vpx/vp8/decoder/decodframe.c
Yaowu Xu 89ee68b1f7 Merge t8x8 experiments
Change-Id: I8e9b6b154e1a0d0cb42d596366380d69c00ac15f
2012-03-01 12:59:11 -08:00

1341 lines
44 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconinter.h"
#include "dequantize.h"
#include "detokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vpx_scale/yv12extend.h"
#include "vp8/common/setupintrarecon.h"
#include "decodemv.h"
#include "vp8/common/extend.h"
#include "vp8/common/modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/idct.h"
#include "dequantize.h"
#include "dboolhuff.h"
#include "vp8/common/seg_common.h"
#include <assert.h>
#include <stdio.h>
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int i;
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
/* all the ac values = ; */
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
}
}
}
void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i;
int QIndex;
VP8_COMMON *const pc = & pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if ( segfeature_active( xd, segment_id, SEG_LVL_ALT_Q ) )
{
/* Abs Value */
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
QIndex = get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
/* Delta Value */
else
{
QIndex = pc->base_qindex +
get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
}
}
else
QIndex = pc->base_qindex;
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++)
{
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
for (i = 16; i < 24; i++)
{
xd->block[i].dequant = pc->UVdequant[QIndex];
}
xd->block[24].dequant = pc->Y2dequant[QIndex];
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby_s)(xd);
}
else
{
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame)
{
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
}
extern const int vp8_i8x8_block[4];
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
unsigned int mb_idx)
{
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int i;
int tx_type;
if( pbi->common.txfm_mode==ONLY_4X4 )
{
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
}
else if( pbi->common.txfm_mode == ALLOW_8X8 )
{
if( xd->mode_info_context->mbmi.mode ==B_PRED
||xd->mode_info_context->mbmi.mode ==I8X8_PRED
||xd->mode_info_context->mbmi.mode ==SPLITMV)
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
else
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
tx_type = xd->mode_info_context->mbmi.txfm_size;
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else if (!vp8dx_bool_error(xd->current_bc))
{
for(i = 0; i < 25; i++)
{
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
if ( tx_type == TX_8X8 )
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd);
else
eobtotal = vp8_decode_mb_tokens(pbi, xd);
#ifdef DEC_DEBUG
if (dec_debug) {
printf("\nTokens (%d)\n", eobtotal);
for (i =0; i<400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("\n");
}
#endif
}
mode = xd->mode_info_context->mbmi.mode;
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&&!vp8dx_bool_error(xd->current_bc)
)
{
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_mb(pbi, xd);
return;
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
if(mode != I8X8_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd);
if (mode != B_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby)(xd);
} else {
#if !CONFIG_SUPERBLOCKS
vp8_intra_prediction_down_copy(xd);
#endif
}
}
}
else
{
vp8_build_inter_predictors_mb(xd);
}
/* dequantization and idct */
if (mode == I8X8_PRED)
{
for (i = 0; i < 4; i++)
{
int ib = vp8_i8x8_block[i];
const int iblock[4]={0,1,4,5};
int j;
int i8x8mode;
BLOCKD *b;
b = &xd->block[ib];
i8x8mode= b->bmi.as_mode.first;
RECON_INVOKE(RTCD_VTABLE(recon), intra8x8_predict)
(b, i8x8mode, b->predictor);
for(j = 0; j < 4; j++)
{
b = &xd->block[ib+iblock[j]];
if (xd->eobs[ib+iblock[j]] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
}
}
b = &xd->block[16+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
}
else if (mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
int b_mode2 = xd->mode_info_context->bmi[i].as_mode.second;
if (b_mode2 == (B_PREDICTION_MODE) (B_DC_PRED - 1))
{
#endif
RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict)
(b, b_mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
}
else
{
RECON_INVOKE(RTCD_VTABLE(recon), comp_intra4x4_predict)
(b, b_mode, b_mode2, b->predictor);
}
#endif
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
}
}
}
else if (mode == SPLITMV)
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
else
{
BLOCKD *b = &xd->block[24];
if( tx_type == TX_8X8 )
{
DEQUANT_INVOKE(&pbi->dequant, block_2x2)(b);
#ifdef DEC_DEBUG
if (dec_debug)
{
int j;
printf("DQcoeff Haar\n");
for (j=0;j<16;j++) {
printf("%d ", b->dqcoeff[j]);
}
printf("\n");
}
#endif
IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0;//2nd order block are set to 0 after inverse transform
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block_8x8)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
}
else
{
DEQUANT_INVOKE(&pbi->dequant, block)(b);
if (xd->eobs[24] > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
}
}
if( tx_type == TX_8X8 )
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block_8x8)//
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16, xd);//
else if(xd->mode_info_context->mbmi.mode!=I8X8_PRED)
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block)
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
static int get_delta_q(vp8_reader *bc, int prev, int *q_update)
{
int ret_val = 0;
if (vp8_read_bit(bc))
{
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
#if CONFIG_SUPERBLOCKS
static void
decode_sb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mbrow, MACROBLOCKD *xd)
{
int i;
int recon_yoffset, recon_uvoffset;
int mb_row, mb_col;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int sb_col;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = {+1, -1, +1, +1};
int sb_cols = (pc->mb_cols + 1)>>1;
