vpx/vp9/encoder/vp9_onyx_int.h

832 lines
24 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_ENCODER_VP9_ONYX_INT_H_
#define VP9_ENCODER_VP9_ONYX_INT_H_
#include <stdio.h>
#include "./vpx_config.h"
#include "vp9/common/vp9_onyx.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_ports/mem.h"
#include "vpx/internal/vpx_codec_internal.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_lookahead.h"
#define DISABLE_RC_LONG_TERM_MEM 0
// #define MODE_TEST_HIT_STATS
// #define SPEEDSTATS 1
#if CONFIG_MULTIPLE_ARF
// Set MIN_GF_INTERVAL to 1 for the full decomposition.
#define MIN_GF_INTERVAL 2
#else
#define MIN_GF_INTERVAL 4
#endif
#define DEFAULT_GF_INTERVAL 7
#define KEY_FRAME_CONTEXT 5
#define MAX_MODES 30
#define MAX_REFS 6
#define MIN_THRESHMULT 32
#define MAX_THRESHMULT 512
#define GF_ZEROMV_ZBIN_BOOST 0
#define LF_ZEROMV_ZBIN_BOOST 0
#define MV_ZBIN_BOOST 0
#define SPLIT_MV_ZBIN_BOOST 0
#define INTRA_ZBIN_BOOST 0
typedef struct {
int nmvjointcost[MV_JOINTS];
int nmvcosts[2][MV_VALS];
int nmvcosts_hp[2][MV_VALS];
vp9_prob segment_pred_probs[PREDICTION_PROBS];
unsigned char *last_frame_seg_map_copy;
// 0 = Intra, Last, GF, ARF
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
// 0 = ZERO_MV, MV
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
int inter_mode_counts[INTER_MODE_CONTEXTS][INTER_MODES - 1][2];
FRAME_CONTEXT fc;
} CODING_CONTEXT;
typedef struct {
double frame;
double intra_error;
double coded_error;
double sr_coded_error;
double ssim_weighted_pred_err;
double pcnt_inter;
double pcnt_motion;
double pcnt_second_ref;
double pcnt_neutral;
double MVr;
double mvr_abs;
double MVc;
double mvc_abs;
double MVrv;
double MVcv;
double mv_in_out_count;
double new_mv_count;
double duration;
double count;
} FIRSTPASS_STATS;
typedef struct {
int frames_so_far;
double frame_intra_error;
double frame_coded_error;
double frame_pcnt_inter;
double frame_pcnt_motion;
double frame_mvr;
double frame_mvr_abs;
double frame_mvc;
double frame_mvc_abs;
} ONEPASS_FRAMESTATS;
typedef struct {
struct {
int err;
union {
int_mv mv;
MB_PREDICTION_MODE mode;
} m;
} ref[MAX_REF_FRAMES];
} MBGRAPH_MB_STATS;
typedef struct {
MBGRAPH_MB_STATS *mb_stats;
} MBGRAPH_FRAME_STATS;
// This enumerator type needs to be kept aligned with the mode order in
// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
typedef enum {
THR_NEARESTMV,
THR_NEARESTA,
THR_NEARESTG,
THR_DC,
THR_NEWMV,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARA,
THR_COMP_NEARESTLA,
THR_COMP_NEARESTGA,
THR_TM,
THR_COMP_NEARLA,
THR_COMP_NEWLA,
THR_NEARG,
THR_COMP_NEARGA,
THR_COMP_NEWGA,
THR_ZEROMV,
THR_ZEROG,
THR_ZEROA,
THR_COMP_ZEROLA,
THR_COMP_ZEROGA,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D207_PRED,
THR_D153_PRED,
THR_D63_PRED,
THR_D117_PRED,
THR_D45_PRED,
} THR_MODES;
typedef enum {
THR_LAST,
THR_GOLD,
THR_ALTR,
THR_COMP_LA,
THR_COMP_GA,
THR_INTRA,
} THR_MODES_SUB8X8;
typedef enum {
DIAMOND = 0,
NSTEP = 1,
HEX = 2,
BIGDIA = 3,
SQUARE = 4
} SEARCH_METHODS;
typedef enum {
USE_FULL_RD = 0,
USE_LARGESTINTRA,
USE_LARGESTINTRA_MODELINTER,
USE_LARGESTALL
} TX_SIZE_SEARCH_METHOD;
typedef enum {
// Values should be powers of 2 so that they can be selected as bits of
// an integer flags field
// terminate search early based on distortion so far compared to
// qp step, distortion in the neighborhood of the frame, etc.
