c4d7e5e67e
This eliminates a large set of warnings exposed by the Mozilla build system (Use of C++ comments in ISO C90 source, commas at the end of enum lists, a couple incomplete initializers, and signed/unsigned comparisons). It also eliminates many (but not all) of the warnings expose by newer GCC versions and _FORTIFY_SOURCE (e.g., calling fread and fwrite without checking the return values). There are a few spurious warnings left on my system: ../vp8/encoder/encodemb.c:274:9: warning: 'sz' may be used uninitialized in this function gcc seems to be unable to figure out that the value shortcut doesn't change between the two if blocks that test it here. ../vp8/encoder/onyx_if.c:5314:5: warning: comparison of unsigned expression >= 0 is always true ../vp8/encoder/onyx_if.c:5319:5: warning: comparison of unsigned expression >= 0 is always true This is true, so far as it goes, but it's comparing against an enum, and the C standard does not mandate that enums be unsigned, so the checks can't be removed. Change-Id: Iaf689ae3e3d0ddc5ade00faa474debe73b8d3395
2661 lines
98 KiB
C
2661 lines
98 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "math.h"
|
|
#include "limits.h"
|
|
#include "block.h"
|
|
#include "onyx_int.h"
|
|
#include "variance.h"
|
|
#include "encodeintra.h"
|
|
#include "setupintrarecon.h"
|
|
#include "mcomp.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "encodemb.h"
|
|
#include "extend.h"
|
|
#include "systemdependent.h"
|
|
#include "vpx_scale/yv12extend.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "swapyv12buffer.h"
|
|
#include <stdio.h>
|
|
#include "rdopt.h"
|
|
#include "quant_common.h"
|
|
#include "encodemv.h"
|
|
|
|
//#define OUTPUT_FPF 1
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#define IF_RTCD(x) (x)
|
|
#else
|
|
#define IF_RTCD(x) NULL
|
|
#endif
|
|
|
|
extern void vp8_build_block_offsets(MACROBLOCK *x);
|
|
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
|
|
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
|
|
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv);
|
|
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
|
|
|
|
//#define GFQ_ADJUSTMENT (40 + ((15*Q)/10))
|
|
//#define GFQ_ADJUSTMENT (80 + ((15*Q)/10))
|
|
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
|
|
extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
|
|
|
|
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
|
|
|
|
#define IIFACTOR 1.4
|
|
#define IIKFACTOR1 1.40
|
|
#define IIKFACTOR2 1.5
|
|
#define RMAX 14.0
|
|
#define GF_RMAX 48.0 // 128.0
|
|
|
|
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
|
|
|
|
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
|
|
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
|
|
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
|
|
|
|
|
|
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
|
|
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps);
|
|
|
|
int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred)
|
|
{
|
|
|
|
int i;
|
|
int intra_pred_var = 0;
|
|
(void) cpi;
|
|
|
|
if (use_dc_pred)
|
|
{
|
|
x->e_mbd.mode_info_context->mbmi.mode = DC_PRED;
|
|
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
|
|
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
|
|
|
|
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
BLOCKD *b = &x->e_mbd.block[i];
|
|
BLOCK *be = &x->block[i];
|
|
|
|
vp8_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, be, b, B_DC_PRED);
|
|
}
|
|
}
|
|
|
|
intra_pred_var = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff);
|
|
|
|
return intra_pred_var;
|
|
}
|
|
|
|
// Resets the first pass file to the given position using a relative seek from the current position
|
|
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
|
|
{
|
|
cpi->stats_in = Position;
|
|
}
|
|
|
|
static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
|
|
{
|
|
if (cpi->stats_in >= cpi->stats_in_end)
|
|
return EOF;
|
|
|
|
*next_frame = *cpi->stats_in;
|
|
return 1;
|
|
}
|
|
|
|
// Calculate a modified Error used in distributing bits between easier and harder frames
|
|
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
double av_err = cpi->total_stats->ssim_weighted_pred_err;
|
|
double this_err = this_frame->ssim_weighted_pred_err;
|
|
double modified_err;
|
|
|
|
//double relative_next_iiratio;
|
|
//double next_iiratio;
|
|
//double sum_iiratio;
|
|
//int i;
|
|
|
|
//FIRSTPASS_STATS next_frame;
|
|
//FIRSTPASS_STATS *start_pos;
|
|
|
|
/*start_pos = cpi->stats_in;
|
|
sum_iiratio = 0.0;
|
|
i = 0;
|
|
while ( (i < 1) && vp8_input_stats(cpi,&next_frame) != EOF )
|
|
{
|
|
|
|
next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
|
|
next_iiratio = ( next_iiratio < 1.0 ) ? 1.0 : (next_iiratio > 20.0) ? 20.0 : next_iiratio;
|
|
sum_iiratio += next_iiratio;
|
|
i++;
|
|
}
|
|
if ( i > 0 )
|
|
{
|
|
relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->avg_iiratio * (double)i);
|
|
}
|
|
else
|
|
{
|
|
relative_next_iiratio = 1.0;
|
|
}
|
|
reset_fpf_position(cpi, start_pos);*/
|
|
|
|
if (this_err > av_err)
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
|
|
else
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
|
|
|
|
/*
|
|
relative_next_iiratio = pow(relative_next_iiratio,0.25);
|
|
modified_err = modified_err * relative_next_iiratio;
|
|
*/
|
|
|
|
return modified_err;
|
|
}
|
|
|
|
double vp8_simple_weight(YV12_BUFFER_CONFIG *source)
|
|
{
|
|
int i, j;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char value;
|
|
double sum_weights = 0.0;
|
|
double Weight;
|
|
|
|
// Loop throught the Y plane raw examining levels and creating a weight for the image
|
|
for (i = 0; i < source->y_height; i++)
|
|
{
|
|
for (j = 0; j < source->y_width; j++)
|
|
{
|
|
value = src[j];
|
|
|
|
if (value >= 64)
|
|
Weight = 1.0;
|
|
else if (value > 32)
|
|
Weight = (value - 32.0f) / 32.0f;
|
|
else
|
|
Weight = 0.02;
|
|
|
|
sum_weights += Weight;
|
|
}
|
|
|
|
src += source->y_stride;
|
|
}
|
|
|
|
sum_weights /= (source->y_height * source->y_width);
|
|
|
|
return sum_weights;
|
|
}
|
|
|
|
// This function returns the current per frame maximum bitrate target
|
|
int frame_max_bits(VP8_COMP *cpi)
|
|
{
|
|
// Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
|
|
int max_bits;
|
|
|
|
// For CBR we need to also consider buffer fullness.
|
|
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
|
|
|
|
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
|
|
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
|
|
// If our buffer is below the optimum level
|
|
if (buffer_fullness_ratio < 1.0)
|
|
{
|
|
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
|
|
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
|
|
|
|
max_bits = (int)(max_bits * buffer_fullness_ratio);
|
|
|
|
if (max_bits < min_max_bits)
|
|
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
|
|
}
|
|
}
|
|
// VBR
|
|
else
|
|
{
|
|
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
|
max_bits = (int)(((double)cpi->bits_left / (cpi->total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
}
|
|
|
|
// Trap case where we are out of bits
|
|
if (max_bits < 0)
|
|
max_bits = 0;
|
|
|
|
return max_bits;
|
|
}
|
|
|
|
|
|
extern size_t vp8_firstpass_stats_sz(unsigned int mb_count)
|
|
{
|
|
/* Calculate the size of a stats packet, which is dependent on the frame
|
|
* resolution. The FIRSTPASS_STATS struct has a single element array,
|
|
* motion_map, which is virtually expanded to have one element per
|
|
* macroblock.
