These are in response to a post-commit review in Ib6664df44090e8cfa4db9f2f9e0556931ccfe5c8 Change-Id: I1e07ccab18558dfdd996547a72a396abe02ed23d
		
			
				
	
	
		
			6201 lines
		
	
	
		
			234 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6201 lines
		
	
	
		
			234 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 | 
						|
 *
 | 
						|
 * This source code is subject to the terms of the BSD 2 Clause License and
 | 
						|
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 | 
						|
 * was not distributed with this source code in the LICENSE file, you can
 | 
						|
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 | 
						|
 * Media Patent License 1.0 was not distributed with this source code in the
 | 
						|
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 | 
						|
 */
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include "./av1_rtcd.h"
 | 
						|
#include "./aom_dsp_rtcd.h"
 | 
						|
#include "./aom_config.h"
 | 
						|
 | 
						|
#include "aom_dsp/aom_dsp_common.h"
 | 
						|
#include "aom_ports/mem.h"
 | 
						|
#include "aom_ports/aom_timer.h"
 | 
						|
#include "aom_ports/system_state.h"
 | 
						|
 | 
						|
#include "av1/common/common.h"
 | 
						|
#include "av1/common/entropy.h"
 | 
						|
#include "av1/common/entropymode.h"
 | 
						|
#include "av1/common/idct.h"
 | 
						|
#include "av1/common/mvref_common.h"
 | 
						|
#include "av1/common/pred_common.h"
 | 
						|
#include "av1/common/quant_common.h"
 | 
						|
#include "av1/common/reconintra.h"
 | 
						|
#include "av1/common/reconinter.h"
 | 
						|
#include "av1/common/seg_common.h"
 | 
						|
#include "av1/common/tile_common.h"
 | 
						|
 | 
						|
#include "av1/encoder/aq_complexity.h"
 | 
						|
#include "av1/encoder/aq_cyclicrefresh.h"
 | 
						|
#include "av1/encoder/aq_variance.h"
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
#include "av1/encoder/cost.h"
 | 
						|
#endif
 | 
						|
#if CONFIG_GLOBAL_MOTION
 | 
						|
#include "av1/common/warped_motion.h"
 | 
						|
#include "av1/encoder/global_motion.h"
 | 
						|
#endif
 | 
						|
#include "av1/encoder/encodeframe.h"
 | 
						|
#include "av1/encoder/encodemb.h"
 | 
						|
#include "av1/encoder/encodemv.h"
 | 
						|
#include "av1/encoder/ethread.h"
 | 
						|
#include "av1/encoder/extend.h"
 | 
						|
#include "av1/encoder/rd.h"
 | 
						|
#include "av1/encoder/rdopt.h"
 | 
						|
#include "av1/encoder/segmentation.h"
 | 
						|
#include "av1/encoder/tokenize.h"
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
#define IF_HBD(...) __VA_ARGS__
 | 
						|
#else
 | 
						|
#define IF_HBD(...)
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
static void encode_superblock(AV1_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
 | 
						|
                              int output_enabled, int mi_row, int mi_col,
 | 
						|
                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
static int check_intra_b(PICK_MODE_CONTEXT *ctx);
 | 
						|
 | 
						|
static int check_intra_sb(AV1_COMP *cpi, const TileInfo *const tile, int mi_row,
 | 
						|
                          int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree);
 | 
						|
static void predict_superblock(AV1_COMP *cpi, ThreadData *td,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                               int mi_row_ori, int mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                               int mi_row_pred, int mi_col_pred,
 | 
						|
                               BLOCK_SIZE bsize_pred, int b_sub8x8, int block);
 | 
						|
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
 | 
						|
                            PC_TREE *pc_tree);
 | 
						|
static void predict_sb_complex(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                               const TileInfo *const tile, int mi_row,
 | 
						|
                               int mi_col, int mi_row_ori, int mi_col_ori,
 | 
						|
                               int output_enabled, BLOCK_SIZE bsize,
 | 
						|
                               BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
 | 
						|
                               int dst_stride[3], PC_TREE *pc_tree);
 | 
						|
static void update_state_sb_supertx(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                                    const TileInfo *const tile, int mi_row,
 | 
						|
                                    int mi_col, BLOCK_SIZE bsize,
 | 
						|
                                    int output_enabled, PC_TREE *pc_tree);
 | 
						|
static void rd_supertx_sb(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                          const TileInfo *const tile, int mi_row, int mi_col,
 | 
						|
                          BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
 | 
						|
                          TX_TYPE *best_tx, PC_TREE *pc_tree);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
// This is used as a reference when computing the source variance for the
 | 
						|
//  purposes of activity masking.
 | 
						|
// Eventually this should be replaced by custom no-reference routines,
 | 
						|
//  which will be faster.
 | 
						|
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
 | 
						|
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
 | 
						|
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
 | 
						|
  128 * 16
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
unsigned int av1_get_sby_perpixel_variance(AV1_COMP *cpi,
 | 
						|
                                           const struct buf_2d *ref,
 | 
						|
                                           BLOCK_SIZE bs) {
 | 
						|
  unsigned int sse;
 | 
						|
  const unsigned int var =
 | 
						|
      cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
 | 
						|
  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
unsigned int av1_high_get_sby_perpixel_variance(AV1_COMP *cpi,
 | 
						|
                                                const struct buf_2d *ref,
 | 
						|
                                                BLOCK_SIZE bs, int bd) {
 | 
						|
  unsigned int var, sse;
 | 
						|
  switch (bd) {
 | 
						|
    case 10:
 | 
						|
      var =
 | 
						|
          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
 | 
						|
                             CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
 | 
						|
      break;
 | 
						|
    case 12:
 | 
						|
      var =
 | 
						|
          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
 | 
						|
                             CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
 | 
						|
      break;
 | 
						|
    case 8:
 | 
						|
    default:
 | 
						|
      var =
 | 
						|
          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
 | 
						|
                             CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
 | 
						|
}
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
static unsigned int get_sby_perpixel_diff_variance(AV1_COMP *cpi,
 | 
						|
                                                   const struct buf_2d *ref,
 | 
						|
                                                   int mi_row, int mi_col,
 | 
						|
                                                   BLOCK_SIZE bs) {
 | 
						|
  unsigned int sse, var;
 | 
						|
  uint8_t *last_y;
 | 
						|
  const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
 | 
						|
 | 
						|
  assert(last != NULL);
 | 
						|
  last_y =
 | 
						|
      &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
 | 
						|
  var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
 | 
						|
  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
 | 
						|
}
 | 
						|
 | 
						|
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
 | 
						|
                                                   int mi_row, int mi_col) {
 | 
						|
  unsigned int var = get_sby_perpixel_diff_variance(
 | 
						|
      cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
 | 
						|
  if (var < 8)
 | 
						|
    return BLOCK_64X64;
 | 
						|
  else if (var < 128)
 | 
						|
    return BLOCK_32X32;
 | 
						|
  else if (var < 2048)
 | 
						|
    return BLOCK_16X16;
 | 
						|
  else
 | 
						|
    return BLOCK_8X8;
 | 
						|
}
 | 
						|
 | 
						|
// Lighter version of set_offsets that only sets the mode info
 | 
						|
// pointers.
 | 
						|
static void set_mode_info_offsets(AV1_COMP *const cpi, MACROBLOCK *const x,
 | 
						|
                                  MACROBLOCKD *const xd, int mi_row,
 | 
						|
                                  int mi_col) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const int idx_str = xd->mi_stride * mi_row + mi_col;
 | 
						|
  xd->mi = cm->mi_grid_visible + idx_str;
 | 
						|
  xd->mi[0] = cm->mi + idx_str;
 | 
						|
  x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
 | 
						|
}
 | 
						|
 | 
						|
static void set_offsets_without_segment_id(AV1_COMP *cpi,
 | 
						|
                                           const TileInfo *const tile,
 | 
						|
                                           MACROBLOCK *const x, int mi_row,
 | 
						|
                                           int mi_col, BLOCK_SIZE bsize) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
 | 
						|
  set_skip_context(xd, mi_row, mi_col);
 | 
						|
 | 
						|
  set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  xd->above_txfm_context = cm->above_txfm_context + mi_col;
 | 
						|
  xd->left_txfm_context =
 | 
						|
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
 | 
						|
  xd->max_tx_size = max_txsize_lookup[bsize];
 | 
						|
#endif
 | 
						|
 | 
						|
  // Set up destination pointers.
 | 
						|
  av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
 | 
						|
 | 
						|
  // Set up limit values for MV components.
 | 
						|
  // Mv beyond the range do not produce new/different prediction block.
 | 
						|
  x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
 | 
						|
  x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
 | 
						|
  x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
 | 
						|
  x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
 | 
						|
 | 
						|
  // Set up distance of MB to edge of frame in 1/8th pel units.
 | 
						|
  assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
 | 
						|
  set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
 | 
						|
                 cm->mi_cols);
 | 
						|
 | 
						|
  // Set up source buffers.
 | 
						|
  av1_setup_src_planes(x, cpi->Source, mi_row, mi_col);
 | 
						|
 | 
						|
  // R/D setup.
 | 
						|
  x->rddiv = cpi->rd.RDDIV;
 | 
						|
  x->rdmult = cpi->rd.RDMULT;
 | 
						|
 | 
						|
  // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
 | 
						|
  xd->tile = *tile;
 | 
						|
}
 | 
						|
 | 
						|
static void set_offsets(AV1_COMP *cpi, const TileInfo *const tile,
 | 
						|
                        MACROBLOCK *const x, int mi_row, int mi_col,
 | 
						|
                        BLOCK_SIZE bsize) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MB_MODE_INFO *mbmi;
 | 
						|
  const struct segmentation *const seg = &cm->seg;
 | 
						|
 | 
						|
  set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
  mbmi = &xd->mi[0]->mbmi;
 | 
						|
 | 
						|
  // Setup segment ID.
 | 
						|
  if (seg->enabled) {
 | 
						|
    if (!cpi->vaq_refresh) {
 | 
						|
      const uint8_t *const map =
 | 
						|
          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
 | 
						|
      mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
 | 
						|
    }
 | 
						|
    av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
 | 
						|
 | 
						|
    x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
 | 
						|
  } else {
 | 
						|
    mbmi->segment_id = 0;
 | 
						|
    x->encode_breakout = cpi->encode_breakout;
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  mbmi->segment_id_supertx = MAX_SEGMENTS;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
static void set_offsets_supertx(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                                const TileInfo *const tile, int mi_row,
 | 
						|
                                int mi_col, BLOCK_SIZE bsize) {
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
 | 
						|
  set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
 | 
						|
 | 
						|
  // Set up distance of MB to edge of frame in 1/8th pel units.
 | 
						|
  assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
 | 
						|
  set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
 | 
						|
                 cm->mi_cols);
 | 
						|
}
 | 
						|
 | 
						|
static void set_offsets_extend(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                               const TileInfo *const tile, int mi_row_pred,
 | 
						|
                               int mi_col_pred, int mi_row_ori, int mi_col_ori,
 | 
						|
                               BLOCK_SIZE bsize_pred) {
 | 
						|
  // Used in supertx
 | 
						|
  // (mi_row_ori, mi_col_ori, bsize_ori): region for mv
 | 
						|
  // (mi_row_pred, mi_col_pred, bsize_pred): region to predict
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize_pred];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize_pred];
 | 
						|
 | 
						|
  set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori);
 | 
						|
 | 
						|
  // Set up limit values for MV components.
