Move computing the segmentation_probs.tree_cdf table per symbol to computing it only when the probabilities are updated. Change-Id: I3826418094bbaca4ded87de5ff04d4b27c85e35a
		
			
				
	
	
		
			383 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 | 
						|
 *
 | 
						|
 * This source code is subject to the terms of the BSD 2 Clause License and
 | 
						|
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 | 
						|
 * was not distributed with this source code in the LICENSE file, you can
 | 
						|
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 | 
						|
 * Media Patent License 1.0 was not distributed with this source code in the
 | 
						|
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 | 
						|
 */
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include "aom_mem/aom_mem.h"
 | 
						|
 | 
						|
#include "av1/common/pred_common.h"
 | 
						|
#include "av1/common/tile_common.h"
 | 
						|
 | 
						|
#include "av1/encoder/cost.h"
 | 
						|
#include "av1/encoder/segmentation.h"
 | 
						|
#include "av1/encoder/subexp.h"
 | 
						|
 | 
						|
void av1_enable_segmentation(struct segmentation *seg) {
 | 
						|
  seg->enabled = 1;
 | 
						|
  seg->update_map = 1;
 | 
						|
  seg->update_data = 1;
 | 
						|
}
 | 
						|
 | 
						|
void av1_disable_segmentation(struct segmentation *seg) {
 | 
						|
  seg->enabled = 0;
 | 
						|
  seg->update_map = 0;
 | 
						|
  seg->update_data = 0;
 | 
						|
}
 | 
						|
 | 
						|
void av1_set_segment_data(struct segmentation *seg, signed char *feature_data,
 | 
						|
                          unsigned char abs_delta) {
 | 
						|
  seg->abs_delta = abs_delta;
 | 
						|
 | 
						|
  memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
 | 
						|
}
 | 
						|
void av1_disable_segfeature(struct segmentation *seg, int segment_id,
 | 
						|
                            SEG_LVL_FEATURES feature_id) {
 | 
						|
  seg->feature_mask[segment_id] &= ~(1 << feature_id);
 | 
						|
}
 | 
						|
 | 
						|
void av1_clear_segdata(struct segmentation *seg, int segment_id,
 | 
						|
                       SEG_LVL_FEATURES feature_id) {
 | 
						|
  seg->feature_data[segment_id][feature_id] = 0;
 | 
						|
}
 | 
						|
 | 
						|
// Based on set of segment counts calculate a probability tree
 | 
						|
static void calc_segtree_probs(unsigned *segcounts,
 | 
						|
                               aom_prob *segment_tree_probs,
 | 
						|
                               const aom_prob *cur_tree_probs) {
 | 
						|
  // Work out probabilities of each segment
 | 
						|
  const unsigned cc[4] = { segcounts[0] + segcounts[1],
 | 
						|
                           segcounts[2] + segcounts[3],
 | 
						|
                           segcounts[4] + segcounts[5],
 | 
						|
                           segcounts[6] + segcounts[7] };
 | 
						|
  const unsigned ccc[2] = { cc[0] + cc[1], cc[2] + cc[3] };
 | 
						|
  int i;
 | 
						|
 | 
						|
  segment_tree_probs[0] = get_binary_prob(ccc[0], ccc[1]);
 | 
						|
  segment_tree_probs[1] = get_binary_prob(cc[0], cc[1]);
 | 
						|
  segment_tree_probs[2] = get_binary_prob(cc[2], cc[3]);
 | 
						|
  segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
 | 
						|
  segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
 | 
						|
  segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
 | 
						|
  segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
 | 
						|
 | 
						|
  for (i = 0; i < 7; i++) {
 | 
						|
    const unsigned *ct =
 | 
						|
        i == 0 ? ccc : i < 3 ? cc + (i & 2) : segcounts + (i - 3) * 2;
 | 
						|
    av1_prob_diff_update_savings_search(
 | 
						|
        ct, cur_tree_probs[i], &segment_tree_probs[i], DIFF_UPDATE_PROB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Based on set of segment counts and probabilities calculate a cost estimate
 | 
						|
static int cost_segmap(unsigned *segcounts, aom_prob *probs) {
 | 
						|
  const int c01 = segcounts[0] + segcounts[1];
 | 
						|
  const int c23 = segcounts[2] + segcounts[3];
 | 
						|
  const int c45 = segcounts[4] + segcounts[5];
 | 
						|
  const int c67 = segcounts[6] + segcounts[7];
 | 
						|
  const int c0123 = c01 + c23;
 | 
						|
  const int c4567 = c45 + c67;
 | 
						|
 | 
						|
  // Cost the top node of the tree
 | 
						|
  int cost = c0123 * av1_cost_zero(probs[0]) + c4567 * av1_cost_one(probs[0]);
 | 
						|
 | 
						|
  // Cost subsequent levels
 | 
						|
  if (c0123 > 0) {
 | 
						|
    cost += c01 * av1_cost_zero(probs[1]) + c23 * av1_cost_one(probs[1]);
 | 
						|
 | 
						|
    if (c01 > 0)
 | 
						|
      cost += segcounts[0] * av1_cost_zero(probs[3]) +
 | 
						|
              segcounts[1] * av1_cost_one(probs[3]);
 | 
						|
    if (c23 > 0)
 | 
						|
      cost += segcounts[2] * av1_cost_zero(probs[4]) +
 | 
						|
              segcounts[3] * av1_cost_one(probs[4]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (c4567 > 0) {
 | 
						|
    cost += c45 * av1_cost_zero(probs[2]) + c67 * av1_cost_one(probs[2]);
 | 
						|
 | 
						|
    if (c45 > 0)
 | 
						|
      cost += segcounts[4] * av1_cost_zero(probs[5]) +
 | 
						|
              segcounts[5] * av1_cost_one(probs[5]);
 | 
						|
    if (c67 > 0)
 | 
						|
      cost += segcounts[6] * av1_cost_zero(probs[6]) +
 | 
						|
              segcounts[7] * av1_cost_one(probs[6]);
 | 
						|
  }
 | 
						|
 | 
						|
  return cost;
 | 
						|
}
 | 
						|
 | 
						|
static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                       const TileInfo *tile, MODE_INFO **mi,
 | 
						|
                       unsigned *no_pred_segcounts,
 | 
						|
                       unsigned (*temporal_predictor_count)[2],
 | 
						|
                       unsigned *t_unpred_seg_counts, int bw, int bh,
 | 
						|
                       int mi_row, int mi_col) {
 | 
						|
  int segment_id;
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  xd->mi = mi;
 | 
						|
  segment_id = xd->mi[0]->mbmi.segment_id;
 | 
						|
 | 
						|
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
 | 
						|
 | 
						|
  // Count the number of hits on each segment with no prediction
 | 
						|
  no_pred_segcounts[segment_id]++;
 | 
						|
 | 
						|
  // Temporal prediction not allowed on key frames
 | 
						|
  if (cm->frame_type != KEY_FRAME) {
 | 
						|
    const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
 | 
						|
    // Test to see if the segment id matches the predicted value.