|
|
*/
|
|
size_t stats_sz;
|
|
FIRSTPASS_STATS stats;
|
|
|
|
stats_sz = sizeof(FIRSTPASS_STATS) + mb_count;
|
|
stats_sz = (stats_sz + 7) & ~7;
|
|
return stats_sz;
|
|
}
|
|
|
|
|
|
void vp8_output_stats(const VP8_COMP *cpi,
|
|
struct vpx_codec_pkt_list *pktlist,
|
|
FIRSTPASS_STATS *stats)
|
|
{
|
|
struct vpx_codec_cx_pkt pkt;
|
|
pkt.kind = VPX_CODEC_STATS_PKT;
|
|
pkt.data.twopass_stats.buf = stats;
|
|
pkt.data.twopass_stats.sz = vp8_firstpass_stats_sz(cpi->common.MBs);
|
|
vpx_codec_pkt_list_add(pktlist, &pkt);
|
|
|
|
// TEMP debug code
|
|
#if OUTPUT_FPF
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "a");
|
|
|
|
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.0f\n",
|
|
stats->frame,
|
|
stats->intra_error,
|
|
stats->coded_error,
|
|
stats->ssim_weighted_pred_err,
|
|
stats->pcnt_inter,
|
|
stats->pcnt_motion,
|
|
stats->pcnt_second_ref,
|
|
stats->MVr,
|
|
stats->mvr_abs,
|
|
stats->MVc,
|
|
stats->mvc_abs,
|
|
stats->MVrv,
|
|
stats->MVcv,
|
|
stats->mv_in_out_count,
|
|
stats->count);
|
|
fclose(fpfile);
|
|
|
|
|
|
fpfile = fopen("fpmotionmap.stt", "a");
|
|
if(fwrite(cpi->fp_motion_map, 1, cpi->common.MBs, fpfile));
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
|
|
{
|
|
size_t stats_sz = vp8_firstpass_stats_sz(cpi->common.MBs);
|
|
|
|
if (cpi->stats_in >= cpi->stats_in_end)
|
|
return EOF;
|
|
|
|
*fps = *cpi->stats_in;
|
|
cpi->stats_in = (void*)((char *)cpi->stats_in + stats_sz);
|
|
return 1;
|
|
}
|
|
|
|
void vp8_zero_stats(FIRSTPASS_STATS *section)
|
|
{
|
|
section->frame = 0.0;
|
|
section->intra_error = 0.0;
|
|
section->coded_error = 0.0;
|
|
section->ssim_weighted_pred_err = 0.0;
|
|
section->pcnt_inter = 0.0;
|
|
section->pcnt_motion = 0.0;
|
|
section->pcnt_second_ref = 0.0;
|
|
section->MVr = 0.0;
|
|
section->mvr_abs = 0.0;
|
|
section->MVc = 0.0;
|
|
section->mvc_abs = 0.0;
|
|
section->MVrv = 0.0;
|
|
section->MVcv = 0.0;
|
|
section->mv_in_out_count = 0.0;
|
|
section->count = 0.0;
|
|
section->duration = 1.0;
|
|
}
|
|
void vp8_accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
|
|
{
|
|
section->frame += frame->frame;
|
|
section->intra_error += frame->intra_error;
|
|
section->coded_error += frame->coded_error;
|
|
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter += frame->pcnt_inter;
|
|
section->pcnt_motion += frame->pcnt_motion;
|
|
section->pcnt_second_ref += frame->pcnt_second_ref;
|
|
section->MVr += frame->MVr;
|
|
section->mvr_abs += frame->mvr_abs;
|
|
section->MVc += frame->MVc;
|
|
section->mvc_abs += frame->mvc_abs;
|
|
section->MVrv += frame->MVrv;
|
|
section->MVcv += frame->MVcv;
|
|
section->mv_in_out_count += frame->mv_in_out_count;
|
|
section->count += frame->count;
|
|
section->duration += frame->duration;
|
|
}
|
|
void vp8_avg_stats(FIRSTPASS_STATS *section)
|
|
{
|
|
if (section->count < 1.0)
|
|
return;
|
|
|
|
section->intra_error /= section->count;
|
|
section->coded_error /= section->count;
|
|
section->ssim_weighted_pred_err /= section->count;
|
|
section->pcnt_inter /= section->count;
|
|
section->pcnt_second_ref /= section->count;
|
|
section->pcnt_motion /= section->count;
|
|
section->MVr /= section->count;
|
|
section->mvr_abs /= section->count;
|
|
section->MVc /= section->count;
|
|
section->mvc_abs /= section->count;
|
|
section->MVrv /= section->count;
|
|
section->MVcv /= section->count;
|
|
section->mv_in_out_count /= section->count;
|
|
section->duration /= section->count;
|
|
}
|
|
|
|
unsigned char *vp8_fpmm_get_pos(VP8_COMP *cpi)
|
|
{
|
|
return cpi->fp_motion_map_stats;
|
|
}
|
|
void vp8_fpmm_reset_pos(VP8_COMP *cpi, unsigned char *target_pos)
|
|
{
|
|
int Offset;
|
|
|
|
cpi->fp_motion_map_stats = target_pos;
|
|
}
|
|
|
|
void vp8_advance_fpmm(VP8_COMP *cpi, int count)
|
|
{
|
|
cpi->fp_motion_map_stats = (void*)((char*)cpi->fp_motion_map_stats +
|
|
count * vp8_firstpass_stats_sz(cpi->common.MBs));
|
|
}
|
|
|
|
void vp8_input_fpmm(VP8_COMP *cpi)
|
|
{
|
|
unsigned char *fpmm = cpi->fp_motion_map;
|
|
int MBs = cpi->common.MBs;
|
|
int max_frames = cpi->active_arnr_frames;
|
|
int i;
|
|
|
|
for (i=0; i<max_frames; i++)
|
|
{
|
|
char *motion_map = (char*)cpi->fp_motion_map_stats
|
|
+ sizeof(FIRSTPASS_STATS);
|
|
|
|
memcpy(fpmm, motion_map, MBs);
|
|
fpmm += MBs;
|
|
vp8_advance_fpmm(cpi, 1);
|
|
}
|
|
|
|
// Flag the use of weights in the temporal filter
|
|
cpi->use_weighted_temporal_filter = 1;
|
|
}
|
|
|
|
void vp8_init_first_pass(VP8_COMP *cpi)
|
|
{
|
|
vp8_zero_stats(cpi->total_stats);
|
|
|
|
// TEMP debug code
|
|
#ifdef OUTPUT_FPF
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "w");
|
|
fclose(fpfile);
|
|
fpfile = fopen("fpmotionmap.stt", "wb");
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
void vp8_end_first_pass(VP8_COMP *cpi)
|
|
{
|
|
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->total_stats);
|
|
}
|
|
|
|
|
|
void vp8_zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
|
|
{
|
|
MACROBLOCKD * const xd = & x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
|
|
unsigned char *src_ptr = (*(b->base_src) + b->src);
|
|
int src_stride = b->src_stride;
|
|
unsigned char *ref_ptr;
|
|
int ref_stride=d->pre_stride;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );
|
|
|
|
VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
|
|
}
|
|
|
|
|
|
void vp8_first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, MV *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset )
|
|
{
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
int num00;
|
|
|
|
MV tmp_mv = {0, 0};
|
|
|
|
int tmp_err;
|
|
int step_param = 3; //3; // Dont search over full range for first pass
|
|
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3;
|
|
int n;
|
|
vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
|
|
int new_mv_mode_penalty = 256;
|
|
|
|
// override the default variance function to use MSE
|
|
v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
// Initial step/diamond search centred on best mv
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost);
|
|
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err)
|
|
{
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.row;
|
|
best_mv->col = tmp_mv.col;
|
|
}
|
|
|
|
// Further step/diamond searches as necessary
|
|
n = num00;
|
|
num00 = 0;
|
|
|
|
while (n < further_steps)
|
|
{
|
|
n++;
|
|
|
|
if (num00)
|
|
num00--;
|
|
else
|
|
{
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param + n, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost);
|
|
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err)
|
|
{
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.row;
|
|
best_mv->col = tmp_mv.col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_first_pass(VP8_COMP *cpi)
|
|
{
|
|
int mb_row, mb_col;
|
|
MACROBLOCK *const x = & cpi->mb;
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
|
|
int col_blocks = 4 * cm->mb_cols;
|
|
int recon_yoffset, recon_uvoffset;
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
|
|
int recon_y_stride = lst_yv12->y_stride;
|
|
int recon_uv_stride = lst_yv12->uv_stride;
|
|
int intra_error = 0;
|
|
int coded_error = 0;
|
|
|
|
int sum_mvr = 0, sum_mvc = 0;
|
|
int sum_mvr_abs = 0, sum_mvc_abs = 0;
|
|
int sum_mvrs = 0, sum_mvcs = 0;
|
|
int mvcount = 0;
|
|
int intercount = 0;
|
|
int second_ref_count = 0;
|
|
int intrapenalty = 256;
|
|
|
|
int sum_in_vectors = 0;
|
|
|
|
MV best_ref_mv = {0, 0};
|
|
MV zero_ref_mv = {0, 0};
|
|
|
|
unsigned char *fp_motion_map_ptr = cpi->fp_motion_map;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
x->src = * cpi->Source;
|
|
xd->pre = *lst_yv12;
|
|
xd->dst = *new_yv12;
|
|
|
|
x->partition_info = x->pi;
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
|
|
vp8_build_block_offsets(x);
|
|
|
|
vp8_setup_block_dptrs(&x->e_mbd);
|
|
|
|
vp8_setup_block_ptrs(x);
|
|
|
|
// set up frame new frame for intra coded blocks
|
|
vp8_setup_intra_recon(new_yv12);
|
|
vp8cx_frame_init_quantizer(cpi);
|
|
|
|
// Initialise the MV cost table to the defaults
|
|
//if( cm->current_video_frame == 0)
|
|
//if ( 0 )
|
|
{
|
|
int flag[2] = {1, 1};
|
|
vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
|
|
vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
|
|
vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
|
|
}
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
|
|
{
|
|
MV best_ref_mv = {0, 0};
|
|
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * 8);
|
|
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
|
|
{
|
|
int this_error;
|
|
int zero_error;
|
|
int zz_to_best_ratio;
|
|
int gf_motion_error = INT_MAX;
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
|
|
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
|
|
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
|
|
// do intra 16x16 prediction
|
|
this_error = vp8_encode_intra(cpi, x, use_dc_pred);
|
|
|
|
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
|
|
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
|
|
// When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
|
|
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
|
|
this_error += intrapenalty;
|
|
|
|
// Cumulative intra error total
|
|
intra_error += this_error;
|
|
|
|
// Indicate default assumption of intra in the motion map
|
|
*fp_motion_map_ptr = 0;
|
|
|
|
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
|
|
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
|
|
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
|
|
|
|
// Other than for the first frame do a motion search
|
|
if (cm->current_video_frame > 0)
|
|
{
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
MV tmp_mv = {0, 0};
|
|
int tmp_err;
|
|
int motion_error = INT_MAX;
|
|
|
|
// Simple 0,0 motion with no mv overhead
|
|
vp8_zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
|
|
d->bmi.mv.as_mv.row = 0;
|
|
d->bmi.mv.as_mv.col = 0;
|
|
|
|
// Save (0,0) error for later use
|
|
zero_error = motion_error;
|
|
|
|
// Test last reference frame using the previous best mv as the
|
|
// starting point (best reference) for the search
|
|
vp8_first_pass_motion_search(cpi, x, &best_ref_mv,
|
|
&d->bmi.mv.as_mv, lst_yv12,
|
|
&motion_error, recon_yoffset);
|
|
|
|
// If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
|
|
if ((best_ref_mv.col != 0) || (best_ref_mv.row != 0))
|
|
{
|
|
tmp_err = INT_MAX;
|
|
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv,
|
|
lst_yv12, &tmp_err, recon_yoffset);
|
|
|
|
if ( tmp_err < motion_error )
|
|
{
|
|
motion_error = tmp_err;
|
|
d->bmi.mv.as_mv.row = tmp_mv.row;
|
|
d->bmi.mv.as_mv.col = tmp_mv.col;
|
|
}
|
|
|
|
}
|
|
|
|
// Experimental search in a second reference frame ((0,0) based only)
|
|
if (cm->current_video_frame > 1)