 | 
						|
  // Mv beyond the range do not produce new/different prediction block.
 | 
						|
  x->mv_row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
 | 
						|
  x->mv_col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
 | 
						|
  x->mv_row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND;
 | 
						|
  x->mv_col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND;
 | 
						|
 | 
						|
  // Set up distance of MB to edge of frame in 1/8th pel units.
 | 
						|
  assert(!(mi_col_pred & (mi_width - 1)) && !(mi_row_pred & (mi_height - 1)));
 | 
						|
  set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width,
 | 
						|
                 cm->mi_rows, cm->mi_cols);
 | 
						|
  xd->up_available = (mi_row_ori > tile->mi_row_start);
 | 
						|
  xd->left_available = (mi_col_ori > tile->mi_col_start);
 | 
						|
 | 
						|
  // R/D setup.
 | 
						|
  x->rddiv = cpi->rd.RDDIV;
 | 
						|
  x->rdmult = cpi->rd.RDMULT;
 | 
						|
}
 | 
						|
 | 
						|
static void set_segment_id_supertx(const AV1_COMP *const cpi,
 | 
						|
                                   MACROBLOCK *const x, const int mi_row,
 | 
						|
                                   const int mi_col, const BLOCK_SIZE bsize) {
 | 
						|
  const AV1_COMMON *cm = &cpi->common;
 | 
						|
  const struct segmentation *seg = &cm->seg;
 | 
						|
  const int miw =
 | 
						|
      AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
 | 
						|
  const int mih =
 | 
						|
      AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
 | 
						|
  const int mi_offset = mi_row * cm->mi_stride + mi_col;
 | 
						|
  MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
 | 
						|
  int r, c;
 | 
						|
  int seg_id_supertx = MAX_SEGMENTS;
 | 
						|
 | 
						|
  if (!seg->enabled) {
 | 
						|
    seg_id_supertx = 0;
 | 
						|
    x->encode_breakout = cpi->encode_breakout;
 | 
						|
  } else {
 | 
						|
    // Find the minimum segment_id
 | 
						|
    for (r = 0; r < mih; r++)
 | 
						|
      for (c = 0; c < miw; c++)
 | 
						|
        seg_id_supertx =
 | 
						|
            AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
 | 
						|
    assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
 | 
						|
 | 
						|
    // Initialize plane quantisers
 | 
						|
    av1_init_plane_quantizers(cpi, x, seg_id_supertx);
 | 
						|
    x->encode_breakout = cpi->segment_encode_breakout[seg_id_supertx];
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign the the segment_id back to segment_id_supertx
 | 
						|
  for (r = 0; r < mih; r++)
 | 
						|
    for (c = 0; c < miw; c++)
 | 
						|
      mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
 | 
						|
}
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
 | 
						|
                           MACROBLOCKD *const xd, int mi_row, int mi_col,
 | 
						|
                           BLOCK_SIZE bsize) {
 | 
						|
  if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
 | 
						|
    set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
 | 
						|
    xd->mi[0]->mbmi.sb_type = bsize;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
 | 
						|
                                MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row,
 | 
						|
                                int mi_col, const int64_t *const threshold,
 | 
						|
                                const BLOCK_SIZE *const bsize_min) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const int hbw = num_8x8_blocks_wide_lookup[vt->bsize] / 2;
 | 
						|
  const int hbh = num_8x8_blocks_high_lookup[vt->bsize] / 2;
 | 
						|
  const int has_cols = mi_col + hbw < cm->mi_cols;
 | 
						|
  const int has_rows = mi_row + hbh < cm->mi_rows;
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  assert(vt->bsize >= BLOCK_8X8);
 | 
						|
 | 
						|
  assert(hbh == hbw);
 | 
						|
 | 
						|
  if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) {
 | 
						|
    set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (vt->force_split || (!has_cols && !has_rows)) goto split;
 | 
						|
 | 
						|
  // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
 | 
						|
  // variance is below threshold, otherwise split will be selected.
 | 
						|
  // No check for vert/horiz split as too few samples for variance.
 | 
						|
  if (vt->bsize == bsize_min[0]) {
 | 
						|
    if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
 | 
						|
      set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT);
 | 
						|
      set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
 | 
						|
      if (vt->bsize > BLOCK_8X8) {
 | 
						|
        set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
 | 
						|
        set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
 | 
						|
        set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (vt->bsize > bsize_min[0]) {
 | 
						|
    // For key frame: take split for bsize above 32X32 or very high variance.
 | 
						|
    if (cm->frame_type == KEY_FRAME &&
 | 
						|
        (vt->bsize > BLOCK_32X32 ||
 | 
						|
         vt->variances.none.variance > (threshold[0] << 4))) {
 | 
						|
      goto split;
 | 
						|
    }
 | 
						|
    // If variance is low, take the bsize (no split).
 | 
						|
    if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
 | 
						|
      set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check vertical split.
 | 
						|
    if (has_rows) {
 | 
						|
      BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT);
 | 
						|
      if (vt->variances.vert[0].variance < threshold[0] &&
 | 
						|
          vt->variances.vert[1].variance < threshold[0] &&
 | 
						|
          get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
 | 
						|
        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
 | 
						|
        set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check horizontal split.
 | 
						|
    if (has_cols) {
 | 
						|
      BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ);
 | 
						|
      if (vt->variances.horz[0].variance < threshold[0] &&
 | 
						|
          vt->variances.horz[1].variance < threshold[0] &&
 | 
						|
          get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
 | 
						|
        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
 | 
						|
        set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
split : {
 | 
						|
  set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1,
 | 
						|
                      bsize_min + 1);
 | 
						|
  set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw,
 | 
						|
                      threshold + 1, bsize_min + 1);
 | 
						|
  set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col,
 | 
						|
                      threshold + 1, bsize_min + 1);
 | 
						|
  set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw,
 | 
						|
                      threshold + 1, bsize_min + 1);
 | 
						|
  return;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
// Set the variance split thresholds for following the block sizes:
 | 
						|
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
 | 
						|
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
 | 
						|
// currently only used on key frame.
 | 
						|
static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const int is_key_frame = (cm->frame_type == KEY_FRAME);
 | 
						|
  const int threshold_multiplier = is_key_frame ? 20 : 1;
 | 
						|
  const int64_t threshold_base =
 | 
						|
      (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
 | 
						|
  if (is_key_frame) {
 | 
						|
    thresholds[1] = threshold_base;
 | 
						|
    thresholds[2] = threshold_base >> 2;
 | 
						|
    thresholds[3] = threshold_base >> 2;
 | 
						|
    thresholds[4] = threshold_base << 2;
 | 
						|
  } else {
 | 
						|
    thresholds[2] = threshold_base;
 | 
						|
    if (cm->width <= 352 && cm->height <= 288) {
 | 
						|
      thresholds[1] = threshold_base >> 2;
 | 
						|
      thresholds[3] = threshold_base << 3;
 | 
						|
    } else {
 | 
						|
      thresholds[1] = threshold_base;
 | 
						|
      thresholds[2] = (5 * threshold_base) >> 2;
 | 
						|
      if (cm->width >= 1920 && cm->height >= 1080)
 | 
						|
        thresholds[2] = (7 * threshold_base) >> 2;
 | 
						|
      thresholds[3] = threshold_base << cpi->oxcf.speed;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  thresholds[0] = INT64_MIN;
 | 
						|
}
 | 
						|
 | 
						|
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  SPEED_FEATURES *const sf = &cpi->sf;
 | 
						|
  const int is_key_frame = (cm->frame_type == KEY_FRAME);
 | 
						|
  if (sf->partition_search_type != VAR_BASED_PARTITION &&
 | 
						|
      sf->partition_search_type != REFERENCE_PARTITION) {
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
 | 
						|
    // The thresholds below are not changed locally.
 | 
						|
    if (is_key_frame) {
 | 
						|
      cpi->vbp_threshold_sad = 0;
 | 
						|
      cpi->vbp_bsize_min = BLOCK_8X8;
 | 
						|
    } else {
 | 
						|
      if (cm->width <= 352 && cm->height <= 288)
 | 
						|
        cpi->vbp_threshold_sad = 100;
 | 
						|
      else
 | 
						|
        cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
 | 
						|
                                     ? (cpi->y_dequant[q][1] << 1)
 | 
						|
                                     : 1000;
 | 
						|
      cpi->vbp_bsize_min = BLOCK_16X16;
 | 
						|
    }
 | 
						|
    cpi->vbp_threshold_minmax = 15 + (q >> 3);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Compute the minmax over the 8x8 subblocks.
 | 
						|
static int compute_minmax_8x8(const uint8_t *src, int src_stride,
 | 
						|
                              const uint8_t *ref, int ref_stride,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                              int highbd,
 | 
						|
#endif
 | 
						|
                              int pixels_wide, int pixels_high) {
 | 
						|
  int k;
 | 
						|
  int minmax_max = 0;
 | 
						|
  int minmax_min = 255;
 | 
						|
  // Loop over the 4 8x8 subblocks.