ENTROPY_CONTEXT_PLANES left_context[2];
vpx_memset(left_context, 0, sizeof(left_context));
mb_row = mbrow;
mb_col = 0;
for (sb_col=0; sb_col<sb_cols; sb_col++)
{
for ( i=0; i<4; i++ )
{
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols))
{
// Skip on to the next MB
mb_row += dy;
mb_col += dx;
xd->mode_info_context += offset_extended;
continue;
}
// Copy in the appropriate left context
vpx_memcpy (&pc->left_context,
&left_context[(i>>1) & 0x1],
sizeof(ENTROPY_CONTEXT_PLANES));
// reset above block coeffs
xd->above_context = pc->above_context + mb_col;
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
update_blockd_bmi(xd);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer +recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer +recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer +recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame)
{
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer =
pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME)
{
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
// Copy in the appropriate left context
vpx_memcpy (&left_context[(i>>1) & 0x1],
&pc->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
// skip to next MB
xd->mode_info_context += offset_extended;
mb_row += dy;
mb_col += dx;
}
}
/* skip prediction column */
xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
}
#else
static void
decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd)
{
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
/* reset above block coeffs */
xd->above_context = pc->above_context;
xd->up_available = (mb_row != 0);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to values
* that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
update_blockd_bmi(xd);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame)
{
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer = pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer = pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer = pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME)
{
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame==1 && mb_row==4 && mb_col==0);
#endif
decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
}
/* adjust to the next row of mbs */
vp8_extend_mb_row(
&pc->yv12_fb[dst_fb_idx],
xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8
);
++xd->mode_info_context; /* skip prediction column */
}
#endif // CONFIG_SUPERBLOCKS
static unsigned int read_partition_size(const unsigned char *cx_size)
{
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end)
{
return (start + len > start && start + len <= end);
}
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char *cx_data)
{
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
vp8_reader *bool_decoder;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Dummy read for now
vp8_read_literal(&pbi->bc, 2);
// Set up pointers to token partition
partition = cx_data;
bool_decoder = &pbi->bc2;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end))
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp8dx_start_decode(bool_decoder, partition, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME)
{
/* Various keyframe initializations */
vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
#if CONFIG_HIGH_PRECISION_MV
vpx_memcpy(pc->fc.mvc_hp, vp8_default_mv_context_hp,
sizeof(vp8_default_mv_context_hp));
#endif
vp8_init_mbmode_probs(pc);
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
clearall_segfeatures( xd );
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
vp8_init_mode_contexts(&pbi->common);
vpx_memcpy( pbi->common.vp8_mode_contexts,
pbi->common.mode_context,
sizeof(pbi->common.mode_context));
}
else
{
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = SIXTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interploation filters */
if (pc->mcomp_filter_type == SIXTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16);
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16);
}
}
xd->left_context = &pc->left_context;
xd->mode_info_context = pc->mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if(pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes;
int mb_row;
int i, j, k, l;
int corrupt_tokens = 0;
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3)
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
}
else
{
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
if ((data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end)
{
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (data + 6 < data_end)
{
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
}
data += 7;
if (Width != pc->Width || Height != pc->Height)
{
int prev_mb_rows = pc->mb_rows;
if (pc->Width <= 0)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0)
{
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(bc, data, data_end - data))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp8_read_bit(bc);
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc);
}
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->segmentation_enabled)
{
// Read whether or not the segmentation map is being explicitly
// updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc);
// If so what method will be used.
if ( xd->update_mb_segmentation_map )
pc->temporal_update = (unsigned char)vp8_read_bit(bc);
// Is the segment data being updated
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc);
if (xd->update_mb_segmentation_data)
{
int data;
xd->mb_segment_abs_delta = (unsigned char)vp8_read_bit(bc);
clearall_segfeatures( xd );
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++)
{
#if CONFIG_FEATUREUPDATES
// feature updated?
if (vp8_read_bit(bc))
{
int active=1;
if ( segfeature_active( xd, i, j ))
active=vp8_read_bit(bc);
// Is the feature enabled
if (active)
{
// Update the feature data and mask
enable_segfeature(xd, i, j);
data = (signed char)vp8_read_literal(
bc, seg_feature_data_bits(j));
// Is the segment data signed..