|
|
{
|
|
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset);
|
|
|
|
if ((gf_motion_error < motion_error) && (gf_motion_error < this_error))
|
|
{
|
|
second_ref_count++;
|
|
//motion_error = gf_motion_error;
|
|
//d->bmi.mv.as_mv.row = tmp_mv.row;
|
|
//d->bmi.mv.as_mv.col = tmp_mv.col;
|
|
}
|
|
/*else
|
|
{
|
|
xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset;
|
|
}*/
|
|
|
|
|
|
// Reset to last frame as reference buffer
|
|
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
|
|
}
|
|
|
|
if (motion_error <= this_error)
|
|
{
|
|
d->bmi.mv.as_mv.row <<= 3;
|
|
d->bmi.mv.as_mv.col <<= 3;
|
|
this_error = motion_error;
|
|
vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv.as_mv);
|
|
vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
|
|
sum_mvr += d->bmi.mv.as_mv.row;
|
|
sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
|
|
sum_mvc += d->bmi.mv.as_mv.col;
|
|
sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
|
|
sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
|
|
sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
|
|
intercount++;
|
|
|
|
best_ref_mv.row = d->bmi.mv.as_mv.row;
|
|
best_ref_mv.col = d->bmi.mv.as_mv.col;
|
|
//best_ref_mv.row = 0;
|
|
//best_ref_mv.col = 0;
|
|
|
|
// Was the vector non-zero
|
|
if (d->bmi.mv.as_mv.row || d->bmi.mv.as_mv.col)
|
|
{
|
|
mvcount++;
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_row < cm->mb_rows / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.row > 0)
|
|
sum_in_vectors--;
|
|
else if (d->bmi.mv.as_mv.row < 0)
|
|
sum_in_vectors++;
|
|
}
|
|
else if (mb_row > cm->mb_rows / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.row > 0)
|
|
sum_in_vectors++;
|
|
else if (d->bmi.mv.as_mv.row < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_col < cm->mb_cols / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.col > 0)
|
|
sum_in_vectors--;
|
|
else if (d->bmi.mv.as_mv.col < 0)
|
|
sum_in_vectors++;
|
|
}
|
|
else if (mb_col > cm->mb_cols / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.col > 0)
|
|
sum_in_vectors++;
|
|
else if (d->bmi.mv.as_mv.col < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
|
|
// Compute how close (0,0) predictor is to best
|
|
// predictor in terms of their prediction error
|
|
zz_to_best_ratio = (10*zero_error + this_error/2)
|
|
/ (this_error+!this_error);
|
|
|
|
if ((zero_error < 50000) &&
|
|
(zz_to_best_ratio <= 11) )
|
|
*fp_motion_map_ptr = 1;
|
|
else
|
|
*fp_motion_map_ptr = 0;
|
|
}
|
|
else
|
|
{
|
|
// 0,0 mv was best
|
|
if( zero_error<50000 )
|
|
*fp_motion_map_ptr = 2;
|
|
else
|
|
*fp_motion_map_ptr = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Intra was best
|
|
best_ref_mv.row = 0;
|
|
best_ref_mv.col = 0;
|
|
}
|
|
}
|
|
|
|
coded_error += this_error;
|
|
|
|
// adjust to the next column of macroblocks
|
|
x->src.y_buffer += 16;
|
|
x->src.u_buffer += 8;
|
|
x->src.v_buffer += 8;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += 8;
|
|
|
|
// Update the motion map
|
|
fp_motion_map_ptr++;
|
|
}
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
|
|
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
|
|
//extend the recon for intra prediction
|
|
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
|
|
vp8_clear_system_state(); //__asm emms;
|
|
}
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
{
|
|
double weight = 0.0;
|
|
|
|
FIRSTPASS_STATS fps;
|
|
|
|
fps.frame = cm->current_video_frame ;
|
|
fps.intra_error = intra_error >> 8;
|
|
fps.coded_error = coded_error >> 8;
|
|
weight = vp8_simple_weight(cpi->Source);
|
|
|
|
if (weight < 0.1)
|
|
weight = 0.1;
|
|
|
|
fps.ssim_weighted_pred_err = fps.coded_error * weight;
|
|
|
|
fps.pcnt_inter = 0.0;
|
|
fps.pcnt_motion = 0.0;
|
|
fps.MVr = 0.0;
|
|
fps.mvr_abs = 0.0;
|
|
fps.MVc = 0.0;
|
|
fps.mvc_abs = 0.0;
|
|
fps.MVrv = 0.0;
|
|
fps.MVcv = 0.0;
|
|
fps.mv_in_out_count = 0.0;
|
|
fps.count = 1.0;
|
|
|
|
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
|
|
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
|
|
|
|
if (mvcount > 0)
|
|
{
|
|
fps.MVr = (double)sum_mvr / (double)mvcount;
|
|
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
|
|
fps.MVc = (double)sum_mvc / (double)mvcount;
|
|
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
|
|
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
|
|
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
|
|
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
|
|
|
|
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
|
|
}
|
|
|
|
// TODO: handle the case when duration is set to 0, or something less
|
|
// than the full time between subsequent cpi->source_time_stamp s .
|
|
fps.duration = cpi->source_end_time_stamp - cpi->source_time_stamp;
|
|
|
|
// don't want to do outputstats with a stack variable!
|
|
memcpy(cpi->this_frame_stats,
|
|
&fps,
|
|
sizeof(FIRSTPASS_STATS));
|
|
memcpy((char*)cpi->this_frame_stats + sizeof(FIRSTPASS_STATS),
|
|
cpi->fp_motion_map,
|
|
sizeof(cpi->fp_motion_map[0]) * cpi->common.MBs);
|
|
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->this_frame_stats);
|
|
vp8_accumulate_stats(cpi->total_stats, &fps);
|
|
}
|
|
|
|
// Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met
|
|
if ((cm->current_video_frame > 0) &&
|
|
(cpi->this_frame_stats->pcnt_inter > 0.20) &&
|
|
((cpi->this_frame_stats->intra_error / cpi->this_frame_stats->coded_error) > 2.0))
|
|
{
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
|
|
}
|
|
|
|
// swap frame pointers so last frame refers to the frame we just compressed
|
|
vp8_swap_yv12_buffer(lst_yv12, new_yv12);
|
|
vp8_yv12_extend_frame_borders(lst_yv12);
|
|
|
|
// Special case for the first frame. Copy into the GF buffer as a second reference.
|
|
if (cm->current_video_frame == 0)
|
|
{
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
|
|
}
|
|
|
|
|
|
// use this to see what the first pass reconstruction looks like
|
|
if (0)
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
|
|
if (cm->current_video_frame == 0)
|
|
recon_file = fopen(filename, "wb");
|
|
else
|
|
recon_file = fopen(filename, "ab");
|
|
|
|
if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
|
|
fclose(recon_file);
|
|
}
|
|
|
|
cm->current_video_frame++;
|
|
|
|
}
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
#define BASE_ERRPERMB 150
|
|
static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
|
|
{
|
|
int Q;
|
|
int num_mbs = ((Height * Width) / (16 * 16));
|
|
int target_norm_bits_per_mb;
|
|
|
|
double err_per_mb = section_err / num_mbs;
|
|
double correction_factor;
|
|
double corr_high;
|
|
double speed_correction = 1.0;
|
|
double rolling_ratio;
|
|
|
|
double pow_highq = 0.90;
|
|
double pow_lowq = 0.40;
|
|
|
|
if (section_target_bandwitdh <= 0)
|
|
return MAXQ;
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
|
|
if ((cpi->rolling_target_bits > 0.0) && (cpi->active_worst_quality < cpi->worst_quality))
|
|
{
|
|
//double adjustment_rate = 0.985 + (0.00005 * cpi->active_worst_quality);
|
|
double adjustment_rate = 0.99;
|
|
|
|
rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
|
|
|
|
//if ( cpi->est_max_qcorrection_factor > rolling_ratio )
|
|
if (rolling_ratio < 0.95)
|
|
//cpi->est_max_qcorrection_factor *= adjustment_rate;
|
|
cpi->est_max_qcorrection_factor -= 0.005;
|
|
//else if ( cpi->est_max_qcorrection_factor < rolling_ratio )
|
|
else if (rolling_ratio > 1.05)
|
|
cpi->est_max_qcorrection_factor += 0.005;
|
|
|
|
//cpi->est_max_qcorrection_factor /= adjustment_rate;
|
|
|
|
cpi->est_max_qcorrection_factor = (cpi->est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->est_max_qcorrection_factor;
|
|
}
|
|
|
|
// Corrections for higher compression speed settings (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Correction factor used for Q values >= 20
|
|
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
|
|
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
|
|
|
|
// Try and pick a Q that should be high enough to encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
int bits_per_mb_at_this_q;
|
|
|
|
if (Q < 50)
|
|
{
|
|
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
|
|
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
|
|
}
|
|
else
|
|
correction_factor = corr_high;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * cpi->section_max_qfactor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
|
|
//bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
|
|
{
|
|
int Q;
|
|
int num_mbs = ((Height * Width) / (16 * 16));
|
|
int target_norm_bits_per_mb;
|
|
|
|
double err_per_mb = section_err / num_mbs;
|
|
double correction_factor;
|
|
double corr_high;
|
|
double speed_correction = 1.0;
|
|
double pow_highq = 0.90;
|
|
double pow_lowq = 0.40;
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Corrections for higher compression speed settings (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Correction factor used for Q values >= 20
|
|
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
|
|
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
|
|
|
|
// Try and pick a Q that can encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
int bits_per_mb_at_this_q;
|
|
|
|
if (Q < 50)
|
|
{
|
|
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
|
|
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
|
|
}
|
|
else
|
|
correction_factor = corr_high;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// Estimate a worst case Q for a KF group
|
|
static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width, double group_iiratio)
|
|
{
|
|
int Q;
|
|
int num_mbs = ((Height * Width) / (16 * 16));
|
|
int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
|
|
int bits_per_mb_at_this_q;
|
|
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double corr_high;
|
|
double speed_correction = 1.0;
|
|
double current_spend_ratio = 1.0;
|
|
|
|
double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
|
|
double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
|
|
|
|
double iiratio_correction_factor = 1.0;
|
|
|
|
double combined_correction_factor;
|
|
|
|
// Trap special case where the target is <= 0
|
|
if (target_norm_bits_per_mb <= 0)
|
|
return MAXQ * 2;
|
|
|
|
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
|
|
// This is clamped to the range 0.1 to 10.0
|
|
if (cpi->long_rolling_target_bits <= 0)
|
|
current_spend_ratio = 10.0;
|
|
else
|
|
{
|
|
current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits;
|
|
current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio;
|
|
}
|
|
|
|
// Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio)
|
|
// The idea here is to favour subsampling in the hardest sections vs the easyest.
