inter = 0;
|
|
} else {
|
|
cpi->allow_comp_inter_inter = 1;
|
|
cm->comp_fixed_ref = ALTREF_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = GOLDEN_FRAME;
|
|
}
|
|
}
|
|
|
|
if (cpi->sf.frame_parameter_update) {
|
|
int i;
|
|
RD_OPT *const rd_opt = &cpi->rd;
|
|
FRAME_COUNTS *counts = cpi->td.counts;
|
|
RD_COUNTS *const rdc = &cpi->td.rd_counts;
|
|
|
|
// This code does a single RD pass over the whole frame assuming
|
|
// either compound, single or hybrid prediction as per whatever has
|
|
// worked best for that type of frame in the past.
|
|
// It also predicts whether another coding mode would have worked
|
|
// better than this coding mode. If that is the case, it remembers
|
|
// that for subsequent frames.
|
|
// It also does the same analysis for transform size selection.
|
|
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
|
|
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
|
|
int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
|
|
const int is_alt_ref = frame_type == ALTREF_FRAME;
|
|
|
|
/* prediction (compound, single or hybrid) mode selection */
|
|
if (is_alt_ref || !cpi->allow_comp_inter_inter)
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
|
|
mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
|
|
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else
|
|
cm->reference_mode = REFERENCE_MODE_SELECT;
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
|
|
|
|
encode_frame_internal(cpi);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
|
|
single_count_zero += counts->comp_inter[i][0];
|
|
comp_count_zero += counts->comp_inter[i][1];
|
|
}
|
|
|
|
if (comp_count_zero == 0) {
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
} else if (single_count_zero == 0) {
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
}
|
|
}
|
|
|
|
if (cm->tx_mode == TX_MODE_SELECT) {
|
|
int count4x4 = 0;
|
|
int count8x8_lp = 0, count8x8_8x8p = 0;
|
|
int count16x16_16x16p = 0, count16x16_lp = 0;
|
|
int count32x32 = 0;
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
count4x4 += counts->tx.p32x32[i][TX_4X4];
|
|
count4x4 += counts->tx.p16x16[i][TX_4X4];
|
|
count4x4 += counts->tx.p8x8[i][TX_4X4];
|
|
|
|
count8x8_lp += counts->tx.p32x32[i][TX_8X8];
|
|
count8x8_lp += counts->tx.p16x16[i][TX_8X8];
|
|
count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
|
|
|
|
count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
|
|
count16x16_lp += counts->tx.p32x32[i][TX_16X16];
|
|
count32x32 += counts->tx.p32x32[i][TX_32X32];
|
|
}
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
|
|
count32x32 == 0) {
|
|
cm->tx_mode = ALLOW_8X8;
|
|
reset_skip_tx_size(cm, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
|
|
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
|
|
cm->tx_mode = ONLY_4X4;
|
|
reset_skip_tx_size(cm, TX_4X4);
|
|
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_32X32;
|
|
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_16X16;
|
|
reset_skip_tx_size(cm, TX_16X16);
|
|
}
|
|
}
|
|
} else {
|
|
FRAME_COUNTS *counts = cpi->td.counts;
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
|
|
cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
|
|
cm->frame_type != KEY_FRAME)
|
|
cm->reference_mode = REFERENCE_MODE_SELECT;
|
|
|
|
encode_frame_internal(cpi);
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
int i;
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
|
|
single_count_zero += counts->comp_inter[i][0];
|
|
comp_count_zero += counts->comp_inter[i][1];
|
|
}
|
|
if (comp_count_zero == 0) {
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
} else if (single_count_zero == 0) {
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
vp9_zero(counts->comp_inter);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If segmented AQ is enabled compute the average AQ weighting.
|
|
if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
|
|
(cm->seg.update_map || cm->seg.update_data)) {
|
|
cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
|
|
}
|
|
}
|
|
|
|
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
|
|
const PREDICTION_MODE y_mode = mi->mode;
|
|
const PREDICTION_MODE uv_mode = mi->uv_mode;
|
|
const BLOCK_SIZE bsize = mi->sb_type;
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
int idx, idy;
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
for (idy = 0; idy < 2; idy += num_4x4_h)
|
|
for (idx = 0; idx < 2; idx += num_4x4_w)
|
|
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
|
|
} else {
|
|
++counts->y_mode[size_group_lookup[bsize]][y_mode];
|
|
}
|
|
|
|
++counts->uv_mode[y_mode][uv_mode];
|
|
}
|
|
|
|
static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
MV mv = mi->mv[0].as_mv;
|
|
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
|
const int bh = num_8x8_blocks_high_lookup[bsize];
|
|
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
|
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
|
const int block_index = mi_row * cm->mi_cols + mi_col;
|
|
int x, y;
|
|
for (y = 0; y < ymis; y++)
|
|
for (x = 0; x < xmis; x++) {
|
|
int map_offset = block_index + y * cm->mi_cols + x;
|
|
if (is_inter_block(mi) && mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
|
|
if (abs(mv.row) < 8 && abs(mv.col) < 8) {
|
|
if (cpi->consec_zero_mv[map_offset] < 255)
|
|
cpi->consec_zero_mv[map_offset]++;
|
|
} else {
|
|
cpi->consec_zero_mv[map_offset] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
|
|
int output_enabled, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
const int seg_skip =
|
|
segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
|
|
x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
|
|
cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
|
|
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
|
|
cpi->sf.allow_skip_recode;
|
|
|
|
if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
|
|
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
|
|
|
|
x->skip_optimize = ctx->is_coded;
|
|
ctx->is_coded = 1;
|
|
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
|
|
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
|
|
x->q_index < QIDX_SKIP_THRESH);
|
|
|
|
if (x->skip_encode) return;
|
|
|
|
if (!is_inter_block(mi)) {
|
|
int plane;
|
|
#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
|
|
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
|
|
(xd->above_mi == NULL || xd->left_mi == NULL) &&
|
|
need_top_left[mi->uv_mode])
|
|
assert(0);
|
|
#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
|
|
mi->skip = 1;
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
|
|
vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
|
|
if (output_enabled) sum_intra_stats(td->counts, mi);
|
|
vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
} else {
|
|
int ref;
|
|
const int is_compound = has_second_ref(mi);
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
|
|
assert(cfg != NULL);
|
|
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
|
|
&xd->block_refs[ref]->sf);
|
|
}
|
|
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
|
|
vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
|
|
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
|
|
vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
|
|
vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
|
|
VPXMAX(bsize, BLOCK_8X8));
|
|
}
|
|
|
|
if (seg_skip) {
|
|
assert(mi->skip);
|
|
}
|
|
|
|
if (output_enabled) {
|
|
if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
|
|
!(is_inter_block(mi) && mi->skip)) {
|
|
++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
|
|
&td->counts->tx)[mi->tx_size];
|
|
} else {
|
|
// The new intra coding scheme requires no change of transform size
|
|
if (is_inter_block(mi)) {
|
|
mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
|
max_txsize_lookup[bsize]);
|
|
} else {
|
|
mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
|
|
}
|
|
}
|
|
|
|
++td->counts->tx.tx_totals[mi->tx_size];
|
|
++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
|
|
if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
|
|
vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
|
|
if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0)
|
|
update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
|
|
}
|
|
}
|