 | 
						|
  for (k = 0; k < 4; k++) {
 | 
						|
    const int x8_idx = ((k & 1) << 3);
 | 
						|
    const int y8_idx = ((k >> 1) << 3);
 | 
						|
    int min = 0;
 | 
						|
    int max = 0;
 | 
						|
    if (x8_idx < pixels_wide && y8_idx < pixels_high) {
 | 
						|
      const int src_offset = y8_idx * src_stride + x8_idx;
 | 
						|
      const int ref_offset = y8_idx * ref_stride + x8_idx;
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      if (highbd) {
 | 
						|
        aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
 | 
						|
                              ref_stride, &min, &max);
 | 
						|
      } else {
 | 
						|
        aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
 | 
						|
                       ref_stride, &min, &max);
 | 
						|
      }
 | 
						|
#else
 | 
						|
      aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride,
 | 
						|
                     &min, &max);
 | 
						|
#endif
 | 
						|
      if ((max - min) > minmax_max) minmax_max = (max - min);
 | 
						|
      if ((max - min) < minmax_min) minmax_min = (max - min);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return (minmax_max - minmax_min);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
static INLINE int avg_4x4(const uint8_t *const src, const int stride,
 | 
						|
                          const int highbd) {
 | 
						|
  if (highbd) {
 | 
						|
    return aom_highbd_avg_4x4(src, stride);
 | 
						|
  } else {
 | 
						|
    return aom_avg_4x4(src, stride);
 | 
						|
  }
 | 
						|
}
 | 
						|
#else
 | 
						|
static INLINE int avg_4x4(const uint8_t *const src, const int stride) {
 | 
						|
  return aom_avg_4x4(src, stride);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
static INLINE int avg_8x8(const uint8_t *const src, const int stride,
 | 
						|
                          const int highbd) {
 | 
						|
  if (highbd) {
 | 
						|
    return aom_highbd_avg_8x8(src, stride);
 | 
						|
  } else {
 | 
						|
    return aom_avg_8x8(src, stride);
 | 
						|
  }
 | 
						|
}
 | 
						|
#else
 | 
						|
static INLINE int avg_8x8(const uint8_t *const src, const int stride) {
 | 
						|
  return aom_avg_8x8(src, stride);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void init_variance_tree(VAR_TREE *const vt,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                               const int highbd,
 | 
						|
#endif
 | 
						|
                               BLOCK_SIZE bsize, BLOCK_SIZE leaf_size,
 | 
						|
                               const int width, const int height,
 | 
						|
                               const uint8_t *const src, const int src_stride,
 | 
						|
                               const uint8_t *const ref, const int ref_stride) {
 | 
						|
  assert(bsize >= leaf_size);
 | 
						|
 | 
						|
  vt->bsize = bsize;
 | 
						|
 | 
						|
  vt->force_split = 0;
 | 
						|
 | 
						|
  vt->src = src;
 | 
						|
  vt->src_stride = src_stride;
 | 
						|
  vt->ref = ref;
 | 
						|
  vt->ref_stride = ref_stride;
 | 
						|
 | 
						|
  vt->width = width;
 | 
						|
  vt->height = height;
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  vt->highbd = highbd;
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
  if (bsize > leaf_size) {
 | 
						|
    const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
    const int px = num_4x4_blocks_wide_lookup[subsize] * 4;
 | 
						|
 | 
						|
    init_variance_tree(vt->split[0],
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       highbd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       subsize, leaf_size, AOMMIN(px, width),
 | 
						|
                       AOMMIN(px, height), src, src_stride, ref, ref_stride);
 | 
						|
    init_variance_tree(vt->split[1],
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       highbd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       subsize, leaf_size, width - px, AOMMIN(px, height),
 | 
						|
                       src + px, src_stride, ref + px, ref_stride);
 | 
						|
    init_variance_tree(vt->split[2],
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       highbd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       subsize, leaf_size, AOMMIN(px, width), height - px,
 | 
						|
                       src + px * src_stride, src_stride, ref + px * ref_stride,
 | 
						|
                       ref_stride);
 | 
						|
    init_variance_tree(vt->split[3],
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       highbd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                       subsize, leaf_size, width - px, height - px,
 | 
						|
                       src + px * src_stride + px, src_stride,
 | 
						|
                       ref + px * ref_stride + px, ref_stride);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Fill the variance tree based on averaging pixel values (sub-sampling), at
 | 
						|
// the leaf node size.
 | 
						|
static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) {
 | 
						|
  if (vt->bsize > leaf_size) {
 | 
						|
    fill_variance_tree(vt->split[0], leaf_size);
 | 
						|
    fill_variance_tree(vt->split[1], leaf_size);
 | 
						|
    fill_variance_tree(vt->split[2], leaf_size);
 | 
						|
    fill_variance_tree(vt->split[3], leaf_size);
 | 
						|
    fill_variance_node(vt);
 | 
						|
  } else if (vt->width <= 0 || vt->height <= 0) {
 | 
						|
    fill_variance(0, 0, 0, &vt->variances.none);
 | 
						|
  } else {
 | 
						|
    unsigned int sse = 0;
 | 
						|
    int sum = 0;
 | 
						|
    int src_avg;
 | 
						|
    int ref_avg;
 | 
						|
    assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8);
 | 
						|
    if (leaf_size == BLOCK_4X4) {
 | 
						|
      src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
 | 
						|
      ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
 | 
						|
    } else {
 | 
						|
      src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd));
 | 
						|
      ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
 | 
						|
    }
 | 
						|
    sum = src_avg - ref_avg;
 | 
						|
    sse = sum * sum;
 | 
						|
    fill_variance(sse, sum, 0, &vt->variances.none);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) {
 | 
						|
  if (vt->bsize >= BLOCK_8X8) {
 | 
						|
    if (vt->bsize == BLOCK_16X16) {
 | 
						|
      if (vt->variances.none.variance <= threshold)
 | 
						|
        return;
 | 
						|
      else
 | 
						|
        vt->force_split = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    refine_variance_tree(vt->split[0], threshold);
 | 
						|
    refine_variance_tree(vt->split[1], threshold);
 | 
						|
    refine_variance_tree(vt->split[2], threshold);
 | 
						|
    refine_variance_tree(vt->split[3], threshold);
 | 
						|
 | 
						|
    if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt);
 | 
						|
  } else if (vt->width <= 0 || vt->height <= 0) {
 | 
						|
    fill_variance(0, 0, 0, &vt->variances.none);
 | 
						|
  } else {
 | 
						|
    const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
 | 
						|
    const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
 | 
						|
    const int sum = src_avg - ref_avg;
 | 
						|
    const unsigned int sse = sum * sum;
 | 
						|
    assert(vt->bsize == BLOCK_4X4);
 | 
						|
    fill_variance(sse, sum, 0, &vt->variances.none);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) {
 | 
						|
  if (vt->bsize == BLOCK_32X32) {
 | 
						|
    vt->force_split = vt->variances.none.variance > threshold;
 | 
						|
  } else {
 | 
						|
    vt->force_split |= check_split_key_frame(vt->split[0], threshold);
 | 
						|
    vt->force_split |= check_split_key_frame(vt->split[1], threshold);
 | 
						|
    vt->force_split |= check_split_key_frame(vt->split[2], threshold);
 | 
						|
    vt->force_split |= check_split_key_frame(vt->split[3], threshold);
 | 
						|
  }
 | 
						|
  return vt->force_split;
 | 
						|
}
 | 
						|
 | 
						|
static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt,
 | 
						|
                       const int segment_id, const int64_t *const thresholds) {
 | 
						|
  if (vt->bsize == BLOCK_16X16) {
 | 
						|
    vt->force_split = vt->variances.none.variance > thresholds[0];
 | 
						|
    if (!vt->force_split && vt->variances.none.variance > thresholds[-1] &&
 | 
						|
        !cyclic_refresh_segment_id_boosted(segment_id)) {
 | 
						|
      // We have some nominal amount of 16x16 variance (based on average),
 | 
						|
      // compute the minmax over the 8x8 sub-blocks, and if above threshold,
 | 
						|
      // force split to 8x8 block for this 16x16 block.
 | 
						|
      int minmax =
 | 
						|
          compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                             vt->highbd,
 | 
						|
#endif
 | 
						|
                             vt->width, vt->height);
 | 
						|
      vt->force_split = minmax > cpi->vbp_threshold_minmax;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    vt->force_split |=
 | 
						|
        check_split(cpi, vt->split[0], segment_id, thresholds + 1);
 | 
						|
    vt->force_split |=
 | 
						|
        check_split(cpi, vt->split[1], segment_id, thresholds + 1);
 | 
						|
    vt->force_split |=
 | 
						|
        check_split(cpi, vt->split[2], segment_id, thresholds + 1);
 | 
						|
    vt->force_split |=
 | 
						|
        check_split(cpi, vt->split[3], segment_id, thresholds + 1);
 | 
						|
 | 
						|
    if (vt->bsize == BLOCK_32X32 && !vt->force_split) {
 | 
						|
      vt->force_split = vt->variances.none.variance > thresholds[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return vt->force_split;
 | 
						|
}
 | 
						|
 | 
						|
// This function chooses partitioning based on the variance between source and
 | 
						|
// reconstructed last (or golden), where variance is computed for down-sampled
 | 
						|
// inputs.
 | 
						|
static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td,
 | 
						|
                                const TileInfo *const tile, MACROBLOCK *const x,
 | 
						|
                                const int mi_row, const int mi_col) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
 | 
						|
  int i;
 | 
						|
  const uint8_t *src;
 | 
						|
  const uint8_t *ref;
 | 
						|
  int src_stride;
 | 
						|
  int ref_stride;
 | 
						|
  int pixels_wide = 8 * num_8x8_blocks_wide_lookup[cm->sb_size];
 | 
						|
  int pixels_high = 8 * num_8x8_blocks_high_lookup[cm->sb_size];
 | 
						|
  int64_t thresholds[5] = {
 | 
						|
    cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2],
 | 
						|
    cpi->vbp_thresholds[3], cpi->vbp_thresholds[4],
 | 
						|
  };
 | 
						|
  BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
 | 
						|
                              cpi->vbp_bsize_min, BLOCK_8X8 };
 | 
						|
  const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0;
 | 
						|
  const int64_t *const thre = thresholds + start_level;
 | 
						|
  const BLOCK_SIZE *const bmin = bsize_min + start_level;
 | 
						|
 | 
						|
  const int is_key_frame = (cm->frame_type == KEY_FRAME);
 | 
						|
  const int low_res = (cm->width <= 352 && cm->height <= 288);
 | 
						|
 | 
						|
  int segment_id = CR_SEGMENT_ID_BASE;
 | 
						|
 | 
						|
  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
 | 
						|
    const uint8_t *const map =
 | 
						|
        cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
 | 
						|
    segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
 | 
						|
 | 
						|
    if (cyclic_refresh_segment_id_boosted(segment_id)) {
 | 
						|
      int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
 | 
						|
      set_vbp_thresholds(cpi, thresholds, q);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size);
 | 
						|
 | 
						|
  if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
 | 
						|
  if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
 | 
						|
 | 
						|
  src = x->plane[0].src.buf;
 | 
						|
  src_stride = x->plane[0].src.stride;
 | 
						|
 | 
						|
  if (!is_key_frame) {
 | 
						|
    MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
 | 
						|
    unsigned int uv_sad;
 | 
						|
    const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
 | 
						|
    const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
 | 
						|
    unsigned int y_sad, y_sad_g;
 | 
						|
 | 
						|
    const int hbs = cm->mib_size / 2;
 | 
						|
    const int split_vert = mi_col + hbs >= cm->mi_cols;
 | 
						|
    const int split_horz = mi_row + hbs >= cm->mi_rows;
 | 
						|
    BLOCK_SIZE bsize;
 | 
						|
 | 
						|
    if (split_vert && split_horz)
 | 
						|
      bsize = get_subsize(cm->sb_size, PARTITION_SPLIT);
 | 
						|
    else if (split_vert)
 | 
						|
      bsize = get_subsize(cm->sb_size, PARTITION_VERT);
 | 
						|
    else if (split_horz)
 | 
						|
      bsize = get_subsize(cm->sb_size, PARTITION_HORZ);
 | 
						|
    else
 | 
						|
      bsize = cm->sb_size;
 | 
						|
 | 
						|
    assert(yv12 != NULL);
 | 
						|
 | 
						|
    if (yv12_g && yv12_g != yv12) {
 | 
						|
      av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
 | 
						|
                           &cm->frame_refs[GOLDEN_FRAME - 1].sf);
 | 
						|
      y_sad_g = cpi->fn_ptr[bsize].sdf(
 | 
						|
          x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
 | 
						|
          xd->plane[0].pre[0].stride);
 | 
						|
    } else {
 | 
						|
      y_sad_g = UINT_MAX;
 | 
						|
    }
 | 
						|
 | 
						|
    av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
 | 
						|
                         &cm->frame_refs[LAST_FRAME - 1].sf);
 | 
						|
    mbmi->ref_frame[0] = LAST_FRAME;
 | 
						|
    mbmi->ref_frame[1] = NONE;
 | 
						|
    mbmi->sb_type = cm->sb_size;
 | 
						|
    mbmi->mv[0].as_int = 0;
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR;
 | 
						|
#else
 | 
						|
    mbmi->interp_filter = BILINEAR;
 | 
						|
#endif
 | 
						|
 | 
						|
    y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
 | 
						|
 | 
						|
    if (y_sad_g < y_sad) {
 | 
						|
      av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
 | 
						|
                           &cm->frame_refs[GOLDEN_FRAME - 1].sf);
 | 
						|
      mbmi->ref_frame[0] = GOLDEN_FRAME;
 | 
						|
      mbmi->mv[0].as_int = 0;
 | 
						|
      y_sad = y_sad_g;
 | 
						|
    } else {
 | 
						|
      x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
 | 
						|
    }
 | 
						|
 | 
						|
    av1_build_inter_predictors_sb(xd, mi_row, mi_col, cm->sb_size);
 | 
						|
 | 
						|
    for (i = 1; i < MAX_MB_PLANE; ++i) {
 | 
						|
      struct macroblock_plane *p = &x->plane[i];
 | 
						|
      struct macroblockd_plane *pd = &xd->plane[i];
 | 
						|
      const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
 | 
						|
 | 
						|
      if (bs == BLOCK_INVALID)
 | 
						|
        uv_sad = UINT_MAX;
 | 
						|
      else
 | 
						|
        uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
 | 
						|
                                     pd->dst.stride);
 | 
						|
 | 
						|
      x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
 | 
						|
    }
 | 
						|
 | 
						|
    ref = xd->plane[0].dst.buf;
 | 
						|
    ref_stride = xd->plane[0].dst.stride;
 | 
						|
 | 
						|
    // If the y_sad is very small, take the largest partition and exit.