|
|
iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
|
|
|
|
if (iiratio_correction_factor < 0.5)
|
|
iiratio_correction_factor = 0.5;
|
|
|
|
// Corrections for higher compression speed settings (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Combine the various factors calculated above
|
|
combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio;
|
|
|
|
// Correction factor used for Q values >= 20
|
|
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
|
|
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
|
|
|
|
// Try and pick a Q that should be high enough to encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
// Q values < 20 treated as a special case
|
|
if (Q < 20)
|
|
{
|
|
err_correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
|
|
err_correction_factor = (err_correction_factor < 0.05) ? 0.05 : (err_correction_factor > 5.0) ? 5.0 : err_correction_factor;
|
|
}
|
|
else
|
|
err_correction_factor = corr_high;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q]);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// If we could not hit the target even at Max Q then estimate what Q would have bee required
|
|
while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2)))
|
|
{
|
|
|
|
bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
|
|
Q++;
|
|
}
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("estkf_q.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q,
|
|
target_norm_bits_per_mb, err_per_mb, err_correction_factor,
|
|
current_spend_ratio, group_iiratio, iiratio_correction_factor,
|
|
(double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q);
|
|
fclose(f);
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);
|
|
|
|
void vp8_init_second_pass(VP8_COMP *cpi)
|
|
{
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
vp8_zero_stats(cpi->total_stats);
|
|
|
|
if (!cpi->stats_in_end)
|
|
return;
|
|
|
|
*cpi->total_stats = *cpi->stats_in_end;
|
|
|
|
cpi->total_error_left = cpi->total_stats->ssim_weighted_pred_err;
|
|
cpi->total_intra_error_left = cpi->total_stats->intra_error;
|
|
cpi->total_coded_error_left = cpi->total_stats->coded_error;
|
|
cpi->start_tot_err_left = cpi->total_error_left;
|
|
|
|
//cpi->bits_left = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
|
|
//cpi->bits_left -= (long long)(cpi->total_stats->count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
|
|
|
|
// each frame can have a different duration, as the frame rate in the source
|
|
// isn't guaranteed to be constant. The frame rate prior to the first frame
|
|
// encoded in the second pass is a guess. However the sum duration is not.
|
|
// Its calculated based on the actual durations of all frames from the first
|
|
// pass.
|
|
vp8_new_frame_rate(cpi, 10000000.0 * cpi->total_stats->count / cpi->total_stats->duration);
|
|
|
|
cpi->output_frame_rate = cpi->oxcf.frame_rate;
|
|
cpi->bits_left = (long long)(cpi->total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
|
|
cpi->bits_left -= (long long)(cpi->total_stats->duration * two_pass_min_rate / 10000000.0);
|
|
|
|
vp8_avg_stats(cpi->total_stats);
|
|
|
|
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
|
|
{
|
|
double sum_iiratio = 0.0;
|
|
double IIRatio;
|
|
|
|
start_pos = cpi->stats_in; // Note starting "file" position
|
|
|
|
while (vp8_input_stats(cpi, &this_frame) != EOF)
|
|
{
|
|
IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
|
|
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
|
|
sum_iiratio += IIRatio;
|
|
}
|
|
|
|
cpi->avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->total_stats->count);
|
|
|
|
// Reset file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
|
|
// Scan the first pass file and calculate a modified total error based upon the bias/power function
|
|
// used to allocate bits
|
|
{
|
|
start_pos = cpi->stats_in; // Note starting "file" position
|
|
|
|
cpi->modified_total_error_left = 0.0;
|
|
|
|
while (vp8_input_stats(cpi, &this_frame) != EOF)
|
|
{
|
|
cpi->modified_total_error_left += calculate_modified_err(cpi, &this_frame);
|
|
}
|
|
|
|
reset_fpf_position(cpi, start_pos); // Reset file position
|
|
|
|
}
|
|
|
|
cpi->fp_motion_map_stats = (unsigned char *)cpi->stats_in;
|
|
}
|
|
|
|
void vp8_end_second_pass(VP8_COMP *cpi)
|
|
{
|
|
}
|
|
|
|
// Analyse and define a gf/arf group .
|
|
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
int i;
|
|
int y_width = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_width;
|
|
int y_height = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_height;
|
|
int image_size = y_width * y_height;
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double gf_group_err = 0.0;
|
|
double gf_first_frame_err = 0.0;
|
|
double mod_frame_err = 0.0;
|
|
|
|
double mv_accumulator_rabs = 0.0;
|
|
double mv_accumulator_cabs = 0.0;
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
|
|
double boost_factor = IIFACTOR;
|
|
double loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
double mod_err_per_mb_accumulator = 0.0;
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
unsigned char *fpmm_pos;
|
|
|
|
cpi->gf_group_bits = 0;
|
|
cpi->gf_decay_rate = 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
fpmm_pos = vp8_fpmm_get_pos(cpi);
|
|
|
|
start_pos = cpi->stats_in;
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
// Preload the stats for the next frame.
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// Note the error of the frame at the start of the group (this will be the GF frame error if we code a normal gf
|
|
gf_first_frame_err = mod_frame_err;
|
|
|
|
// Special treatment if the current frame is a key frame (which is also a gf).
|
|
// If it is then its error score (and hence bit allocation) need to be subtracted out
|
|
// from the calculation for the GF group
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
gf_group_err -= gf_first_frame_err;
|
|
|
|
// Scan forward to try and work out how many frames the next gf group should contain and
|
|
// what level of boost is appropriate for the GF or ARF that will be coded with the group
|
|
i = 0;
|
|
|
|
while (((i < cpi->max_gf_interval) || ((cpi->frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->frames_to_key))
|
|
{
|
|
double r;
|
|
double this_frame_mvr_ratio;
|
|
double this_frame_mvc_ratio;
|
|
double motion_decay;
|
|
double motion_pct = next_frame.pcnt_motion;
|
|
|
|
i++; // Increment the loop counter
|
|
|
|
// Accumulate error score of frames in this gf group
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
gf_group_err += mod_frame_err;
|
|
|
|
mod_err_per_mb_accumulator += mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
|
|
|
|
if (EOF == vp8_input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
// Accumulate motion stats.
|
|
mv_accumulator_rabs += fabs(next_frame.mvr_abs * motion_pct);
|
|
mv_accumulator_cabs += fabs(next_frame.mvc_abs * motion_pct);
|
|
|
|
//Accumulate Motion In/Out of frame stats
|
|
this_frame_mv_in_out = next_frame.mv_in_out_count * next_frame.pcnt_motion;
|
|
mv_in_out_accumulator += next_frame.mv_in_out_count * next_frame.pcnt_motion;
|
|
abs_mv_in_out_accumulator += fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion);
|
|
|
|
// If there is a significant amount of motion
|
|
if (motion_pct > 0.05)
|
|
{
|
|
this_frame_mvr_ratio = fabs(next_frame.mvr_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVr));
|
|
|
|
this_frame_mvc_ratio = fabs(next_frame.mvc_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVc));
|
|
|
|
mv_ratio_accumulator +=
|
|
(this_frame_mvr_ratio < next_frame.mvr_abs)
|
|
? (this_frame_mvr_ratio * motion_pct)
|
|
: next_frame.mvr_abs * motion_pct;
|
|
|
|
mv_ratio_accumulator +=
|
|
(this_frame_mvc_ratio < next_frame.mvc_abs)
|
|
? (this_frame_mvc_ratio * motion_pct)
|
|
: next_frame.mvc_abs * motion_pct;
|
|
}
|
|
else
|
|
{
|
|
mv_ratio_accumulator += 0.0;
|
|
this_frame_mvr_ratio = 1.0;
|
|
this_frame_mvc_ratio = 1.0;
|
|
}
|
|
|
|
// Underlying boost factor is based on inter intra error ratio
|
|
r = (boost_factor * (next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)));
|
|
|
|
// Increase boost for frames where new data coming into frame (eg zoom out)
|
|
// Slightly reduce boost if there is a net balance of motion out of the frame (zoom in)
|
|
// The range for this_frame_mv_in_out is -1.0 to +1.0
|
|
if (this_frame_mv_in_out > 0.0)
|
|
r += r * (this_frame_mv_in_out * 2.0);
|
|
else
|
|
r += r * (this_frame_mv_in_out / 2.0); // In extreme case boost is halved
|
|
|
|
if (r > GF_RMAX)
|
|
r = GF_RMAX;
|
|
|
|
// Adjust loop decay rate
|
|
//if ( next_frame.pcnt_inter < loop_decay_rate )
|
|
loop_decay_rate = next_frame.pcnt_inter;
|
|
|
|
// High % motion -> somewhat higher decay rate
|
|
motion_decay = (1.0 - (motion_pct / 20.0));
|
|
if (motion_decay < loop_decay_rate)
|
|
loop_decay_rate = motion_decay;
|
|
|
|
// Adjustment to decay rate based on speed of motion
|
|
{
|
|
double this_mv_rabs;
|
|
double this_mv_cabs;
|
|
double distance_factor;
|
|
|
|
this_mv_rabs = fabs(next_frame.mvr_abs * motion_pct);
|
|
this_mv_cabs = fabs(next_frame.mvc_abs * motion_pct);
|
|
|
|
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
|
|
(this_mv_cabs * this_mv_cabs)) / 250.0;
|
|
distance_factor = ((distance_factor > 1.0)
|
|
? 0.0 : (1.0 - distance_factor));
|
|
if (distance_factor < loop_decay_rate)
|
|
loop_decay_rate = distance_factor;
|
|
}
|
|
|
|
// Cumulative effect of decay
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
//decay_accumulator = ( loop_decay_rate < decay_accumulator ) ? loop_decay_rate : decay_accumulator;
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
// Break out conditions.