FLAG_EARLY_TERMINATE = 1,
// skips comp inter modes if the best so far is an intra mode
FLAG_SKIP_COMP_BESTINTRA = 2,
// skips comp inter modes if the best single intermode so far does
// not have the same reference as one of the two references being
// tested
FLAG_SKIP_COMP_REFMISMATCH = 4,
// skips oblique intra modes if the best so far is an inter mode
FLAG_SKIP_INTRA_BESTINTER = 8,
// skips oblique intra modes at angles 27, 63, 117, 153 if the best
// intra so far is not one of the neighboring directions
FLAG_SKIP_INTRA_DIRMISMATCH = 16,
// skips intra modes other than DC_PRED if the source variance
// is small
FLAG_SKIP_INTRA_LOWVAR = 32,
} MODE_SEARCH_SKIP_LOGIC;
typedef enum {
SUBPEL_TREE = 0,
// Other methods to come
} SUBPEL_SEARCH_METHODS;
#define ALL_INTRA_MODES 0x3FF
#define INTRA_DC_ONLY 0x01
#define INTRA_DC_TM ((1 << TM_PRED) | (1 << DC_PRED))
#define INTRA_DC_H_V ((1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED))
#define INTRA_DC_TM_H_V (INTRA_DC_TM | (1 << V_PRED) | (1 << H_PRED))
typedef enum {
LAST_FRAME_PARTITION_OFF = 0,
LAST_FRAME_PARTITION_LOW_MOTION = 1,
LAST_FRAME_PARTITION_ALL = 2
} LAST_FRAME_PARTITION_METHOD;
typedef struct {
// This flag refers to whether or not to perform rd optimization.
int RD;
// Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc).
SEARCH_METHODS search_method;
// Recode_loop can be:
// 0 means we only encode a frame once
// 1 means we can re-encode based on bitrate constraints on any frame
// 2 means we can only recode gold, alt, and key frames.
int recode_loop;
// Subpel_search_method can only be subpel_tree which does a subpixel
// logarithmic search that keeps stepping at 1/2 pixel units until
// you stop getting a gain, and then goes on to 1/4 and repeats
// the same process. Along the way it skips many diagonals.
SUBPEL_SEARCH_METHODS subpel_search_method;
// Maximum number of steps in logarithmic subpel search before giving up.
int subpel_iters_per_step;
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int thresh_mult_sub8x8[MAX_REFS];
// This parameter controls the number of steps we'll do in a diamond
// search.
int max_step_search_steps;
// This parameter controls which step in the n-step process we start at.
// It's changed adaptively based on circumstances.
int reduce_first_step_size;
// If this is set to 1, we limit the motion search range to 2 times the
// largest motion vector found in the last frame.
int auto_mv_step_size;
// Trellis (dynamic programming) optimization of quantized values (+1, 0).
int optimize_coefficients;
// Always set to 0. If on it enables 0 cost background transmission
// (except for the initial transmission of the segmentation). The feature is
// disabled because the addition of very large block sizes make the
// backgrounds very to cheap to encode, and the segmentation we have
// adds overhead.
int static_segmentation;
// If 1 we iterate finding a best reference for 2 ref frames together - via
// a log search that iterates 4 times (check around mv for last for best
// error of combined predictor then check around mv for alt). If 0 we
// we just use the best motion vector found for each frame by itself.
int comp_inter_joint_search_thresh;
// This variable is used to cap the maximum number of times we skip testing a
// mode to be evaluated. A high value means we will be faster.
int adaptive_rd_thresh;
// Enables skipping the reconstruction step (idct, recon) in the
// intermediate steps assuming the last frame didn't have too many intra
// blocks and the q is less than a threshold.
int skip_encode_sb;
int skip_encode_frame;
// This variable allows us to reuse the last frames partition choices
// (64x64 v 32x32 etc) for this frame. It can be set to only use the last
// frame as a starting point in low motion scenes or always use it. If set
// we use last partitioning_redo frequency to determine how often to redo
// the partitioning from scratch. Adjust_partitioning_from_last_frame
// enables us to adjust up or down one partitioning from the last frames
// partitioning.