 | 
						|
    // Don't check on boosted segment for now, as largest is suppressed there.
 | 
						|
    if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
 | 
						|
      if (!split_vert && !split_horz) {
 | 
						|
        set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ref = AV1_VAR_OFFS;
 | 
						|
    ref_stride = 0;
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
      switch (xd->bd) {
 | 
						|
        case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break;
 | 
						|
        case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break;
 | 
						|
        case 8:
 | 
						|
        default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  }
 | 
						|
 | 
						|
  init_variance_tree(
 | 
						|
      vt,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8,
 | 
						|
      pixels_wide, pixels_high, src, src_stride, ref, ref_stride);
 | 
						|
 | 
						|
  // Fill in the entire tree of variances and compute splits.
 | 
						|
  if (is_key_frame) {
 | 
						|
    fill_variance_tree(vt, BLOCK_4X4);
 | 
						|
    check_split_key_frame(vt, thre[1]);
 | 
						|
  } else {
 | 
						|
    fill_variance_tree(vt, BLOCK_8X8);
 | 
						|
    check_split(cpi, vt, segment_id, thre);
 | 
						|
    if (low_res) {
 | 
						|
      refine_variance_tree(vt, thre[1] << 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  vt->force_split |= mi_col + cm->mib_size > cm->mi_cols ||
 | 
						|
                     mi_row + cm->mib_size > cm->mi_rows;
 | 
						|
 | 
						|
  // Now go through the entire structure, splitting every block size until
 | 
						|
  // we get to one that's got a variance lower than our threshold.
 | 
						|
  set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
static void reset_intmv_filter_type(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                    MB_MODE_INFO *mbmi) {
 | 
						|
  int dir;
 | 
						|
  for (dir = 0; dir < 2; ++dir) {
 | 
						|
    if (!has_subpel_mv_component(xd->mi[0], xd, dir) &&
 | 
						|
        (mbmi->ref_frame[1] == NONE ||
 | 
						|
         !has_subpel_mv_component(xd->mi[0], xd, dir + 2)))
 | 
						|
      mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE)
 | 
						|
                                     ? EIGHTTAP_REGULAR
 | 
						|
                                     : cm->interp_filter;
 | 
						|
    mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void update_filter_type_count(FRAME_COUNTS *counts,
 | 
						|
                                     const MACROBLOCKD *xd,
 | 
						|
                                     const MB_MODE_INFO *mbmi) {
 | 
						|
  int dir;
 | 
						|
  for (dir = 0; dir < 2; ++dir) {
 | 
						|
    if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
 | 
						|
        (mbmi->ref_frame[1] > INTRA_FRAME &&
 | 
						|
         has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
 | 
						|
      const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
 | 
						|
      ++counts->switchable_interp[ctx][mbmi->interp_filter[dir]];
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
#if CONFIG_GLOBAL_MOTION
 | 
						|
static void update_global_motion_used(PREDICTION_MODE mode,
 | 
						|
                                      const MB_MODE_INFO *mbmi, AV1_COMP *cpi) {
 | 
						|
  if (mode == ZEROMV) {
 | 
						|
    ++cpi->global_motion_used[mbmi->ref_frame[0]];
 | 
						|
    if (has_second_ref(mbmi)) ++cpi->global_motion_used[mbmi->ref_frame[1]];
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif  // CONFIG_GLOBAL_MOTION
 | 
						|
 | 
						|
static void update_state(AV1_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
 | 
						|
                         int mi_row, int mi_col, BLOCK_SIZE bsize,
 | 
						|
                         int output_enabled) {
 | 
						|
  int i, x_idx, y;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  RD_COUNTS *const rdc = &td->rd_counts;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  struct macroblock_plane *const p = x->plane;
 | 
						|
  struct macroblockd_plane *const pd = xd->plane;
 | 
						|
  MODE_INFO *mi = &ctx->mic;
 | 
						|
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
 | 
						|
  MODE_INFO *mi_addr = xd->mi[0];
 | 
						|
  const struct segmentation *const seg = &cm->seg;
 | 
						|
  const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
 | 
						|
  const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
 | 
						|
  const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
 | 
						|
  const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
 | 
						|
  MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
 | 
						|
  int w, h;
 | 
						|
 | 
						|
  const int mis = cm->mi_stride;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  int max_plane;
 | 
						|
 | 
						|
#if CONFIG_REF_MV
 | 
						|
  int8_t rf_type;
 | 
						|
#endif
 | 
						|
 | 
						|
#if !CONFIG_SUPERTX
 | 
						|
  assert(mi->mbmi.sb_type == bsize);
 | 
						|
#endif
 | 
						|
 | 
						|
  *mi_addr = *mi;
 | 
						|
  *x->mbmi_ext = ctx->mbmi_ext;
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  reset_intmv_filter_type(cm, xd, mbmi);
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_REF_MV
 | 
						|
  rf_type = av1_ref_frame_type(mbmi->ref_frame);
 | 
						|
  if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 &&
 | 
						|
      mbmi->mode == NEWMV) {
 | 
						|
    for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
 | 
						|
      int_mv this_mv =
 | 
						|
          (i == 0)
 | 
						|
              ? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
 | 
						|
              : x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
 | 
						|
      clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
 | 
						|
      x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
 | 
						|
      mbmi->pred_mv[i] = this_mv;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // If segmentation in use
 | 
						|
  if (seg->enabled) {
 | 
						|
    // For in frame complexity AQ copy the segment id from the segment map.
 | 
						|
    if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
 | 
						|
      const uint8_t *const map =
 | 
						|
          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
 | 
						|
      mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
 | 
						|
    }
 | 
						|
    // Else for cyclic refresh mode update the segment map, set the segment id
 | 
						|
    // and then update the quantizer.
 | 
						|
    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
 | 
						|
      av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
 | 
						|
                                        bsize, ctx->rate, ctx->dist, x->skip);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
 | 
						|
  for (i = 0; i < max_plane; ++i) {
 | 
						|
    p[i].coeff = ctx->coeff[i][1];
 | 
						|
    p[i].qcoeff = ctx->qcoeff[i][1];
 | 
						|
    pd[i].dqcoeff = ctx->dqcoeff[i][1];
 | 
						|
    p[i].eobs = ctx->eobs[i][1];
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = max_plane; i < MAX_MB_PLANE; ++i) {
 | 
						|
    p[i].coeff = ctx->coeff[i][2];
 | 
						|
    p[i].qcoeff = ctx->qcoeff[i][2];
 | 
						|
    pd[i].dqcoeff = ctx->dqcoeff[i][2];
 | 
						|
    p[i].eobs = ctx->eobs[i][2];
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
 | 
						|
 | 
						|
  // Restore the coding context of the MB to that that was in place
 | 
						|
  // when the mode was picked for it
 | 
						|
  for (y = 0; y < mi_height; y++)
 | 
						|
    for (x_idx = 0; x_idx < mi_width; x_idx++)
 | 
						|
      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
 | 
						|
          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
 | 
						|
        xd->mi[x_idx + y * mis] = mi_addr;
 | 
						|
      }
 | 
						|
 | 
						|
  if (cpi->oxcf.aq_mode)
 | 
						|
    av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
 | 
						|
 | 
						|
  if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
 | 
						|
    mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
 | 
						|
    mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
 | 
						|
  }
 | 
						|
 | 
						|
  x->skip = ctx->skip;
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  for (i = 0; i < 1; ++i)
 | 
						|
    memcpy(x->blk_skip[i], ctx->blk_skip[i],
 | 
						|
           sizeof(uint8_t) * ctx->num_4x4_blk);
 | 
						|
#endif
 | 
						|
 | 
						|
  if (!output_enabled) return;
 | 
						|
 | 
						|
#if CONFIG_INTERNAL_STATS
 | 
						|
  if (frame_is_intra_only(cm)) {
 | 
						|
    static const int kf_mode_index[] = {
 | 
						|
      THR_DC /*DC_PRED*/,          THR_V_PRED /*V_PRED*/,
 | 
						|
      THR_H_PRED /*H_PRED*/,       THR_D45_PRED /*D45_PRED*/,
 | 
						|
      THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
 | 
						|
      THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
 | 
						|
      THR_D63_PRED /*D63_PRED*/,   THR_TM /*TM_PRED*/,
 | 
						|
    };
 | 
						|
    ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
 | 
						|
  } else {
 | 
						|
    // Note how often each mode chosen as best
 | 
						|
    ++cpi->mode_chosen_counts[ctx->best_mode_index];
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  if (!frame_is_intra_only(cm)) {
 | 
						|
    if (is_inter_block(mbmi)) {
 | 
						|
      av1_update_mv_count(td);
 | 
						|
#if CONFIG_GLOBAL_MOTION
 | 
						|
      if (bsize >= BLOCK_8X8) {
 | 
						|
        update_global_motion_used(mbmi->mode, mbmi, cpi);
 | 
						|
      } else {
 | 
						|
        const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
 | 
						|
        const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
 | 
						|
        int idx, idy;
 | 
						|
        for (idy = 0; idy < 2; idy += num_4x4_h) {
 | 
						|
          for (idx = 0; idx < 2; idx += num_4x4_w) {
 | 
						|
            const int j = idy * 2 + idx;
 | 
						|
            update_global_motion_used(mi->bmi[j].as_mode, mbmi, cpi);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
#endif  // CONFIG_GLOBAL_MOTION
 | 
						|
      if (cm->interp_filter == SWITCHABLE
 | 
						|
#if CONFIG_EXT_INTERP
 | 
						|
          && av1_is_interp_needed(xd)
 | 
						|
#endif
 | 
						|
              ) {
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
        update_filter_type_count(td->counts, xd, mbmi);
 | 
						|
#else
 | 
						|
        const int ctx = av1_get_pred_context_switchable_interp(xd);
 | 
						|
        ++td->counts->switchable_interp[ctx][mbmi->interp_filter];
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
 | 
						|
    rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
 | 
						|
    rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
 | 
						|
  }
 | 
						|
 | 
						|
  for (h = 0; h < y_mis; ++h) {
 | 
						|
    MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
 | 
						|
    for (w = 0; w < x_mis; ++w) {
 | 
						|
      MV_REF *const mv = frame_mv + w;
 | 
						|
      mv->ref_frame[0] = mi->mbmi.ref_frame[0];
 | 
						|
      mv->ref_frame[1] = mi->mbmi.ref_frame[1];
 | 
						|
      mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
 | 
						|
      mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
static void update_state_supertx(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                                 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
 | 
						|
                                 BLOCK_SIZE bsize, int output_enabled) {
 | 
						|
  int y, x_idx;
 | 
						|
#if CONFIG_VAR_TX || CONFIG_REF_MV
 | 
						|
  int i;
 | 
						|
#endif
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  RD_COUNTS *const rdc = &td->rd_counts;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MODE_INFO *mi = &ctx->mic;
 | 
						|
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
 | 
						|
  MODE_INFO *mi_addr = xd->mi[0];
 | 
						|
  const struct segmentation *const seg = &cm->seg;
 | 
						|
  const int mis = cm->mi_stride;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col);
 | 
						|
  const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row);
 | 
						|
  MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
 | 
						|
  int w, h;
 | 
						|
 | 
						|
#if CONFIG_REF_MV
 | 
						|
  int8_t rf_type;
 | 
						|
#endif
 | 
						|
 | 
						|
  *mi_addr = *mi;
 | 
						|
  *x->mbmi_ext = ctx->mbmi_ext;
 | 
						|
  assert(is_inter_block(mbmi));
 | 
						|
  assert(mbmi->tx_size == ctx->mic.mbmi.tx_size);
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  reset_intmv_filter_type(cm, xd, mbmi);
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_REF_MV
 | 
						|
  rf_type = av1_ref_frame_type(mbmi->ref_frame);
 | 
						|
  if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 &&
 | 
						|
      mbmi->mode == NEWMV) {
 | 
						|
    for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
 | 
						|
      int_mv this_mv =
 | 
						|
          (i == 0)
 | 
						|
              ? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
 | 
						|
              : x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
 | 
						|
      clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
 | 
						|
      lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
 | 
						|
      x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
 | 
						|
      mbmi->pred_mv[i] = this_mv;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // If segmentation in use
 | 
						|
  if (seg->enabled) {
 | 
						|
    if (cpi->vaq_refresh) {
 | 
						|
      const int energy =
 | 
						|
          bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
 | 
						|
      mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy);
 | 
						|
    } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
 | 
						|
      // For cyclic refresh mode, now update the segment map
 | 
						|
      // and set the segment id.
 | 
						|
      av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
 | 
						|
                                        bsize, ctx->rate, ctx->dist, 1);
 | 
						|
    } else {
 | 
						|
      // Otherwise just set the segment id based on the current segment map
 | 
						|
      const uint8_t *const map =
 | 
						|
          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
 | 
						|
      mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
 | 
						|
    }
 | 
						|
    mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restore the coding context of the MB to that that was in place
 | 
						|
  // when the mode was picked for it
 | 
						|
  for (y = 0; y < mi_height; y++)
 | 
						|
    for (x_idx = 0; x_idx < mi_width; x_idx++)
 | 
						|
      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
 | 
						|
          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
 | 
						|
        xd->mi[x_idx + y * mis] = mi_addr;
 | 
						|
      }
 | 
						|
 | 
						|
  if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
 | 
						|
    mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
 | 
						|
    mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
 | 
						|
  }
 | 
						|
 | 
						|
  x->skip = ctx->skip;
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  for (i = 0; i < 1; ++i)
 | 
						|
    memcpy(x->blk_skip[i], ctx->blk_skip[i],
 | 
						|
           sizeof(uint8_t) * ctx->num_4x4_blk);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  {
 | 
						|
    const TX_SIZE mtx = mbmi->tx_size;
 | 
						|
    int idy, idx;
 | 
						|
    for (idy = 0; idy < (1 << mtx) / 2; ++idy)
 | 
						|
      for (idx = 0; idx < (1 << mtx) / 2; ++idx)
 | 
						|
        mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
 | 
						|
  }
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
  // Turn motion variation off for supertx
 | 
						|
  mbmi->motion_variation = SIMPLE_TRANSLATION;
 | 
						|
 | 
						|
  if (!output_enabled) return;
 | 
						|
 | 
						|
  if (!frame_is_intra_only(cm)) {
 | 
						|
    av1_update_mv_count(td);
 | 
						|
 | 
						|
    if (cm->interp_filter == SWITCHABLE
 | 
						|
#if CONFIG_EXT_INTERP
 | 
						|
        && av1_is_interp_needed(xd)
 | 
						|
#endif
 | 
						|
            ) {
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
      update_filter_type_count(td->counts, xd, mbmi);
 | 
						|
#else
 | 
						|
      const int ctx = av1_get_pred_context_switchable_interp(xd);
 | 
						|
      ++td->counts->switchable_interp[ctx][mbmi->interp_filter];
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
 | 
						|
    rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
 | 
						|
    rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
 | 
						|
  }
 | 
						|
 | 
						|
  for (h = 0; h < y_mis; ++h) {
 | 
						|
    MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
 | 
						|
    for (w = 0; w < x_mis; ++w) {
 | 
						|
      MV_REF *const mv = frame_mv + w;
 | 
						|
      mv->ref_frame[0] = mi->mbmi.ref_frame[0];
 | 
						|
      mv->ref_frame[1] = mi->mbmi.ref_frame[1];
 | 
						|
      mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
 | 
						|
      mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void update_state_sb_supertx(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                                    const TileInfo *const tile, int mi_row,
 | 
						|
                                    int mi_col, BLOCK_SIZE bsize,
 | 
						|
                                    int output_enabled, PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  struct macroblock_plane *const p = x->plane;
 | 
						|
  struct macroblockd_plane *const pd = xd->plane;
 | 
						|
  int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
 | 
						|
  PARTITION_TYPE partition = pc_tree->partitioning;
 | 
						|
  BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
  int i;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
#endif
 | 
						|
  PICK_MODE_CONTEXT *pmc = NULL;
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
 | 
						|
    x->mb_energy = av1_block_energy(cpi, x, bsize);
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize,
 | 
						|
                           output_enabled);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col,
 | 
						|
                           subsize, output_enabled);
 | 
						|
      if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
 | 
						|
        update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row,
 | 
						|
                             mi_col + hbs, subsize, output_enabled);
 | 
						|
      }
 | 
						|
      pmc = &pc_tree->vertical_supertx;
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col,
 | 
						|
                           subsize, output_enabled);
 | 
						|
      if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
 | 
						|
        update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs,
 | 
						|
                             mi_col, subsize, output_enabled);
 | 
						|
      }
 | 
						|
      pmc = &pc_tree->horizontal_supertx;
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
        update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col,
 | 
						|
                             subsize, output_enabled);
 | 
						|
      } else {
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
        update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize,
 | 
						|
                                output_enabled, pc_tree->split[0]);
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
 | 
						|
        update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize,
 | 
						|
                                output_enabled, pc_tree->split[1]);
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
 | 
						|
        update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize,
 | 
						|
                                output_enabled, pc_tree->split[2]);
 | 
						|
        set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize);
 | 
						|
        update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs,
 | 
						|
                                subsize, output_enabled, pc_tree->split[3]);
 | 
						|
      }
 | 
						|
      pmc = &pc_tree->split_supertx;
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col,
 | 
						|
                           bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row,
 | 
						|
                           mi_col + hbs, bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs,
 | 
						|
                           mi_col, subsize, output_enabled);
 | 
						|
      pmc = &pc_tree->horizontala_supertx;
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col,
 | 
						|
                           subsize, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs,
 | 
						|
                           mi_col, bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs,
 | 
						|
                           mi_col + hbs, bsize2, output_enabled);
 | 
						|
      pmc = &pc_tree->horizontalb_supertx;
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col,
 | 
						|
                           bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs,
 | 
						|
                           mi_col, bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row,
 | 
						|
                           mi_col + hbs, subsize, output_enabled);
 | 
						|
      pmc = &pc_tree->verticala_supertx;
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col,
 | 
						|
                           subsize, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row,
 | 
						|
                           mi_col + hbs, bsize2, output_enabled);
 | 
						|
      set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
 | 
						|
      update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs,
 | 
						|
                           mi_col + hbs, bsize2, output_enabled);
 | 
						|
      pmc = &pc_tree->verticalb_supertx;
 | 
						|
      break;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0);
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = 0; i < MAX_MB_PLANE; ++i) {
 | 
						|
    if (pmc != NULL) {
 | 
						|
      p[i].coeff = pmc->coeff[i][1];
 | 
						|
      p[i].qcoeff = pmc->qcoeff[i][1];
 | 
						|
      pd[i].dqcoeff = pmc->dqcoeff[i][1];
 | 
						|
      p[i].eobs = pmc->eobs[i][1];
 | 
						|
    } else {
 | 
						|
      // These should never be used
 | 
						|
      p[i].coeff = NULL;
 | 
						|
      p[i].qcoeff = NULL;
 | 
						|
      pd[i].dqcoeff = NULL;
 | 
						|
      p[i].eobs = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx,
 | 
						|
                                 int best_tx, TX_SIZE supertx_size) {
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = 0; i < 1; ++i)
 | 
						|
    memcpy(ctx->blk_skip[i], x->blk_skip[i],
 | 
						|
           sizeof(uint8_t) * ctx->num_4x4_blk);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
  ctx->mic.mbmi.tx_size = supertx_size;
 | 
						|
  ctx->skip = x->skip;
 | 
						|
  ctx->mic.mbmi.tx_type = best_tx;
 | 
						|
}
 | 
						|
 | 
						|
static void update_supertx_param_sb(AV1_COMP *cpi, ThreadData *td, int mi_row,
 | 
						|
                                    int mi_col, BLOCK_SIZE bsize, int best_tx,
 | 
						|
                                    TX_SIZE supertx_size, PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
 | 
						|
  PARTITION_TYPE partition = pc_tree->partitioning;
 | 
						|
  BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  int i;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      update_supertx_param(td, &pc_tree->none, best_tx, supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size);
 | 
						|
      if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8)
 | 
						|
        update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size);
 | 
						|
      if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8)
 | 
						|
        update_supertx_param(td, &pc_tree->horizontal[1], best_tx,
 | 
						|
                             supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size);
 | 
						|
      } else {
 | 
						|
        update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx,
 | 
						|
                                supertx_size, pc_tree->split[0]);
 | 
						|
        update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx,
 | 
						|
                                supertx_size, pc_tree->split[1]);
 | 
						|
        update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx,
 | 
						|
                                supertx_size, pc_tree->split[2]);
 | 
						|
        update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize,
 | 
						|
                                best_tx, supertx_size, pc_tree->split[3]);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      for (i = 0; i < 3; i++)
 | 
						|
        update_supertx_param(td, &pc_tree->horizontala[i], best_tx,
 | 
						|
                             supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      for (i = 0; i < 3; i++)
 | 
						|
        update_supertx_param(td, &pc_tree->horizontalb[i], best_tx,
 | 
						|
                             supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      for (i = 0; i < 3; i++)
 | 
						|
        update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      for (i = 0; i < 3; i++)
 | 
						|
        update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size);
 | 
						|
      break;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
 | 
						|
                          int mi_row, int mi_col) {
 | 
						|
  uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
 | 
						|
  const int widths[3] = { src->y_crop_width, src->uv_crop_width,
 | 
						|
                          src->uv_crop_width };
 | 
						|
  const int heights[3] = { src->y_crop_height, src->uv_crop_height,
 | 
						|
                           src->uv_crop_height };
 | 
						|
  const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
 | 
						|
  int i;
 | 
						|
 | 
						|
  // Set current frame pointer.