|
|
if ( /* i>4 || */
|
|
(
|
|
(i > MIN_GF_INTERVAL) && // Dont break out with a very short interval
|
|
((cpi->frames_to_key - i) >= MIN_GF_INTERVAL) && // Dont break out very close to a key frame
|
|
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
|
|
((mv_ratio_accumulator > 100.0) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ||
|
|
((boost_score - old_boost_score) < 2.0)
|
|
)
|
|
)
|
|
)
|
|
{
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
cpi->gf_decay_rate = (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
|
|
|
|
// When using CBR apply additional buffer related upper limits
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double max_boost;
|
|
|
|
// For cbr apply buffer related limits
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
|
|
|
|
if (cpi->buffer_level > df_buffer_level)
|
|
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
else
|
|
max_boost = 0.0;
|
|
}
|
|
else if (cpi->buffer_level > 0)
|
|
{
|
|
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
}
|
|
else
|
|
{
|
|
max_boost = 0.0;
|
|
}
|
|
|
|
if (boost_score > max_boost)
|
|
boost_score = max_boost;
|
|
}
|
|
|
|
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
|
|
|
|
// Should we use the alternate refernce frame
|
|
if (cpi->oxcf.play_alternate &&
|
|
cpi->oxcf.lag_in_frames &&
|
|
(i >= MIN_GF_INTERVAL) &&
|
|
(i <= (cpi->frames_to_key - MIN_GF_INTERVAL)) && // dont use ARF very near next kf
|
|
(((next_frame.pcnt_inter > 0.75) &&
|
|
((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) &&
|
|
//(cpi->gfu_boost>150) &&
|
|
(cpi->gfu_boost > 100) &&
|
|
//(cpi->gfu_boost>AF_THRESH2) &&
|
|
//((cpi->gfu_boost/i)>AF_THRESH) &&
|
|
//(decay_accumulator > 0.5) &&
|
|
(cpi->gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))
|
|
)
|
|
)
|
|
)
|
|
{
|
|
int Boost;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int tmp_q;
|
|
int arf_frame_bits = 0;
|
|
int group_bits;
|
|
|
|
// Estimate the bits to be allocated to the group as a whole
|
|
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
|
|
group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
|
|
else
|
|
group_bits = 0;
|
|
|
|
// Boost for arf frame
|
|
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
|
|
Boost += (cpi->baseline_gf_interval * 50);
|
|
allocation_chunks = (i * 100) + Boost;
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (Boost > 1000)
|
|
{
|
|
Boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the arf based on the boost number
|
|
arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks));
|
|
|
|
// Estimate if there are enough bits available to make worthwhile use of an arf.
|
|
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits, cpi->common.Height, cpi->common.Width);
|
|
|
|
// Only use an arf if it is likely we will be able to code it at a lower Q than the surrounding frames.
|
|
if (tmp_q < cpi->worst_quality)
|
|
{
|
|
int half_gf_int;
|
|
int frames_after_arf;
|
|
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
|
|
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
|
|
|
|
cpi->source_alt_ref_pending = TRUE;
|
|
|
|
// For alt ref frames the error score for the end frame of the group (the alt ref frame) should not contribute to the group total and hence
|
|
// the number of bit allocated to the group. Rather it forms part of the next group (it is the GF at the start of the next group)
|
|
gf_group_err -= mod_frame_err;
|
|
|
|
// Set the interval till the next gf or arf. For ARFs this is the number of frames to be coded before the future frame that is coded as an ARF.
|
|
// The future frame itself is part of the next group
|
|
cpi->baseline_gf_interval = i - 1;
|
|
|
|
// Define the arnr filter width for this group of frames:
|
|
// We only filter frames that lie within a distance of half
|
|
// the GF interval from the ARF frame. We also have to trap
|
|
// cases where the filter extends beyond the end of clip.
|
|
// Note: this_frame->frame has been updated in the loop
|
|
// so it now points at the ARF frame.
|
|
half_gf_int = cpi->baseline_gf_interval >> 1;
|
|
frames_after_arf = cpi->total_stats->count - this_frame->frame - 1;
|
|
|
|
switch (cpi->oxcf.arnr_type)
|
|
{
|
|
case 1: // Backward filter
|
|
frames_fwd = 0;
|
|
if (frames_bwd > half_gf_int)
|
|
frames_bwd = half_gf_int;
|
|
break;
|
|
|
|
case 2: // Forward filter
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
frames_bwd = 0;
|
|
break;
|
|
|
|
case 3: // Centered filter
|
|
default:
|
|
frames_fwd >>= 1;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
|
|
frames_bwd = frames_fwd;
|
|
|
|
// For even length filter there is one more frame backward
|
|
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
|
|
if (frames_bwd < half_gf_int)
|
|
frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
|
|
break;
|
|
}
|
|
|
|
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
|
|
|
|
{
|
|
// Advance to & read in the motion map for those frames
|
|
// to be considered for filtering based on the position
|
|
// of the ARF
|
|
vp8_fpmm_reset_pos(cpi, cpi->fp_motion_map_stats_save);
|
|
|
|
// Position at the 'earliest' frame to be filtered
|
|
vp8_advance_fpmm(cpi,
|
|
cpi->baseline_gf_interval - frames_bwd);
|
|
|
|
// Read / create a motion map for the region of interest
|
|
vp8_input_fpmm(cpi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
cpi->baseline_gf_interval = i;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
cpi->baseline_gf_interval = i;
|
|
}
|
|
|
|
// Conventional GF
|
|
if (!cpi->source_alt_ref_pending)
|
|
{
|
|
// Dont allow conventional gf too near the next kf
|
|
if ((cpi->frames_to_key - cpi->baseline_gf_interval) < MIN_GF_INTERVAL)
|
|
{
|
|
while (cpi->baseline_gf_interval < cpi->frames_to_key)
|
|
{
|
|
if (EOF == vp8_input_stats(cpi, this_frame))
|
|
break;
|
|
|
|
cpi->baseline_gf_interval++;
|
|
|
|
if (cpi->baseline_gf_interval < cpi->frames_to_key)
|
|
gf_group_err += calculate_modified_err(cpi, this_frame);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now decide how many bits should be allocated to the GF group as a proportion of those remaining in the kf group.
|
|
// The final key frame group in the clip is treated as a special case where cpi->kf_group_bits is tied to cpi->bits_left.
|
|
// This is also important for short clips where there may only be one key frame.
|
|
if (cpi->frames_to_key >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
|
|
{
|
|
cpi->kf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;
|
|
}
|
|
|
|
// Calculate the bits to be allocated to the group as a whole
|
|
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
|
|
cpi->gf_group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
|
|
else
|
|
cpi->gf_group_bits = 0;
|
|
|
|
cpi->gf_group_bits = (cpi->gf_group_bits < 0) ? 0 : (cpi->gf_group_bits > cpi->kf_group_bits) ? cpi->kf_group_bits : cpi->gf_group_bits;
|
|
|
|
// Clip cpi->gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
|
if (cpi->gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
|
cpi->gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
|
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
// Assign bits to the arf or gf.
|
|
{
|
|
int Boost;
|
|
int frames_in_section;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
|
|
// For ARF frames
|
|
if (cpi->source_alt_ref_pending)
|
|
{
|
|
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
|
|
//Boost += (cpi->baseline_gf_interval * 25);
|
|
Boost += (cpi->baseline_gf_interval * 50);
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
|
|
Boost = ((cpi->baseline_gf_interval + 1) * 200);
|
|
else if (Boost < 125)
|
|
Boost = 125;
|
|
|
|
frames_in_section = cpi->baseline_gf_interval + 1;
|
|
allocation_chunks = (frames_in_section * 100) + Boost;
|
|
}
|
|
// Else for standard golden frames
|
|
else
|
|
{
|
|
// boost based on inter / intra ratio of subsequent frames
|
|
Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (Boost > (cpi->baseline_gf_interval * 150))
|
|
Boost = (cpi->baseline_gf_interval * 150);
|
|
else if (Boost < 125)
|
|
Boost = 125;
|
|
|
|
frames_in_section = cpi->baseline_gf_interval;
|
|
allocation_chunks = (frames_in_section * 100) + (Boost - 100);
|
|
}
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (Boost > 1000)
|
|
{
|
|
Boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the gf or arf based on the boost number
|
|
cpi->gf_bits = (int)((double)Boost * (cpi->gf_group_bits / (double)allocation_chunks));
|
|
|
|
// If the frame that is to be boosted is simpler than the average for
|
|
// the gf/arf group then use an alternative calculation
|
|
// based on the error score of the frame itself
|
|
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
|
|
{
|
|
double alt_gf_grp_bits;
|
|
int alt_gf_bits;
|
|
|
|
alt_gf_grp_bits =
|
|
(double)cpi->kf_group_bits *
|
|
(mod_frame_err * (double)cpi->baseline_gf_interval) /
|
|
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left);
|
|
|
|
alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits /
|
|
(double)allocation_chunks));
|
|
|
|
if (cpi->gf_bits > alt_gf_bits)
|
|
{
|
|
cpi->gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
// Else if it is harder than other frames in the group make sure it at
|
|
// least receives an allocation in keeping with its relative error
|
|
// score, otherwise it may be worse off than an "un-boosted" frame
|
|
else
|
|
{
|
|
int alt_gf_bits =
|
|
(int)((double)cpi->kf_group_bits *
|
|
mod_frame_err /
|
|
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left));
|
|
|
|
if (alt_gf_bits > cpi->gf_bits)
|
|
{
|
|
cpi->gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
|
|
// Apply an additional limit for CBR
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
if (cpi->gf_bits > (cpi->buffer_level >> 1))
|
|
cpi->gf_bits = cpi->buffer_level >> 1;
|
|
}
|
|
|
|
// Dont allow a negative value for gf_bits
|
|
if (cpi->gf_bits < 0)
|
|
cpi->gf_bits = 0;
|
|
|
|
// Adjust KF group bits and error remainin
|
|
cpi->kf_group_error_left -= gf_group_err;
|
|
cpi->kf_group_bits -= cpi->gf_group_bits;
|
|
|
|
if (cpi->kf_group_bits < 0)
|
|
cpi->kf_group_bits = 0;
|
|
|
|
// Note the error score left in the remaining frames of the group.