 | 
						|
    const int pred_segment_id =
 | 
						|
        get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col);
 | 
						|
    const int pred_flag = pred_segment_id == segment_id;
 | 
						|
    const int pred_context = av1_get_pred_context_seg_id(xd);
 | 
						|
 | 
						|
    // Store the prediction status for this mb and update counts
 | 
						|
    // as appropriate
 | 
						|
    xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
 | 
						|
    temporal_predictor_count[pred_context][pred_flag]++;
 | 
						|
 | 
						|
    // Update the "unpredicted" segment count
 | 
						|
    if (!pred_flag) t_unpred_seg_counts[segment_id]++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                          const TileInfo *tile, MODE_INFO **mi,
 | 
						|
                          unsigned *no_pred_segcounts,
 | 
						|
                          unsigned (*temporal_predictor_count)[2],
 | 
						|
                          unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
 | 
						|
                          BLOCK_SIZE bsize) {
 | 
						|
  const int mis = cm->mi_stride;
 | 
						|
  const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  PARTITION_TYPE partition;
 | 
						|
#else
 | 
						|
  int bw, bh;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  if (bsize == BLOCK_8X8)
 | 
						|
    partition = PARTITION_NONE;
 | 
						|
  else
 | 
						|
    partition = get_partition(cm, mi_row, mi_col, bsize);
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, bs, bs, mi_row, mi_col);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
 | 
						|
                 mi_row + hbs, mi_col);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
 | 
						|
                 mi_col + hbs);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, hbs, hbs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row, mi_col + hbs);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
 | 
						|
                 mi_row + hbs, mi_col);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row + hbs, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row + hbs, mi_col + hbs);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, hbs, hbs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row + hbs, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
 | 
						|
                 mi_col + hbs);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
                 t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row, mi_col + hbs);
 | 
						|
      count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts,
 | 
						|
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
 | 
						|
                 mi_row + hbs, mi_col + hbs);
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT: {
 | 
						|
      const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
 | 
						|
      int n;
 | 
						|
 | 
						|
      assert(num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type] < bs &&
 | 
						|
             num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type] < bs);
 | 
						|
 | 
						|
      for (n = 0; n < 4; n++) {
 | 
						|
        const int mi_dc = hbs * (n & 1);
 | 
						|
        const int mi_dr = hbs * (n >> 1);
 | 
						|
 | 
						|
        count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
 | 
						|
                      temporal_predictor_count, t_unpred_seg_counts,
 | 
						|
                      mi_row + mi_dr, mi_col + mi_dc, subsize);
 | 
						|
      }
 | 
						|
    } break;
 | 
						|
    default: assert(0);
 | 
						|
  }
 | 
						|
#else
 | 
						|
  bw = num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type];
 | 
						|
  bh = num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type];
 | 
						|
 | 
						|
  if (bw == bs && bh == bs) {
 | 
						|
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
               t_unpred_seg_counts, bs, bs, mi_row, mi_col);
 | 
						|
  } else if (bw == bs && bh < bs) {
 | 
						|
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
               t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
 | 
						|
    count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
 | 
						|
               temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
 | 
						|
               mi_row + hbs, mi_col);
 | 
						|
  } else if (bw < bs && bh == bs) {
 | 
						|
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
 | 
						|
               t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
 | 
						|
    count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
 | 
						|
               temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
 | 
						|
               mi_col + hbs);
 | 
						|
  } else {
 | 
						|
    const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
 | 
						|
    int n;
 | 
						|
 | 
						|
    assert(bw < bs && bh < bs);
 | 
						|
 | 
						|
    for (n = 0; n < 4; n++) {
 | 
						|
      const int mi_dc = hbs * (n & 1);
 | 
						|
      const int mi_dr = hbs * (n >> 1);
 | 
						|
 | 
						|
      count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
 | 
						|
                    temporal_predictor_count, t_unpred_seg_counts,
 | 
						|
                    mi_row + mi_dr, mi_col + mi_dc, subsize);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
}
 | 
						|
 | 
						|
void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
 | 
						|
  struct segmentation *seg = &cm->seg;
 | 
						|
  struct segmentation_probs *segp = &cm->fc->seg;
 | 
						|
 | 
						|
  int no_pred_cost;
 | 
						|
  int t_pred_cost = INT_MAX;
 | 
						|
 | 
						|
  int i, tile_col, tile_row, mi_row, mi_col;
 | 
						|
 | 
						|
  unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred;
 | 
						|
  unsigned *no_pred_segcounts = cm->counts.seg.tree_total;
 | 
						|
  unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred;
 | 
						|
 | 
						|
  aom_prob no_pred_tree[SEG_TREE_PROBS];
 | 
						|
  aom_prob t_pred_tree[SEG_TREE_PROBS];
 | 
						|
  aom_prob t_nopred_prob[PREDICTION_PROBS];
 | 
						|
 | 
						|
  (void)xd;
 | 
						|
 | 
						|
  // We are about to recompute all the segment counts, so zero the accumulators.