LAST_FRAME_PARTITION_METHOD use_lastframe_partitioning;
// Determine which method we use to determine transform size. We can choose
// between options like full rd, largest for prediction size, largest
// for intra and model coefs for the rest.
TX_SIZE_SEARCH_METHOD tx_size_search_method;
// Low precision 32x32 fdct keeps everything in 16 bits and thus is less
// precise but significantly faster than the non lp version.
int use_lp32x32fdct;
// TODO(JBB): remove this as its no longer used.
// If set partition size will always be always_this_block_size.
int use_one_partition_size_always;
// Skip rectangular partition test when partition type none gives better
// rd than partition type split.
int less_rectangular_check;
// Disable testing non square partitions. (eg 16x32)
int use_square_partition_only;
// After looking at the first set of modes (set by index here), skip
// checking modes for reference frames that don't match the reference frame
// of the best so far.
int mode_skip_start;
// TODO(JBB): Remove this.
int reference_masking;
// Used in conjunction with use_one_partition_size_always.
BLOCK_SIZE always_this_block_size;
// Sets min and max partition sizes for this 64x64 region based on the
// same superblock in last encoded frame, and the left and above neighbor
// in this block.
int auto_min_max_partition_size;
// Min and max partition size we enable (block_size) as per auto
// min max, but also used by adjust partitioning, and pick_partitioning.
BLOCK_SIZE min_partition_size;
BLOCK_SIZE max_partition_size;
// Whether or not we allow partitions one smaller or one greater than the last
// frame's partitioning. Only used if use_lastframe_partitioning is set.
int adjust_partitioning_from_last_frame;
// How frequently we re do the partitioning from scratch. Only used if
// use_lastframe_partitioning is set.
int last_partitioning_redo_frequency;
// Disables sub 8x8 blocksizes in different scenarios: Choices are to disable
// it always, to allow it for only Last frame and Intra, disable it for all
// inter modes or to enable it always.
int disable_split_mask;
// TODO(jbb): Remove this and everything that uses it. It's only valid if
// we were doing small to large partition checks. We currently do the
// reverse.
int using_small_partition_info;
// TODO(jingning): combine the related motion search speed features
// This allows us to use motion search at other sizes as a starting
// point for this motion search and limits the search range around it.
int adaptive_motion_search;
// Allows sub 8x8 modes to use the prediction filter that was determined
// best for 8x8 mode. If set to 0 we always re check all the filters for
// sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter
// was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected.
int adaptive_pred_filter_type;
// Implements various heuristics to skip searching modes
// The heuristics selected are based on flags
// defined in the MODE_SEARCH_SKIP_HEURISTICS enum
unsigned int mode_search_skip_flags;
// A source variance threshold below which the split mode is disabled
unsigned int disable_split_var_thresh;
// A source variance threshold below which filter search is disabled
// Choose a very large value (UINT_MAX) to use 8-tap always
unsigned int disable_filter_search_var_thresh;
// These bit masks allow you to enable or disable intra modes for each
// transform size separately.
int intra_y_mode_mask[TX_SIZES];
int intra_uv_mode_mask[TX_SIZES];
// This variable enables an early break out of mode testing if the model for
// rd built from the prediction signal indicates a value that's much
// higher than the best rd we've seen so far.
int use_rd_breakout;
// This enables us to use an estimate for intra rd based on dc mode rather
// than choosing an actual uv mode in the stage of encoding before the actual
// final encode.