|
|
// For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened)
|
|
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
|
|
cpi->gf_group_error_left = gf_group_err - gf_first_frame_err;
|
|
else
|
|
cpi->gf_group_error_left = gf_group_err;
|
|
|
|
cpi->gf_group_bits -= cpi->gf_bits;
|
|
|
|
if (cpi->gf_group_bits < 0)
|
|
cpi->gf_group_bits = 0;
|
|
|
|
// Set aside some bits for a mid gf sequence boost
|
|
if ((cpi->gfu_boost > 150) && (cpi->baseline_gf_interval > 5))
|
|
{
|
|
int pct_extra = (cpi->gfu_boost - 100) / 50;
|
|
pct_extra = (pct_extra > 10) ? 10 : pct_extra;
|
|
|
|
cpi->mid_gf_extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
|
|
cpi->gf_group_bits -= cpi->mid_gf_extra_bits;
|
|
}
|
|
else
|
|
cpi->mid_gf_extra_bits = 0;
|
|
|
|
cpi->gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) // Normal GF and not a KF
|
|
{
|
|
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for this frame
|
|
}
|
|
|
|
// Adjustment to estimate_max_q based on a measure of complexity of the section
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
double Ratio;
|
|
|
|
vp8_zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
|
|
{
|
|
vp8_input_stats(cpi, &next_frame);
|
|
vp8_accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
vp8_avg_stats(§ionstats);
|
|
|
|
if (sectionstats.pcnt_motion < .17)
|
|
cpi->section_is_low_motion = 1;
|
|
else
|
|
cpi->section_is_low_motion = 0;
|
|
|
|
if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45)
|
|
cpi->section_is_fast_motion = 1;
|
|
else
|
|
cpi->section_is_fast_motion = 0;
|
|
|
|
cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
|
|
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
//if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
|
|
//{
|
|
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
|
|
|
|
if (cpi->section_max_qfactor < 0.80)
|
|
cpi->section_max_qfactor = 0.80;
|
|
|
|
//}
|
|
//else
|
|
// cpi->section_max_qfactor = 1.0;
|
|
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
|
|
// Reset the First pass motion map file position
|
|
vp8_fpmm_reset_pos(cpi, fpmm_pos);
|
|
}
|
|
|
|
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
|
|
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
int target_frame_size; // gf_group_error_left
|
|
|
|
double modified_err;
|
|
double err_fraction; // What portion of the remaining GF group error is used by this frame
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
// The final few frames have special treatment
|
|
if (cpi->frames_till_gf_update_due >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
|
|
{
|
|
cpi->gf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;;
|
|
}
|
|
|
|
// Calculate modified prediction error used in bit allocation
|
|
modified_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
if (cpi->gf_group_error_left > 0)
|
|
err_fraction = modified_err / cpi->gf_group_error_left; // What portion of the remaining GF group error is used by this frame
|
|
else
|
|
err_fraction = 0.0;
|
|
|
|
target_frame_size = (int)((double)cpi->gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
|
|
|
|
// Clip to target size to 0 - max_bits (or cpi->gf_group_bits) at the top end.
|
|
if (target_frame_size < 0)
|
|
target_frame_size = 0;
|
|
else
|
|
{
|
|
if (target_frame_size > max_bits)
|
|
target_frame_size = max_bits;
|
|
|
|
if (target_frame_size > cpi->gf_group_bits)
|
|
target_frame_size = cpi->gf_group_bits;
|
|
}
|
|
|
|
cpi->gf_group_error_left -= modified_err; // Adjust error remaining
|
|
cpi->gf_group_bits -= target_frame_size; // Adjust bits remaining
|
|
|
|
if (cpi->gf_group_bits < 0)
|
|
cpi->gf_group_bits = 0;
|
|
|
|
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
|
|
|
|
// Special case for the frame that lies half way between two gfs
|
|
if (cpi->common.frames_since_golden == cpi->baseline_gf_interval / 2)
|
|
target_frame_size += cpi->mid_gf_extra_bits;
|
|
|
|
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
|
|
}
|
|
|
|
void vp8_second_pass(VP8_COMP *cpi)
|
|
{
|
|
int tmp_q;
|
|
int frames_left = (int)(cpi->total_stats->count - cpi->common.current_video_frame);
|
|
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS this_frame_copy;
|
|
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
double this_frame_error;
|
|
double this_frame_intra_error;
|
|
double this_frame_coded_error;
|
|
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
if (!cpi->stats_in)
|
|
{
|
|
return ;
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
|
|
if (EOF == vp8_input_stats(cpi, &this_frame))
|
|
return;
|
|
|
|
vpx_memset(cpi->fp_motion_map, 0,
|
|
cpi->oxcf.arnr_max_frames*cpi->common.MBs);
|
|
cpi->fp_motion_map_stats_save = vp8_fpmm_get_pos(cpi);
|
|
|
|
// Step over this frame's first pass motion map
|
|
vp8_advance_fpmm(cpi, 1);
|
|
|
|
this_frame_error = this_frame.ssim_weighted_pred_err;
|
|
this_frame_intra_error = this_frame.intra_error;
|
|
this_frame_coded_error = this_frame.coded_error;
|
|
|
|
// Store information regarding level of motion etc for use mode decisions.
|
|
cpi->motion_speed = (int)(fabs(this_frame.MVr) + fabs(this_frame.MVc));
|
|
cpi->motion_var = (int)(fabs(this_frame.MVrv) + fabs(this_frame.MVcv));
|
|
cpi->inter_lvl = (int)(this_frame.pcnt_inter * 100);
|
|
cpi->intra_lvl = (int)((1.0 - this_frame.pcnt_inter) * 100);
|
|
cpi->motion_lvl = (int)(this_frame.pcnt_motion * 100);
|
|
|
|
start_pos = cpi->stats_in;
|
|
|
|
// keyframe and section processing !
|
|
if (cpi->frames_to_key == 0)
|
|
{
|
|
// Define next KF group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
vp8_find_next_key_frame(cpi, &this_frame_copy);
|
|
|
|
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
|
|
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
|
|
// This is temporary code till we decide what should really happen in this case.
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
cpi->gf_group_bits = cpi->kf_group_bits;
|
|
cpi->gf_group_error_left = cpi->kf_group_error_left;
|
|
cpi->baseline_gf_interval = cpi->frames_to_key;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
}
|
|
|
|
}
|
|
|
|
// Is this a GF / ARF (Note that a KF is always also a GF)
|
|
if (cpi->frames_till_gf_update_due == 0)
|
|
{
|
|
// Define next gf group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
define_gf_group(cpi, &this_frame_copy);
|
|
|
|
// If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
|
|
// If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
|
|
// If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
|
|
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
|
|
{
|
|
// Assign a standard frames worth of bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
|
|
// If appropriate (we are switching into ARF active but it was not previously active) apply a boost for the gf at the start of the group.
|
|
//if ( !cpi->source_alt_ref_active && (cpi->gfu_boost > 150) )
|
|
if (FALSE)
|
|
{
|
|
int extra_bits;
|
|
int pct_extra = (cpi->gfu_boost - 100) / 50;
|
|
|
|
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
|
|
|
|
extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
|
|
cpi->gf_group_bits -= extra_bits;
|
|
cpi->per_frame_bandwidth += extra_bits;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise this is an ordinary frame
|
|
else
|
|
{
|
|
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
|
|
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
|
|
// This is temporary code till we decide what should really happen in this case.