 | 
						|
  x->e_mbd.cur_buf = src;
 | 
						|
 | 
						|
  for (i = 0; i < MAX_MB_PLANE; i++)
 | 
						|
    setup_pred_plane(&x->plane[i].src, buffers[i], widths[i], heights[i],
 | 
						|
                     strides[i], mi_row, mi_col, NULL,
 | 
						|
                     x->e_mbd.plane[i].subsampling_x,
 | 
						|
                     x->e_mbd.plane[i].subsampling_y);
 | 
						|
}
 | 
						|
 | 
						|
static int set_segment_rdmult(AV1_COMP *const cpi, MACROBLOCK *const x,
 | 
						|
                              int8_t segment_id) {
 | 
						|
  int segment_qindex;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  av1_init_plane_quantizers(cpi, x, segment_id);
 | 
						|
  aom_clear_system_state();
 | 
						|
  segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
 | 
						|
  return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
 | 
						|
}
 | 
						|
 | 
						|
static void rd_pick_sb_modes(AV1_COMP *cpi, TileDataEnc *tile_data,
 | 
						|
                             MACROBLOCK *const x, int mi_row, int mi_col,
 | 
						|
                             RD_COST *rd_cost,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                             int *totalrate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                             PARTITION_TYPE partition,
 | 
						|
#endif
 | 
						|
                             BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
 | 
						|
                             int64_t best_rd) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  TileInfo *const tile_info = &tile_data->tile_info;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MB_MODE_INFO *mbmi;
 | 
						|
  struct macroblock_plane *const p = x->plane;
 | 
						|
  struct macroblockd_plane *const pd = xd->plane;
 | 
						|
  const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
 | 
						|
  int i, orig_rdmult;
 | 
						|
 | 
						|
  aom_clear_system_state();
 | 
						|
 | 
						|
  // Use the lower precision, but faster, 32x32 fdct for mode selection.
 | 
						|
  x->use_lp32x32fdct = 1;
 | 
						|
 | 
						|
  set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
 | 
						|
  mbmi = &xd->mi[0]->mbmi;
 | 
						|
  mbmi->sb_type = bsize;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  // We set tx_size here as skip blocks would otherwise not set it.
 | 
						|
  // tx_size needs to be set at this point as supertx_enable in
 | 
						|
  // write_modes_sb is computed based on this, and if the garbage in memory
 | 
						|
  // just happens to be the supertx_size, then the packer will code this
 | 
						|
  // block as a supertx block, even if rdopt did not pick it as such.
 | 
						|
  mbmi->tx_size = max_txsize_lookup[bsize];
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  mbmi->partition = partition;
 | 
						|
#endif
 | 
						|
 | 
						|
  for (i = 0; i < MAX_MB_PLANE; ++i) {
 | 
						|
    p[i].coeff = ctx->coeff[i][0];
 | 
						|
    p[i].qcoeff = ctx->qcoeff[i][0];
 | 
						|
    pd[i].dqcoeff = ctx->dqcoeff[i][0];
 | 
						|
    p[i].eobs = ctx->eobs[i][0];
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
 | 
						|
 | 
						|
  ctx->is_coded = 0;
 | 
						|
  ctx->skippable = 0;
 | 
						|
  ctx->pred_pixel_ready = 0;
 | 
						|
 | 
						|
  // Set to zero to make sure we do not use the previous encoded frame stats
 | 
						|
  mbmi->skip = 0;
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
    x->source_variance = av1_high_get_sby_perpixel_variance(
 | 
						|
        cpi, &x->plane[0].src, bsize, xd->bd);
 | 
						|
  } else {
 | 
						|
    x->source_variance =
 | 
						|
        av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
 | 
						|
  }
 | 
						|
#else
 | 
						|
  x->source_variance =
 | 
						|
      av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
  // Save rdmult before it might be changed, so it can be restored later.
 | 
						|
  orig_rdmult = x->rdmult;
 | 
						|
 | 
						|
  if (aq_mode == VARIANCE_AQ) {
 | 
						|
    if (cpi->vaq_refresh) {
 | 
						|
      const int energy =
 | 
						|
          bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
 | 
						|
      mbmi->segment_id = av1_vaq_segment_id(energy);
 | 
						|
      // Re-initialise quantiser
 | 
						|
      av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
 | 
						|
      x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
 | 
						|
    }
 | 
						|
    x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
 | 
						|
  } else if (aq_mode == COMPLEXITY_AQ) {
 | 
						|
    x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
 | 
						|
  } else if (aq_mode == CYCLIC_REFRESH_AQ) {
 | 
						|
    // If segment is boosted, use rdmult for that segment.
 | 
						|
    if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
 | 
						|
      x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find best coding mode & reconstruct the MB so it is available
 | 
						|
  // as a predictor for MBs that follow in the SB
 | 
						|
  if (frame_is_intra_only(cm)) {
 | 
						|
    av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    *totalrate_nocoef = 0;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
  } else {
 | 
						|
    if (bsize >= BLOCK_8X8) {
 | 
						|
      if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
 | 
						|
        av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
 | 
						|
                                           ctx, best_rd);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        *totalrate_nocoef = rd_cost->rate;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      } else {
 | 
						|
        av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                                  totalrate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                                  bsize, ctx, best_rd);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        assert(*totalrate_nocoef >= 0);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
 | 
						|
        // The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set.
 | 
						|
        rd_cost->rate = INT_MAX;
 | 
						|
      } else {
 | 
						|
        av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
 | 
						|
                                      rd_cost,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                                      totalrate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                                      bsize, ctx, best_rd);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        assert(*totalrate_nocoef >= 0);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Examine the resulting rate and for AQ mode 2 make a segment choice.
 | 
						|
  if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
 | 
						|
      (bsize >= BLOCK_16X16) &&
 | 
						|
      (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
 | 
						|
       (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
 | 
						|
    av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
 | 
						|
  }
 | 
						|
 | 
						|
  x->rdmult = orig_rdmult;
 | 
						|
 | 
						|
  // TODO(jingning) The rate-distortion optimization flow needs to be
 | 
						|
  // refactored to provide proper exit/return handle.
 | 
						|
  if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
 | 
						|
 | 
						|
  ctx->rate = rd_cost->rate;
 | 
						|
  ctx->dist = rd_cost->dist;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_REF_MV
 | 
						|
static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                    int is_compound,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                    int16_t mode_context) {
 | 
						|
  int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
  if (mode == NEWMV || mode == NEWFROMNEARMV) {
 | 
						|
    if (!is_compound) ++counts->new2mv_mode[mode == NEWFROMNEARMV];
 | 
						|
#else
 | 
						|
  if (mode == NEWMV) {
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
    ++counts->newmv_mode[mode_ctx][0];
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    ++counts->newmv_mode[mode_ctx][1];
 | 
						|
 | 
						|
    if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
 | 
						|
    if (mode == ZEROMV) {
 | 
						|
      ++counts->zeromv_mode[mode_ctx][0];
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      ++counts->zeromv_mode[mode_ctx][1];
 | 
						|
      mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
 | 
						|
 | 
						|
      if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
 | 
						|
      if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
 | 
						|
      if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
 | 
						|
 | 
						|
      ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void update_stats(AV1_COMMON *cm, ThreadData *td
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                         ,
 | 
						|
                         int supertx_enabled
 | 
						|
#endif
 | 
						|
                         ) {
 | 
						|
  const MACROBLOCK *x = &td->mb;
 | 
						|
  const MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const MODE_INFO *const mi = xd->mi[0];
 | 
						|
  const MB_MODE_INFO *const mbmi = &mi->mbmi;
 | 
						|
  const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
 | 
						|
  const BLOCK_SIZE bsize = mbmi->sb_type;
 | 
						|
 | 
						|
  if (!frame_is_intra_only(cm)) {
 | 
						|
    FRAME_COUNTS *const counts = td->counts;
 | 
						|
    const int inter_block = is_inter_block(mbmi);
 | 
						|
    const int seg_ref_active =
 | 
						|
        segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
 | 
						|
    if (!seg_ref_active) {
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      if (!supertx_enabled)
 | 
						|
#endif
 | 
						|
        counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
 | 
						|
      // If the segment reference feature is enabled we have only a single
 | 
						|
      // reference frame allowed for the segment so exclude it from
 | 
						|
      // the reference frame counts used to work out probabilities.