int use_uv_intra_rd_estimate;
// This picks a loop filter strength by trying a small portion of the image
// with different values.
int use_fast_lpf_pick;
// This feature limits the number of coefficients updates we actually do
// by only looking at counts from 1/2 the bands.
int use_fast_coef_updates; // 0: 2-loop, 1: 1-loop, 2: 1-loop reduced
} SPEED_FEATURES;
typedef struct {
// Rate targetting variables
int this_frame_target;
int projected_frame_size;
int sb64_target_rate;
int last_q[3]; // Separate values for Intra/Inter/ARF-GF
int last_boosted_qindex; // Last boosted GF/KF/ARF q
int gfu_boost;
int last_boost;
int kf_boost;
double rate_correction_factor;
double key_frame_rate_correction_factor;
double gf_rate_correction_factor;
unsigned int frames_since_golden;
unsigned int frames_till_gf_update_due; // Count down till next GF
unsigned int max_gf_interval;
unsigned int baseline_gf_interval;
unsigned int frames_to_key;
unsigned int frames_since_key;
unsigned int this_key_frame_forced;
unsigned int next_key_frame_forced;
unsigned int source_alt_ref_pending;
unsigned int source_alt_ref_active;
unsigned int is_src_frame_alt_ref;
int per_frame_bandwidth; // Current section per frame bandwidth target
int av_per_frame_bandwidth; // Average frame size target for clip
int min_frame_bandwidth; // Minimum allocation used for any frame
int ni_av_qi;
int ni_tot_qi;
int ni_frames;
int avg_frame_qindex[3]; // 0 - KEY, 1 - INTER, 2 - ARF/GF
double tot_q;
double avg_q;
int buffer_level;
int bits_off_target;
int decimation_factor;
int decimation_count;
int rolling_target_bits;
int rolling_actual_bits;
int long_rolling_target_bits;
int long_rolling_actual_bits;
int64_t total_actual_bits;
int total_target_vs_actual; // debug stats
int worst_quality;
int active_worst_quality;
int best_quality;
// int active_best_quality;
} RATE_CONTROL;
typedef struct VP9_COMP {
DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]);
#if CONFIG_ALPHA
DECLARE_ALIGNED(16, int16_t, a_quant[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, a_quant_shift[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, a_zbin[QINDEX_RANGE][8]);
DECLARE_ALIGNED(16, int16_t, a_round[QINDEX_RANGE][8]);
#endif
MACROBLOCK mb;
VP9_COMMON common;
VP9_CONFIG oxcf;
struct rdcost_block_args rdcost_stack;
struct lookahead_ctx *lookahead;
struct lookahead_entry *source;
#if CONFIG_MULTIPLE_ARF
struct lookahead_entry *alt_ref_source[REF_FRAMES];
#else
struct lookahead_entry *alt_ref_source;
#endif
YV12_BUFFER_CONFIG *Source;
YV12_BUFFER_CONFIG *un_scaled_source;
YV12_BUFFER_CONFIG scaled_source;
unsigned int key_frame_frequency;
int gold_is_last; // gold same as last frame ( short circuit gold searches)
int alt_is_last; // Alt same as last ( short circuit altref search)
int gold_is_alt; // don't do both alt and gold search ( just do gold).
int scaled_ref_idx[3];
int lst_fb_idx;
int gld_fb_idx;
int alt_fb_idx;
int current_layer;
int use_svc;
#if CONFIG_MULTIPLE_ARF
int alt_ref_fb_idx[REF_FRAMES - 3];
#endif
int refresh_last_frame;
int refresh_golden_frame;
int refresh_alt_ref_frame;
int ext_refresh_frame_flags_pending;
int ext_refresh_last_frame;
int ext_refresh_golden_frame;
int ext_refresh_alt_ref_frame;
int ext_refresh_frame_context_pending;
int ext_refresh_frame_context;
YV12_BUFFER_CONFIG last_frame_uf;
TOKENEXTRA *tok;
unsigned int tok_count[4][1 << 6];
#if CONFIG_MULTIPLE_ARF
// Position within a frame coding order (including any additional ARF frames).