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
cpi->frames_till_gf_update_due = cpi->frames_to_key;
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
// Assign bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Assign bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
}
|
|
|
|
// Keep a globally available copy of this and the next frame's iiratio.
|
|
cpi->this_iiratio = this_frame_intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
|
|
{
|
|
cpi->next_iiratio = next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
|
|
}
|
|
}
|
|
|
|
// Set nominal per second bandwidth for this frame
|
|
cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
|
|
if (cpi->target_bandwidth < 0)
|
|
cpi->target_bandwidth = 0;
|
|
|
|
if (cpi->common.current_video_frame == 0)
|
|
{
|
|
// guess at 2nd pass q
|
|
cpi->est_max_qcorrection_factor = 1.0;
|
|
tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width);
|
|
|
|
if (tmp_q < cpi->worst_quality)
|
|
{
|
|
cpi->active_worst_quality = tmp_q;
|
|
cpi->ni_av_qi = tmp_q;
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
cpi->ni_av_qi = cpi->worst_quality;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (frames_left < 1)
|
|
frames_left = 1;
|
|
|
|
tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width);
|
|
|
|
// Move active_worst_quality but in a damped way
|
|
if (tmp_q > cpi->active_worst_quality)
|
|
cpi->active_worst_quality ++;
|
|
else if (tmp_q < cpi->active_worst_quality)
|
|
cpi->active_worst_quality --;
|
|
|
|
cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
|
|
|
|
// Clamp to user set limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
else if (cpi->active_worst_quality < cpi->best_quality)
|
|
cpi->active_worst_quality = cpi->best_quality;
|
|
|
|
}
|
|
|
|
cpi->frames_to_key --;
|
|
cpi->total_error_left -= this_frame_error;
|
|
cpi->total_intra_error_left -= this_frame_intra_error;
|
|
cpi->total_coded_error_left -= this_frame_coded_error;
|
|
}
|
|
|
|
|
|
static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
|
|
{
|
|
BOOL is_viable_kf = FALSE;
|
|
|
|
// Does the frame satisfy the primary criteria of a key frame
|
|
// If so, then examine how well it predicts subsequent frames
|
|
if ((this_frame->pcnt_second_ref < 0.10) &&
|
|
(next_frame->pcnt_second_ref < 0.10) &&
|
|
((this_frame->pcnt_inter < 0.05) ||
|
|
(
|
|
(this_frame->pcnt_inter < .25) &&
|
|
((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
|
|
((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
|
|
(fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
|
|
((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
|
|
)
|
|
)
|
|
)
|
|
)
|
|
{
|
|
int i;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
FIRSTPASS_STATS local_next_frame;
|
|
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double next_iiratio;
|
|
|
|
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
|
|
|
|
// Note the starting file position so we can reset to it
|
|
start_pos = cpi->stats_in;
|
|
|
|
// Examine how well the key frame predicts subsequent frames
|
|
for (i = 0 ; i < 16; i++)
|
|
{
|
|
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
|
|
|
|
if (next_iiratio > RMAX)
|
|
next_iiratio = RMAX;
|
|
|
|
// Cumulative effect of decay in prediction quality
|
|
if (local_next_frame.pcnt_inter > 0.85)
|
|
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
else
|
|
decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
|
|
|
|
//decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
|
|
// Keep a running total
|
|
boost_score += (decay_accumulator * next_iiratio);
|
|
|
|
// Test various breakout clauses
|
|
if ((local_next_frame.pcnt_inter < 0.05) ||
|
|
(next_iiratio < 1.5) ||
|
|
((local_next_frame.pcnt_inter < 0.20) && (next_iiratio < 3.0)) ||
|
|
((boost_score - old_boost_score) < 0.5) ||
|
|
(local_next_frame.intra_error < 200)
|
|
)
|
|
{
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
|
|
// Get the next frame details
|
|
if (EOF == vp8_input_stats(cpi, &local_next_frame))
|
|
break;
|
|
}
|
|
|
|
// If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
|
|
if (boost_score > 5.0 && (i > 3))
|
|
is_viable_kf = TRUE;
|
|
else
|
|
{
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
is_viable_kf = FALSE;
|
|
}
|
|
}
|
|
|
|
return is_viable_kf;
|
|
}
|
|
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
int i;
|
|
FIRSTPASS_STATS last_frame;
|
|
FIRSTPASS_STATS first_frame;
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_position;
|
|
|
|
double decay_accumulator = 0;
|
|
double boost_score = 0;
|
|
double old_boost_score = 0.0;
|
|
double loop_decay_rate;
|
|
|
|
double kf_mod_err = 0.0;
|
|
double kf_group_err = 0.0;
|
|
double kf_group_intra_err = 0.0;
|
|
double kf_group_coded_err = 0.0;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
start_position = cpi->stats_in;
|
|
|
|
cpi->common.frame_type = KEY_FRAME;
|
|
|
|
// Clear the alt ref active flag as this can never be active on a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Kf is always a gf so clear frames till next gf counter
|
|
cpi->frames_till_gf_update_due = 0;
|
|
|
|
cpi->frames_to_key = 1;
|
|
|
|
// Take a copy of the initial frame details
|
|
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
|
|
|
|
cpi->kf_group_bits = 0; // Total bits avaialable to kf group
|
|
cpi->kf_group_error_left = 0; // Group modified error score.
|
|
|
|
kf_mod_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// find the next keyframe
|
|
while (cpi->stats_in < cpi->stats_in_end)
|
|
{
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
|
|
// load a the next frame's stats
|
|
vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
|
|
vp8_input_stats(cpi, this_frame);
|
|
|
|
// Provided that we are not at the end of the file...
|
|
if (cpi->oxcf.auto_key
|
|
&& lookup_next_frame_stats(cpi, &next_frame) != EOF)
|
|
{
|
|
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
|
|
break;
|
|
|
|
// Step on to the next frame
|
|
cpi->frames_to_key ++;
|
|
|
|
// If we don't have a real key frame within the next two
|
|
// forcekeyframeevery intervals then break out of the loop.
|
|
if (cpi->frames_to_key >= 2 *(int)cpi->key_frame_frequency)
|
|
break;
|
|
} else
|
|
cpi->frames_to_key ++;
|
|
}
|
|
|
|
// If there is a max kf interval set by the user we must obey it.
|
|
// We already breakout of the loop above at 2x max.
|
|
// This code centers the extra kf if the actual natural
|
|
// interval is between 1x and 2x
|
|
if (cpi->oxcf.auto_key
|
|
&& cpi->frames_to_key > (int)cpi->key_frame_frequency )
|
|
{
|
|
cpi->frames_to_key /= 2;
|
|
|
|
// Estimate corrected kf group error
|
|
kf_group_err /= 2.0;
|
|
kf_group_intra_err /= 2.0;
|
|
kf_group_coded_err /= 2.0;
|
|
}
|
|
|
|
// Special case for the last frame of the file
|
|
if (cpi->stats_in >= cpi->stats_in_end)
|
|
{
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
}
|
|
|
|
// Calculate the number of bits that should be assigned to the kf group.
|
|
if ((cpi->bits_left > 0) && ((int)cpi->modified_total_error_left > 0))
|
|
{
|
|
// Max for a single normal frame (not key frame)
|
|
int max_bits = frame_max_bits(cpi);
|
|
|
|
// Maximum bits for the kf group
|
|
long long max_grp_bits;
|
|
|
|
// Default allocation based on bits left and relative
|
|
// complexity of the section
|
|
cpi->kf_group_bits = (long long)( cpi->bits_left *
|
|
( kf_group_err /
|
|
cpi->modified_total_error_left ));
|
|
|
|
// Clip based on maximum per frame rate defined by the user.
|
|
max_grp_bits = (long long)max_bits * (long long)cpi->frames_to_key;
|
|
if (cpi->kf_group_bits > max_grp_bits)
|
|
cpi->kf_group_bits = max_grp_bits;
|
|
|
|
// Additional special case for CBR if buffer is getting full.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
|
|
int buffer_lvl = cpi->buffer_level;
|
|
|
|
// If the buffer is near or above the optimal and this kf group is
|
|
// not being allocated much then increase the allocation a bit.
|
|
if (buffer_lvl >= opt_buffer_lvl)
|
|
{
|
|
int high_water_mark = (opt_buffer_lvl +
|
|
cpi->oxcf.maximum_buffer_size) >> 1;
|
|
|
|
long long av_group_bits;
|
|
|
|
// Av bits per frame * number of frames
|
|
av_group_bits = (long long)cpi->av_per_frame_bandwidth *
|
|
(long long)cpi->frames_to_key;
|
|
|
|
// We are at or above the maximum.