 | 
						|
      if (inter_block) {
 | 
						|
        const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
        const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
 | 
						|
        if (cm->reference_mode == REFERENCE_MODE_SELECT)
 | 
						|
          counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
 | 
						|
                            [has_second_ref(mbmi)]++;
 | 
						|
 | 
						|
        if (has_second_ref(mbmi)) {
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
          const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
 | 
						|
 | 
						|
          counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++;
 | 
						|
          if (!bit) {
 | 
						|
            counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1]
 | 
						|
                            [ref0 == LAST_FRAME]++;
 | 
						|
          } else {
 | 
						|
            counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2]
 | 
						|
                            [ref0 == GOLDEN_FRAME]++;
 | 
						|
          }
 | 
						|
 | 
						|
          counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0]
 | 
						|
                             [ref1 == ALTREF_FRAME]++;
 | 
						|
#else
 | 
						|
          counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0]
 | 
						|
                          [ref0 == GOLDEN_FRAME]++;
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
        } else {
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
          const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME);
 | 
						|
 | 
						|
          counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
 | 
						|
          if (bit) {
 | 
						|
            counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
 | 
						|
                              [ref0 != BWDREF_FRAME]++;
 | 
						|
          } else {
 | 
						|
            const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
 | 
						|
            counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2]
 | 
						|
                              [bit1]++;
 | 
						|
            if (!bit1) {
 | 
						|
              counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
 | 
						|
                                [ref0 != LAST_FRAME]++;
 | 
						|
            } else {
 | 
						|
              counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
 | 
						|
                                [ref0 != LAST3_FRAME]++;
 | 
						|
            }
 | 
						|
          }
 | 
						|
#else
 | 
						|
          counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0]
 | 
						|
                            [ref0 != LAST_FRAME]++;
 | 
						|
          if (ref0 != LAST_FRAME) {
 | 
						|
            counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
 | 
						|
                              [ref0 != GOLDEN_FRAME]++;
 | 
						|
          }
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
        }
 | 
						|
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
        if (cm->reference_mode != COMPOUND_REFERENCE &&
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
            !supertx_enabled &&
 | 
						|
#endif
 | 
						|
            is_interintra_allowed(mbmi)) {
 | 
						|
          const int bsize_group = size_group_lookup[bsize];
 | 
						|
          if (mbmi->ref_frame[1] == INTRA_FRAME) {
 | 
						|
            counts->interintra[bsize_group][1]++;
 | 
						|
            counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
 | 
						|
            if (is_interintra_wedge_used(bsize))
 | 
						|
              counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
 | 
						|
          } else {
 | 
						|
            counts->interintra[bsize_group][0]++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
 | 
						|
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        if (!supertx_enabled)
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
          if (mbmi->ref_frame[1] != INTRA_FRAME)
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
            if (is_motvar_allowed(mbmi))
 | 
						|
              counts->motvar[mbmi->sb_type][mbmi->motion_variation]++;
 | 
						|
#endif  // CONFIG_OBMC || CONFIG_WARPED_MOTION
 | 
						|
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
        if (cm->reference_mode != SINGLE_REFERENCE &&
 | 
						|
            is_inter_compound_mode(mbmi->mode) &&
 | 
						|
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
 | 
						|
            !(is_motvar_allowed(mbmi) &&
 | 
						|
              mbmi->motion_variation != SIMPLE_TRANSLATION) &&
 | 
						|
#endif  // CONFIG_OBMC || CONFIG_WARPED_MOTION
 | 
						|
            is_interinter_wedge_used(bsize)) {
 | 
						|
          counts->wedge_interinter[bsize][mbmi->use_wedge_interinter]++;
 | 
						|
        }
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (inter_block &&
 | 
						|
        !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
 | 
						|
      int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
 | 
						|
      if (bsize >= BLOCK_8X8) {
 | 
						|
        const PREDICTION_MODE mode = mbmi->mode;
 | 
						|
#if CONFIG_REF_MV
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
        if (has_second_ref(mbmi)) {
 | 
						|
          mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
 | 
						|
          ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
 | 
						|
        } else {
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
          mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
 | 
						|
                                               mbmi->ref_frame, bsize, -1);
 | 
						|
          update_inter_mode_stats(counts, mode,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                  has_second_ref(mbmi),
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                  mode_ctx);
 | 
						|
 | 
						|
          if (mode == NEWMV) {
 | 
						|
            uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
 | 
						|
            int idx;
 | 
						|
 | 
						|
            for (idx = 0; idx < 2; ++idx) {
 | 
						|
              if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
 | 
						|
                uint8_t drl_ctx =
 | 
						|
                    av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
 | 
						|
                ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
 | 
						|
 | 
						|
                if (mbmi->ref_mv_idx == idx) break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (mode == NEARMV) {
 | 
						|
            uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
 | 
						|
            int idx;
 | 
						|
 | 
						|
            for (idx = 1; idx < 3; ++idx) {
 | 
						|
              if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
 | 
						|
                uint8_t drl_ctx =
 | 
						|
                    av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
 | 
						|
                ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
 | 
						|
 | 
						|
                if (mbmi->ref_mv_idx == idx - 1) break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
        }
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
#else
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
        if (is_inter_compound_mode(mode))
 | 
						|
          ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
 | 
						|
        else
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
          ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
 | 
						|
#endif
 | 
						|
      } else {
 | 
						|
        const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
 | 
						|
        const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
 | 
						|
        int idx, idy;
 | 
						|
        for (idy = 0; idy < 2; idy += num_4x4_h) {
 | 
						|
          for (idx = 0; idx < 2; idx += num_4x4_w) {
 | 
						|
            const int j = idy * 2 + idx;
 | 
						|
            const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
 | 
						|
#if CONFIG_REF_MV
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
            if (has_second_ref(mbmi)) {
 | 
						|
              mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
 | 
						|
              ++counts->inter_compound_mode[mode_ctx]
 | 
						|
                                           [INTER_COMPOUND_OFFSET(b_mode)];
 | 
						|
            } else {
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
              mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
 | 
						|
                                                   mbmi->ref_frame, bsize, j);
 | 
						|
              update_inter_mode_stats(counts, b_mode,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                      has_second_ref(mbmi),
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                      mode_ctx);
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
            }
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
#else
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
            if (is_inter_compound_mode(b_mode))
 | 
						|
              ++counts->inter_compound_mode[mode_ctx]
 | 
						|
                                           [INTER_COMPOUND_OFFSET(b_mode)];
 | 
						|
            else
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
              ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
 | 
						|
#endif
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
 | 
						|
  ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
 | 
						|
  PARTITION_CONTEXT sa[MAX_MIB_SIZE];
 | 
						|
  PARTITION_CONTEXT sl[MAX_MIB_SIZE];
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  TXFM_CONTEXT *p_ta;
 | 
						|
  TXFM_CONTEXT *p_tl;
 | 
						|
  TXFM_CONTEXT ta[MAX_MIB_SIZE];
 | 
						|
  TXFM_CONTEXT tl[MAX_MIB_SIZE];
 | 
						|
#endif
 | 
						|
} RD_SEARCH_MACROBLOCK_CONTEXT;
 | 
						|
 | 
						|
static void restore_context(MACROBLOCK *x,
 | 
						|
                            const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
 | 
						|
                            int mi_col, BLOCK_SIZE bsize) {
 | 
						|
  MACROBLOCKD *xd = &x->e_mbd;
 | 
						|
  int p;
 | 
						|
  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
 | 
						|
  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
 | 
						|
  int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  for (p = 0; p < MAX_MB_PLANE; p++) {
 | 
						|
    memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
 | 
						|
           ctx->a + num_4x4_blocks_wide * p,
 | 
						|
           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
 | 
						|
               xd->plane[p].subsampling_x);
 | 
						|
    memcpy(xd->left_context[p] +
 | 
						|
               ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
 | 
						|
           ctx->l + num_4x4_blocks_high * p,
 | 
						|
           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
 | 
						|
               xd->plane[p].subsampling_y);
 | 
						|
  }
 | 
						|
  memcpy(xd->above_seg_context + mi_col, ctx->sa,
 | 
						|
         sizeof(*xd->above_seg_context) * mi_width);
 | 
						|
  memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
 | 
						|
         sizeof(xd->left_seg_context[0]) * mi_height);
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  xd->above_txfm_context = ctx->p_ta;
 | 
						|
  xd->left_txfm_context = ctx->p_tl;
 | 
						|
  memcpy(xd->above_txfm_context, ctx->ta,
 | 
						|
         sizeof(*xd->above_txfm_context) * mi_width);
 | 
						|
  memcpy(xd->left_txfm_context, ctx->tl,
 | 
						|
         sizeof(*xd->left_txfm_context) * mi_height);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
 | 
						|
                         int mi_row, int mi_col, BLOCK_SIZE bsize) {
 | 
						|
  const MACROBLOCKD *xd = &x->e_mbd;
 | 
						|
  int p;
 | 
						|
  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
 | 
						|
  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
 | 
						|
  int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
 | 
						|
  // buffer the above/left context information of the block in search.