unsigned int sequence_number;
// Next frame in naturally occurring order that has not yet been coded.
int next_frame_in_order;
#endif
// Ambient reconstruction err target for force key frames
int ambient_err;
unsigned int mode_chosen_counts[MAX_MODES];
unsigned int sub8x8_mode_chosen_counts[MAX_REFS];
int64_t mode_skip_mask;
int ref_frame_mask;
int set_ref_frame_mask;
int rd_threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
int rd_thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
int rd_thresh_sub8x8[MAX_SEGMENTS][BLOCK_SIZES][MAX_REFS];
int rd_thresh_freq_sub8x8[BLOCK_SIZES][MAX_REFS];
int64_t rd_comp_pred_diff[REFERENCE_MODES];
int64_t rd_prediction_type_threshes[4][REFERENCE_MODES];
int64_t rd_tx_select_diff[TX_MODES];
// FIXME(rbultje) can this overflow?
int rd_tx_select_threshes[4][TX_MODES];
int64_t rd_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
int64_t rd_filter_threshes[4][SWITCHABLE_FILTER_CONTEXTS];
int64_t rd_filter_cache[SWITCHABLE_FILTER_CONTEXTS];
int64_t mask_filter_rd;
int RDMULT;
int RDDIV;
CODING_CONTEXT coding_context;
int zbin_mode_boost;
int zbin_mode_boost_enabled;
int active_arnr_frames; // <= cpi->oxcf.arnr_max_frames
int active_arnr_strength; // <= cpi->oxcf.arnr_max_strength
double output_framerate;
int64_t last_time_stamp_seen;
int64_t last_end_time_stamp_seen;
int64_t first_time_stamp_ever;
RATE_CONTROL rc;
int cq_target_quality;
vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES];
vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
int64_t target_bandwidth;
struct vpx_codec_pkt_list *output_pkt_list;
#if 0
// Experimental code for lagged and one pass
ONEPASS_FRAMESTATS one_pass_frame_stats[MAX_LAG_BUFFERS];
int one_pass_frame_index;
#endif
MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
int mbgraph_n_frames; // number of frames filled in the above
int static_mb_pct; // % forced skip mbs by segmentation
int seg0_progress, seg0_idx, seg0_cnt;
// for real time encoding
int speed;
int compressor_speed;
int cpu_used;
int pass;
vp9_prob last_skip_false_probs[3][MBSKIP_CONTEXTS];
int last_skip_probs_q[3];
int ref_frame_flags;
SPEED_FEATURES sf;
int error_bins[1024];
unsigned int max_mv_magnitude;
int mv_step_param;
unsigned char *segmentation_map;
// segment threashold for encode breakout
int segment_encode_breakout[MAX_SEGMENTS];
unsigned char *complexity_map;
unsigned char *active_map;
unsigned int active_map_enabled;
fractional_mv_step_fp *find_fractional_mv_step;
fractional_mv_step_comp_fp *find_fractional_mv_step_comp;
vp9_full_search_fn_t full_search_sad;
vp9_refining_search_fn_t refining_search_sad;
vp9_diamond_search_fn_t diamond_search_sad;
vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
uint64_t time_receive_data;
uint64_t time_compress_data;
uint64_t time_pick_lpf;
uint64_t time_encode_sb_row;
struct twopass_rc {
unsigned int section_intra_rating;
unsigned int next_iiratio;
unsigned int this_iiratio;
FIRSTPASS_STATS total_stats;
FIRSTPASS_STATS this_frame_stats;
FIRSTPASS_STATS *stats_in, *stats_in_end, *stats_in_start;
FIRSTPASS_STATS total_left_stats;
int first_pass_done;
int64_t bits_left;
int64_t clip_bits_total;
double avg_iiratio;
double modified_error_min;
double modified_error_max;
double modified_error_total;
double modified_error_left;
double kf_intra_err_min;
double gf_intra_err_min;
int static_scene_max_gf_interval;
int kf_bits;
// Remaining error from uncoded frames in a gf group. Two pass use only
int64_t gf_group_error_left;
// Projected total bits available for a key frame group of frames