|
|
if (cpi->buffer_level >= high_water_mark)
|
|
{
|
|
long long min_group_bits;
|
|
|
|
min_group_bits = av_group_bits +
|
|
(long long)(buffer_lvl -
|
|
high_water_mark);
|
|
|
|
if (cpi->kf_group_bits < min_group_bits)
|
|
cpi->kf_group_bits = min_group_bits;
|
|
}
|
|
// We are above optimal but below the maximum
|
|
else if (cpi->kf_group_bits < av_group_bits)
|
|
{
|
|
long long bits_below_av = av_group_bits -
|
|
cpi->kf_group_bits;
|
|
|
|
cpi->kf_group_bits +=
|
|
(long long)((double)bits_below_av *
|
|
(double)(buffer_lvl - opt_buffer_lvl) /
|
|
(double)(high_water_mark - opt_buffer_lvl));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
cpi->kf_group_bits = 0;
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// determine how big to make this keyframe based on how well the subsequent frames use inter blocks
|
|
decay_accumulator = 1.0;
|
|
boost_score = 0.0;
|
|
loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
for (i = 0 ; i < cpi->frames_to_key ; i++)
|
|
{
|
|
double r;
|
|
double motion_decay;
|
|
double motion_pct = next_frame.pcnt_motion;
|
|
|
|
if (EOF == vp8_input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)) ;
|
|
|
|
if (r > RMAX)
|
|
r = RMAX;
|
|
|
|
// Adjust loop decay rate
|
|
//if ( next_frame.pcnt_inter < loop_decay_rate )
|
|
loop_decay_rate = next_frame.pcnt_inter;
|
|
|
|
// High % motion -> somewhat higher decay rate
|
|
motion_decay = (1.0 - (motion_pct / 20.0));
|
|
if (motion_decay < loop_decay_rate)
|
|
loop_decay_rate = motion_decay;
|
|
|
|
// Adjustment to decay rate based on speed of motion
|
|
{
|
|
double this_mv_rabs;
|
|
double this_mv_cabs;
|
|
double distance_factor;
|
|
|
|
this_mv_rabs = fabs(next_frame.mvr_abs * motion_pct);
|
|
this_mv_cabs = fabs(next_frame.mvc_abs * motion_pct);
|
|
|
|
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
|
|
(this_mv_cabs * this_mv_cabs)) / 250.0;
|
|
distance_factor = ((distance_factor > 1.0)
|
|
? 0.0 : (1.0 - distance_factor));
|
|
if (distance_factor < loop_decay_rate)
|
|
loop_decay_rate = distance_factor;
|
|
}
|
|
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
if ((i > MIN_GF_INTERVAL) &&
|
|
((boost_score - old_boost_score) < 1.0))
|
|
{
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
if (1)
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
double Ratio;
|
|
|
|
vp8_zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
for (i = 0 ; i < cpi->frames_to_key ; i++)
|
|
{
|
|
vp8_input_stats(cpi, &next_frame);
|
|
vp8_accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
vp8_avg_stats(§ionstats);
|
|
|
|
if (sectionstats.pcnt_motion < .17)
|
|
cpi->section_is_low_motion = 1;
|
|
else
|
|
cpi->section_is_low_motion = 0;
|
|
|
|
if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45)
|
|
cpi->section_is_fast_motion = 1;
|
|
else
|
|
cpi->section_is_fast_motion = 0;
|
|
|
|
cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
|
|
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
// if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
|
|
//{
|
|
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
|
|
|
|
if (cpi->section_max_qfactor < 0.80)
|
|
cpi->section_max_qfactor = 0.80;
|
|
|
|
//}
|
|
//else
|
|
// cpi->section_max_qfactor = 1.0;
|
|
}
|
|
|
|
// When using CBR apply additional buffer fullness related upper limits
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double max_boost;
|
|
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
|
|
|
|
if (cpi->buffer_level > df_buffer_level)
|
|
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
else
|
|
max_boost = 0.0;
|
|
}
|
|
else if (cpi->buffer_level > 0)
|
|
{
|
|
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
}
|
|
else
|
|
{
|
|
max_boost = 0.0;
|
|
}
|
|
|
|
if (boost_score > max_boost)
|
|
boost_score = max_boost;
|
|
}
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// Work out how many bits to allocate for the key frame itself
|
|
if (1)
|
|
{
|
|
int kf_boost = boost_score;
|
|
int allocation_chunks;
|
|
int Counter = cpi->frames_to_key;
|
|
int alt_kf_bits;
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
// Min boost based on kf interval
|
|
#if 0
|
|
|
|
while ((kf_boost < 48) && (Counter > 0))
|
|
{
|
|
Counter -= 2;
|
|
kf_boost ++;
|
|
}
|
|
|
|
#endif
|
|
|
|
if (kf_boost < 48)
|
|
{
|
|
kf_boost += ((Counter + 1) >> 1);
|
|
|
|
if (kf_boost > 48) kf_boost = 48;
|
|
}
|
|
|
|
// bigger frame sizes need larger kf boosts, smaller frames smaller boosts...
|
|
if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240))
|
|
kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
|
|
else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240))
|
|
kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
|
|
|
|
kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100
|
|
|
|
// Adjustment to boost based on recent average q
|
|
kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100;
|
|
|
|
if (kf_boost < 250) // Min KF boost
|
|
kf_boost = 250;
|
|
|
|
// We do three calculations for kf size.
|
|
// The first is based on the error score for the whole kf group.
|
|
// The second (optionaly) on the key frames own error if this is smaller than the average for the group.
|
|
// The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining
|
|
|
|
allocation_chunks = ((cpi->frames_to_key - 1) * 100) + kf_boost; // cpi->frames_to_key-1 because key frame itself is taken care of by kf_boost
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (kf_boost > 1000)
|
|
{
|
|
kf_boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
cpi->kf_group_bits = (cpi->kf_group_bits < 0) ? 0 : cpi->kf_group_bits;
|
|
|
|
// Calculate the number of bits to be spent on the key frame
|
|
cpi->kf_bits = (int)((double)kf_boost * ((double)cpi->kf_group_bits / (double)allocation_chunks));
|
|
|
|
// Apply an additional limit for CBR
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
if (cpi->kf_bits > ((3 * cpi->buffer_level) >> 2))
|
|
cpi->kf_bits = (3 * cpi->buffer_level) >> 2;
|
|
}
|
|
|
|
// If the key frame is actually easier than the average for the
|
|
// kf group (which does sometimes happen... eg a blank intro frame)
|
|
// Then use an alternate calculation based on the kf error score
|
|
// which should give a smaller key frame.
|
|
if (kf_mod_err < kf_group_err / cpi->frames_to_key)
|
|
{
|
|
double alt_kf_grp_bits =
|
|
((double)cpi->bits_left *
|
|
(kf_mod_err * (double)cpi->frames_to_key) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left));
|
|
|
|
alt_kf_bits = (int)((double)kf_boost *
|
|
(alt_kf_grp_bits / (double)allocation_chunks));
|
|
|
|
if (cpi->kf_bits > alt_kf_bits)
|
|
{
|
|
cpi->kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
// Else if it is much harder than other frames in the group make sure
|
|
// it at least receives an allocation in keeping with its relative
|
|
// error score
|
|
else
|
|
{
|
|
alt_kf_bits =
|
|
(int)((double)cpi->bits_left *
|
|
(kf_mod_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left)));
|
|
|
|
if (alt_kf_bits > cpi->kf_bits)
|
|
{
|
|
cpi->kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
|
|
cpi->kf_group_bits -= cpi->kf_bits;
|
|
cpi->kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
|
|
|
|
cpi->per_frame_bandwidth = cpi->kf_bits; // Peer frame bit target for this frame
|
|
cpi->target_bandwidth = cpi->kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
|
|
}
|
|
|
|
// Note the total error score of the kf group minus the key frame itself
|
|
cpi->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
|
|
|
|
// Adjust the count of total modified error left.
|
|
// The count of bits left is adjusted elsewhere based on real coded frame sizes
|
|
cpi->modified_total_error_left -= kf_group_err;
|
|
|
|
if (cpi->oxcf.allow_spatial_resampling)
|
|
{
|
|
int resample_trigger = FALSE;
|
|
int last_kf_resampled = FALSE;
|
|
int kf_q;
|
|
int scale_val = 0;
|
|
int hr, hs, vr, vs;
|
|
int new_width = cpi->oxcf.Width;
|
|
int new_height = cpi->oxcf.Height;
|
|
|
|
int projected_buffer_level = cpi->buffer_level;
|
|
int tmp_q;
|
|
|
|
double projected_bits_perframe;
|
|
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error);
|
|
double err_per_frame = kf_group_err / cpi->frames_to_key;
|
|
double bits_per_frame;
|
|
double av_bits_per_frame;
|
|
double effective_size_ratio;
|
|
|
|
if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height))
|
|
last_kf_resampled = TRUE;
|
|
|
|
// Set back to unscaled by defaults
|
|
cpi->common.horiz_scale = NORMAL;
|
|
cpi->common.vert_scale = NORMAL;
|
|
|
|
// Calculate Average bits per frame.
|
|
//av_bits_per_frame = cpi->bits_left/(double)(cpi->total_stats->count - cpi->common.current_video_frame);
|
|
av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate);
|
|
//if ( av_bits_per_frame < 0.0 )
|
|
// av_bits_per_frame = 0.0
|
|
|
|
// CBR... Use the clip average as the target for deciding resample
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
bits_per_frame = av_bits_per_frame;
|
|
}
|
|
|
|
// In VBR we want to avoid downsampling in easy section unless we are under extreme pressure
|
|
// So use the larger of target bitrate for this sectoion or average bitrate for sequence
|
|
else
|
|
{
|
|
bits_per_frame = cpi->kf_group_bits / cpi->frames_to_key; // This accounts for how hard the section is...
|
|
|
|
if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits
|
|
bits_per_frame = av_bits_per_frame;
|
|
}
|
|
|
|
// bits_per_frame should comply with our minimum
|
|
if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100))
|
|
bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
// Work out if spatial resampling is necessary
|
|
kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, new_height, new_width, group_iiratio);
|
|
|
|
// If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section
|
|
projected_bits_perframe = bits_per_frame;
|
|
tmp_q = kf_q;
|
|
|
|
while (tmp_q > cpi->worst_quality)
|
|
{
|
|
projected_bits_perframe *= 1.04;
|
|
tmp_q--;
|
|
}
|
|
|
|
// Guess at buffer level at the end of the section
|
|
projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->frames_to_key);
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("Subsamle.stt", "a");
|
|
fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
|
|
fclose(f);
|
|
}
|
|
|
|
// The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Trigger resample if we are projected to fall below down sample level or
|
|
// resampled last time and are projected to remain below the up sample level
|
|
if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) ||
|
|
(last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))))
|
|
//( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) &&
|
|
// ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) ))
|
|
resample_trigger = TRUE;
|
|
else
|
|
resample_trigger = FALSE;
|
|
}
|
|
else
|
|
{
|
|
long long clip_bits = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
|
|
long long over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
|
|
long long over_spend2 = cpi->oxcf.starting_buffer_level - projected_buffer_level;
|
|
|
|
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced
|
|
((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ...
|
|
(over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits
|
|
resample_trigger = TRUE;
|
|
else
|
|
resample_trigger = FALSE;
|
|
|
|
}
|
|
|
|
if (resample_trigger)
|
|
{
|
|
while ((kf_q >= cpi->worst_quality) && (scale_val < 6))
|
|
{
|
|
scale_val ++;
|
|
|
|
cpi->common.vert_scale = vscale_lookup[scale_val];
|
|
cpi->common.horiz_scale = hscale_lookup[scale_val];
|
|
|
|
Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
|
|
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
// Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4...
|
|
// effective_sizeratio attempts to provide a crude correction for this
|
|
effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height);
|
|
effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
|
|
|
|
// Now try again and see what Q we get with the smaller image size
|
|
kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, new_height, new_width, group_iiratio);
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("Subsamle.stt", "a");
|
|
fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
|
|
fclose(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height))
|
|
{
|
|
cpi->common.Width = new_width;
|
|
cpi->common.Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
}
|
|
}
|