if ( is_segfeature_signed(j) )
{
if (vp8_read_bit(bc))
data = - data;
}
}
else
data = 0;
set_segdata(xd, i, j, data);
}
#else
// Is the feature enabled
if (vp8_read_bit(bc))
{
// Update the feature data and mask
enable_segfeature(xd, i, j);
data = (signed char)vp8_read_literal(
bc, seg_feature_data_bits(j));
// Is the segment data signed..
if ( is_segfeature_signed(j) )
{
if (vp8_read_bit(bc))
data = - data;
}
}
else
data = 0;
set_segdata(xd, i, j, data);
#endif
}
}
}
if (xd->update_mb_segmentation_map)
{
// Which macro block level features are enabled
vpx_memset(xd->mb_segment_tree_probs, 255,
sizeof(xd->mb_segment_tree_probs));
vpx_memset(pc->segment_pred_probs, 255,
sizeof(pc->segment_pred_probs));
// Read the probs used to decode the segment id for each macro
// block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
// If not explicitly set value is defaulted to 255 by
//memset above
if (vp8_read_bit(bc))
xd->mb_segment_tree_probs[i] =
(vp8_prob)vp8_read_literal(bc, 8);
}
// If predictive coding of segment map is enabled read the
// prediction probabilities.
if ( pc->temporal_update )
{
// Read the prediction probs needed to decode the segment id
// when predictive coding enabled
for (i = 0; i < PREDICTION_PROBS; i++)
{
// If not explicitly set value is defaulted to 255 by
// memset above
if (vp8_read_bit(bc))
pc->segment_pred_probs[i] =
(vp8_prob)vp8_read_literal(bc, 8);
}
}
}
}
// Read common prediction model status flag probability updates for the
// reference frame
if ( pc->frame_type == KEY_FRAME )
{
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
}
else
{
for (i = 0; i < PREDICTION_PROBS; i++)
{
if ( vp8_read_bit(bc) )
pc->ref_pred_probs[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
}
/* Read the loop filter level and type */
pc->txfm_mode = (TXFM_MODE) vp8_read_bit(bc);
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc);
pc->filter_level = vp8_read_literal(bc, 6);
pc->sharpness_level = vp8_read_literal(bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_enabled)
{
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_update)
{
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
setup_token_decoder(pbi, data + first_partition_length_in_bytes);
xd->current_bc = &pbi->bc2;
/* Read the default quantizers. */
{
int Q, q_update;
Q = vp8_read_literal(bc, QINDEX_BITS); /* AC 1st order Q = default */
pc->base_qindex = Q;
q_update = 0;
pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type != KEY_FRAME)
{
/* Should the GF or ARF be updated from the current frame */
pc->refresh_golden_frame = vp8_read_bit(bc);
pc->refresh_alt_ref_frame = vp8_read_bit(bc);
if(pc->refresh_alt_ref_frame)
{
vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc));
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context_a,
sizeof(pc->vp8_mode_contexts));
}
else
{
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context,
sizeof(pc->vp8_mode_contexts));
}
/* Buffer to buffer copy flags. */
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(bc, 2);
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc);
#if CONFIG_HIGH_PRECISION_MV
/* Is high precision mv allowed */
xd->allow_high_precision_mv = (unsigned char)vp8_read_bit(bc);
#endif
}
pc->refresh_entropy_probs = vp8_read_bit(bc);
if (pc->refresh_entropy_probs == 0)
{
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
{
if(vp8_read_bit(bc))
{
/* read coef probability tree */
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < ENTROPY_NODES; l++)
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
}
if(pbi->common.txfm_mode == ALLOW_8X8 && vp8_read_bit(bc))
{
// read coef probability tree
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++)
{
vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs_8x8 [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp8_read_bit(bc);
vp8_decode_mode_mvs(pbi);
if(pbi->common.frame_type != KEY_FRAME)
{
vp8_update_mode_context(&pbi->common);
}
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
// Resset the macroblock mode info context to the start of the list
xd->mode_info_context = pc->mi;
#if CONFIG_SUPERBLOCKS
/* Decode a row of super-blocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row+=2)
{
decode_sb_row(pbi, pc, mb_row, xd);
}
#else
/* Decode a row of macro blocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row++)
{
decode_mb_row(pbi, pc, mb_row, xd);
}
#endif /* CONFIG_SUPERBLOCKS */
corrupt_tokens |= xd->corrupted;
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame)
{
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
/* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */
/* If this was a kf or Gf note the Q used */
if ((pc->frame_type == KEY_FRAME) ||
pc->refresh_golden_frame || pc->refresh_alt_ref_frame)
{
pc->last_kf_gf_q = pc->base_qindex;
}
if(pc->refresh_entropy_probs)
{
if(pc->refresh_alt_ref_frame)
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
else
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
//printf("Frame %d Done\n", frame_count++);
return 0;
}