int64_t kf_group_bits;
// Error score of frames still to be coded in kf group
int64_t kf_group_error_left;
// Projected Bits available for a group of frames including 1 GF or ARF
int64_t gf_group_bits;
// Bits for the golden frame or ARF - 2 pass only
int gf_bits;
int alt_extra_bits;
int sr_update_lag;
int kf_zeromotion_pct;
int gf_zeromotion_pct;
} twopass;
YV12_BUFFER_CONFIG alt_ref_buffer;
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
int fixed_divide[512];
#if CONFIG_INTERNAL_STATS
int count;
double total_y;
double total_u;
double total_v;
double total;
uint64_t total_sq_error;
uint64_t total_samples;
double totalp_y;
double totalp_u;
double totalp_v;
double totalp;
uint64_t totalp_sq_error;
uint64_t totalp_samples;
int bytes;
double summed_quality;
double summed_weights;
double summedp_quality;
double summedp_weights;
unsigned int tot_recode_hits;
double total_ssimg_y;
double total_ssimg_u;
double total_ssimg_v;
double total_ssimg_all;
int b_calculate_ssimg;
#endif
int b_calculate_psnr;
// Per MB activity measurement
unsigned int activity_avg;
unsigned int *mb_activity_map;
int *mb_norm_activity_map;
int output_partition;
// Force next frame to intra when kf_auto says so.
int force_next_frame_intra;
int droppable;
int dummy_packing; /* flag to indicate if packing is dummy */
unsigned int switchable_interp_count[SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS];
unsigned int tx_stepdown_count[TX_SIZES];
int initial_width;
int initial_height;
int number_spatial_layers;
int enable_encode_breakout; // Default value is 1. From first pass stats,
// encode_breakout may be disabled.
#if CONFIG_MULTIPLE_ARF
// ARF tracking variables.
int multi_arf_enabled;
unsigned int frame_coding_order_period;
unsigned int new_frame_coding_order_period;
int frame_coding_order[MAX_LAG_BUFFERS * 2];
int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2];
int arf_weight[MAX_LAG_BUFFERS];
int arf_buffered;
int this_frame_weight;
int max_arf_level;
#endif
#ifdef ENTROPY_STATS
int64_t mv_ref_stats[INTER_MODE_CONTEXTS][INTER_MODES - 1][2];
#endif
#ifdef MODE_TEST_HIT_STATS
// Debug / test stats
int64_t mode_test_hits[BLOCK_SIZES];
#endif
// Y,U,V,(A)
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16];
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT left_seg_context[8];
} VP9_COMP;
static int get_ref_frame_idx(VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) {
if (ref_frame == LAST_FRAME) {
return cpi->lst_fb_idx;
} else if (ref_frame == GOLDEN_FRAME) {
return cpi->gld_fb_idx;
} else {
return cpi->alt_fb_idx;
}
}
static int get_scale_ref_frame_idx(VP9_COMP *cpi,
MV_REFERENCE_FRAME ref_frame) {
if (ref_frame == LAST_FRAME) {
return 0;
} else if (ref_frame == GOLDEN_FRAME) {
return 1;
} else {
return 2;
}
}
static YV12_BUFFER_CONFIG *get_ref_frame_buffer(VP9_COMP *cpi,
MV_REFERENCE_FRAME ref_frame) {
VP9_COMMON *const cm = &cpi->common;
return &cm->yv12_fb[cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]];
}
void vp9_encode_frame(VP9_COMP *cpi);
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size);
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x);
void vp9_set_speed_features(VP9_COMP *cpi);
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
void vp9_alloc_compressor_data(VP9_COMP *cpi);
int vp9_compute_qdelta(const VP9_COMP *cpi, double qstart, double qtarget);
static int get_token_alloc(int mb_rows, int mb_cols) {
return mb_rows * mb_cols * (48 * 16 + 4);
}
#endif // VP9_ENCODER_VP9_ONYX_INT_H_