 | 
						|
  av1_zero(cm->counts.seg);
 | 
						|
 | 
						|
  // First of all generate stats regarding how well the last segment map
 | 
						|
  // predicts this one
 | 
						|
  for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
 | 
						|
    TileInfo tile_info;
 | 
						|
    av1_tile_set_row(&tile_info, cm, tile_row);
 | 
						|
    for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
 | 
						|
      MODE_INFO **mi_ptr;
 | 
						|
      av1_tile_set_col(&tile_info, cm, tile_col);
 | 
						|
      mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride +
 | 
						|
               tile_info.mi_col_start;
 | 
						|
      for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
 | 
						|
           mi_row += cm->mib_size, mi_ptr += cm->mib_size * cm->mi_stride) {
 | 
						|
        MODE_INFO **mi = mi_ptr;
 | 
						|
        for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
 | 
						|
             mi_col += cm->mib_size, mi += cm->mib_size) {
 | 
						|
          count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
 | 
						|
                        temporal_predictor_count, t_unpred_seg_counts, mi_row,
 | 
						|
                        mi_col, cm->sb_size);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Work out probability tree for coding segments without prediction
 | 
						|
  // and the cost.
 | 
						|
  calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs);
 | 
						|
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
 | 
						|
 | 
						|
  // Key frames cannot use temporal prediction
 | 
						|
  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
 | 
						|
    // Work out probability tree for coding those segments not
 | 
						|
    // predicted using the temporal method and the cost.
 | 
						|
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs);
 | 
						|
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
 | 
						|
 | 
						|
    // Add in the cost of the signaling for each prediction context.
 | 
						|
    for (i = 0; i < PREDICTION_PROBS; i++) {
 | 
						|
      const int count0 = temporal_predictor_count[i][0];
 | 
						|
      const int count1 = temporal_predictor_count[i][1];
 | 
						|
 | 
						|
      t_nopred_prob[i] = get_binary_prob(count0, count1);
 | 
						|
      av1_prob_diff_update_savings_search(temporal_predictor_count[i],
 | 
						|
                                          segp->pred_probs[i],
 | 
						|
                                          &t_nopred_prob[i], DIFF_UPDATE_PROB);
 | 
						|
 | 
						|
      // Add in the predictor signaling cost
 | 
						|
      t_pred_cost += count0 * av1_cost_zero(t_nopred_prob[i]) +
 | 
						|
                     count1 * av1_cost_one(t_nopred_prob[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now choose which coding method to use.
 | 
						|
  if (t_pred_cost < no_pred_cost) {
 | 
						|
    assert(!cm->error_resilient_mode);
 | 
						|
    seg->temporal_update = 1;
 | 
						|
  } else {
 | 
						|
    seg->temporal_update = 0;
 | 
						|
  }
 | 
						|
#if CONFIG_DAALA_EC
 | 
						|
  av1_tree_to_cdf(av1_segment_tree, segp->tree_probs, segp->tree_cdf);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void av1_reset_segment_features(AV1_COMMON *cm) {
 | 
						|
  struct segmentation *seg = &cm->seg;
 | 
						|
 | 
						|
  // Set up default state for MB feature flags
 | 
						|
  seg->enabled = 0;
 | 
						|
  seg->update_map = 0;
 | 
						|
  seg->update_data = 0;
 | 
						|
  av1_clearall_segfeatures(seg);
 | 
						|
}
 |