 | 
						|
  for (p = 0; p < MAX_MB_PLANE; ++p) {
 | 
						|
    memcpy(ctx->a + num_4x4_blocks_wide * p,
 | 
						|
           xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
 | 
						|
           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
 | 
						|
               xd->plane[p].subsampling_x);
 | 
						|
    memcpy(ctx->l + num_4x4_blocks_high * p,
 | 
						|
           xd->left_context[p] +
 | 
						|
               ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
 | 
						|
           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
 | 
						|
               xd->plane[p].subsampling_y);
 | 
						|
  }
 | 
						|
  memcpy(ctx->sa, xd->above_seg_context + mi_col,
 | 
						|
         sizeof(*xd->above_seg_context) * mi_width);
 | 
						|
  memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
 | 
						|
         sizeof(xd->left_seg_context[0]) * mi_height);
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  memcpy(ctx->ta, xd->above_txfm_context,
 | 
						|
         sizeof(*xd->above_txfm_context) * mi_width);
 | 
						|
  memcpy(ctx->tl, xd->left_txfm_context,
 | 
						|
         sizeof(*xd->left_txfm_context) * mi_height);
 | 
						|
  ctx->p_ta = xd->above_txfm_context;
 | 
						|
  ctx->p_tl = xd->left_txfm_context;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void encode_b(AV1_COMP *cpi, const TileInfo *const tile, ThreadData *td,
 | 
						|
                     TOKENEXTRA **tp, int mi_row, int mi_col,
 | 
						|
                     int output_enabled, BLOCK_SIZE bsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     PARTITION_TYPE partition,
 | 
						|
#endif
 | 
						|
                     PICK_MODE_CONTEXT *ctx) {
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  x->e_mbd.mi[0]->mbmi.partition = partition;
 | 
						|
#endif
 | 
						|
  update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
 | 
						|
  encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
 | 
						|
 | 
						|
  if (output_enabled) {
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    update_stats(&cpi->common, td, 0);
 | 
						|
#else
 | 
						|
    update_stats(&cpi->common, td);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void encode_sb(AV1_COMP *cpi, ThreadData *td, const TileInfo *const tile,
 | 
						|
                      TOKENEXTRA **tp, int mi_row, int mi_col,
 | 
						|
                      int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
 | 
						|
  const AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
 | 
						|
  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
 | 
						|
  const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
 | 
						|
  const PARTITION_TYPE partition = pc_tree->partitioning;
 | 
						|
  const BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
#endif
 | 
						|
 | 
						|
  assert(bsize >= BLOCK_8X8);
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  if (output_enabled) td->counts->partition[ctx][partition]++;
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  if (!frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
 | 
						|
      partition != PARTITION_NONE && !xd->lossless[0]) {
 | 
						|
    int supertx_enabled;
 | 
						|
    TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
    supertx_enabled = check_supertx_sb(bsize, supertx_size, pc_tree);
 | 
						|
    if (supertx_enabled) {
 | 
						|
      const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
      const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
      int x_idx, y_idx, i;
 | 
						|
      uint8_t *dst_buf[3];
 | 
						|
      int dst_stride[3];
 | 
						|
      set_skip_context(xd, mi_row, mi_col);
 | 
						|
      set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
 | 
						|
      update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize,
 | 
						|
                              output_enabled, pc_tree);
 | 
						|
 | 
						|
      av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        dst_buf[i] = xd->plane[i].dst.buf;
 | 
						|
        dst_stride[i] = xd->plane[i].dst.stride;
 | 
						|
      }
 | 
						|
      predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         output_enabled, bsize, bsize, dst_buf, dst_stride,
 | 
						|
                         pc_tree);
 | 
						|
 | 
						|
      set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
 | 
						|
      set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
      if (!x->skip) {
 | 
						|
        x->skip_optimize = 0;
 | 
						|
        x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
 | 
						|
 | 
						|
        av1_encode_sb_supertx(x, bsize);
 | 
						|
        av1_tokenize_sb_supertx(cpi, td, tp, !output_enabled, bsize);
 | 
						|
      } else {
 | 
						|
        xd->mi[0]->mbmi.skip = 1;
 | 
						|
        if (output_enabled) td->counts->skip[av1_get_skip_context(xd)][1]++;
 | 
						|
        reset_skip_context(xd, bsize);
 | 
						|
      }
 | 
						|
      if (output_enabled) {
 | 
						|
        for (y_idx = 0; y_idx < mi_height; y_idx++)
 | 
						|
          for (x_idx = 0; x_idx < mi_width; x_idx++) {
 | 
						|
            if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width >
 | 
						|
                    x_idx &&
 | 
						|
                (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height >
 | 
						|
                    y_idx) {
 | 
						|
              xd->mi[x_idx + y_idx * cm->mi_stride]->mbmi.skip =
 | 
						|
                  xd->mi[0]->mbmi.skip;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        td->counts->supertx[partition_supertx_context_lookup[partition]]
 | 
						|
                           [supertx_size][1]++;
 | 
						|
        td->counts->supertx_size[supertx_size]++;
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
        if (get_ext_tx_types(supertx_size, bsize, 1) > 1 &&
 | 
						|
            !xd->mi[0]->mbmi.skip) {
 | 
						|
          int eset = get_ext_tx_set(supertx_size, bsize, 1);
 | 
						|
          if (eset > 0) {
 | 
						|
            ++td->counts->inter_ext_tx[eset][supertx_size]
 | 
						|
                                      [xd->mi[0]->mbmi.tx_type];
 | 
						|
          }
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) {
 | 
						|
          ++td->counts->inter_ext_tx[supertx_size][xd->mi[0]->mbmi.tx_type];
 | 
						|
        }
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
      }
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
      update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize,
 | 
						|
                                   partition);
 | 
						|
#else
 | 
						|
      if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
 | 
						|
        update_partition_context(xd, mi_row, mi_col, subsize, bsize);
 | 
						|
#endif
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
      set_txfm_ctxs(supertx_size, mi_width, mi_height, xd);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      if (output_enabled) {
 | 
						|
        td->counts->supertx[partition_supertx_context_lookup[partition]]
 | 
						|
                           [supertx_size][0]++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
               partition,
 | 
						|
#endif
 | 
						|
               &pc_tree->none);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
               partition,
 | 
						|
#endif
 | 
						|
               &pc_tree->vertical[0]);
 | 
						|
      if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
 | 
						|
        encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
 | 
						|
                 subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                 partition,
 | 
						|
#endif
 | 
						|
                 &pc_tree->vertical[1]);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
               partition,
 | 
						|
#endif
 | 
						|
               &pc_tree->horizontal[0]);
 | 
						|
      if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
 | 
						|
        encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
 | 
						|
                 subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                 partition,
 | 
						|
#endif
 | 
						|
                 &pc_tree->horizontal[1]);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                 partition,
 | 
						|
#endif
 | 
						|
                 pc_tree->leaf_split[0]);
 | 
						|
      } else {
 | 
						|
        encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
                  pc_tree->split[0]);
 | 
						|
        encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
 | 
						|
                  subsize, pc_tree->split[1]);
 | 
						|
        encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
 | 
						|
                  subsize, pc_tree->split[2]);
 | 
						|
        encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
 | 
						|
                  subsize, pc_tree->split[3]);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->horizontala[0]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->horizontala[1]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, subsize,
 | 
						|
               partition, &pc_tree->horizontala[2]);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
               partition, &pc_tree->horizontalb[0]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->horizontalb[1]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, output_enabled,
 | 
						|
               bsize2, partition, &pc_tree->horizontalb[2]);
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->verticala[0]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->verticala[1]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, subsize,
 | 
						|
               partition, &pc_tree->verticala[2]);
 | 
						|
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
 | 
						|
               partition, &pc_tree->verticalb[0]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, bsize2,
 | 
						|
               partition, &pc_tree->verticalb[1]);
 | 
						|
      encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, output_enabled,
 | 
						|
               bsize2, partition, &pc_tree->verticalb[2]);
 | 
						|
      break;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0 && "Invalid partition type."); break;
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
 | 
						|
#else
 | 
						|
  if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
 | 
						|
    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
}
 | 
						|
 | 
						|
// Check to see if the given partition size is allowed for a specified number
 | 
						|
// of mi block rows and columns remaining in the image.
 | 
						|
// If not then return the largest allowed partition size
 | 
						|
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
 | 
						|
                                      int cols_left, int *bh, int *bw) {
 | 
						|
  if (rows_left <= 0 || cols_left <= 0) {
 | 
						|
    return AOMMIN(bsize, BLOCK_8X8);
 | 
						|
  } else {
 | 
						|
    for (; bsize > 0; bsize -= 3) {
 | 
						|
      *bh = num_8x8_blocks_high_lookup[bsize];
 | 
						|
      *bw = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
      if ((*bh <= rows_left) && (*bw <= cols_left)) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return bsize;
 | 
						|
}
 | 
						|
 | 
						|
static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi,
 | 
						|
                                     int bh_in, int bw_in,
 | 
						|
                                     int mi_rows_remaining,
 | 
						|
                                     int mi_cols_remaining, BLOCK_SIZE bsize,
 | 
						|
                                     MODE_INFO **mib) {
 | 
						|
  int bh = bh_in;
 | 
						|
  int r, c;
 | 
						|
  for (r = 0; r < cm->mib_size; r += bh) {
 | 
						|
    int bw = bw_in;
 | 
						|
    for (c = 0; c < cm->mib_size; c += bw) {
 | 
						|
      const int index = r * cm->mi_stride + c;
 | 
						|
      mib[index] = mi + index;
 | 
						|
      mib[index]->mbmi.sb_type = find_partition_size(
 | 
						|
          bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function attempts to set all mode info entries in a given superblock
 | 
						|
// to the same block partition size.
 | 
						|
// However, at the bottom and right borders of the image the requested size
 | 
						|
// may not be allowed in which case this code attempts to choose the largest
 | 
						|
// allowable partition.
 | 
						|
static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
 | 
						|
                                   MODE_INFO **mib, int mi_row, int mi_col,
 | 
						|
                                   BLOCK_SIZE bsize) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const int mi_rows_remaining = tile->mi_row_end - mi_row;
 | 
						|
  const int mi_cols_remaining = tile->mi_col_end - mi_col;
 | 
						|
  int block_row, block_col;
 | 
						|
  MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col;
 | 
						|
  int bh = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  int bw = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
 | 
						|
  assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
 | 
						|
 | 
						|
  // Apply the requested partition size to the SB if it is all "in image"
 | 
						|
  if ((mi_cols_remaining >= cm->mib_size) &&
 | 
						|
      (mi_rows_remaining >= cm->mib_size)) {
 | 
						|
    for (block_row = 0; block_row < cm->mib_size; block_row += bh) {
 | 
						|
      for (block_col = 0; block_col < cm->mib_size; block_col += bw) {
 | 
						|
        int index = block_row * cm->mi_stride + block_col;
 | 
						|
        mib[index] = mi_upper_left + index;
 | 
						|
        mib[index]->mbmi.sb_type = bsize;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Else this is a partial SB.
 | 
						|
    set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
 | 
						|
                             mi_cols_remaining, bsize, mib);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void rd_use_partition(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                             TileDataEnc *tile_data, MODE_INFO **mib,
 | 
						|
                             TOKENEXTRA **tp, int mi_row, int mi_col,
 | 
						|
                             BLOCK_SIZE bsize, int *rate, int64_t *dist,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                             int *rate_nocoef,
 | 
						|
#endif
 | 
						|
                             int do_recon, PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  TileInfo *const tile_info = &tile_data->tile_info;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const int bs = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int hbs = bs / 2;
 | 
						|
  int i;
 | 
						|
  const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
 | 
						|
  const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
 | 
						|
  const BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
 | 
						|
  RD_COST last_part_rdc, none_rdc, chosen_rdc;
 | 
						|
  BLOCK_SIZE sub_subsize = BLOCK_4X4;
 | 
						|
  int splits_below = 0;
 | 
						|
  BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type;
 | 
						|
  int do_partition_search = 1;
 | 
						|
  PICK_MODE_CONTEXT *ctx = &pc_tree->none;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  int last_part_rate_nocoef = INT_MAX;
 | 
						|
  int none_rate_nocoef = INT_MAX;
 | 
						|
  int chosen_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
  assert(num_4x4_blocks_wide_lookup[bsize] ==
 | 
						|
         num_4x4_blocks_high_lookup[bsize]);
 | 
						|
 | 
						|
  av1_rd_cost_reset(&last_part_rdc);
 | 
						|
  av1_rd_cost_reset(&none_rdc);
 | 
						|
  av1_rd_cost_reset(&chosen_rdc);
 | 
						|
 | 
						|
  pc_tree->partitioning = partition;
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  xd->above_txfm_context = cm->above_txfm_context + mi_col;
 | 
						|
  xd->left_txfm_context =
 | 
						|
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
 | 
						|
#endif
 | 
						|
 | 
						|
  save_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
  if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
 | 
						|
    set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
 | 
						|
    x->mb_energy = av1_block_energy(cpi, x, bsize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (do_partition_search &&
 | 
						|
      cpi->sf.partition_search_type == SEARCH_PARTITION &&
 | 
						|
      cpi->sf.adjust_partitioning_from_last_frame) {
 | 
						|
    // Check if any of the sub blocks are further split.
 | 
						|
    if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
 | 
						|
      sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
 | 
						|
      splits_below = 1;
 | 
						|
      for (i = 0; i < 4; i++) {
 | 
						|
        int jj = i >> 1, ii = i & 0x01;
 | 
						|
        MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
 | 
						|
        if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
 | 
						|
          splits_below = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If partition is not none try none unless each of the 4 splits are split
 | 
						|
    // even further..
 | 
						|
    if (partition != PARTITION_NONE && !splits_below &&
 | 
						|
        mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
 | 
						|
      pc_tree->partitioning = PARTITION_NONE;
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &none_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_NONE,
 | 
						|
#endif
 | 
						|
                       bsize, ctx, INT64_MAX);
 | 
						|
 | 
						|
      if (none_rdc.rate < INT_MAX) {
 | 
						|
        none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
 | 
						|
        none_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        none_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
      restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
      mib[0]->mbmi.sb_type = bs_type;
 | 
						|
      pc_tree->partitioning = partition;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &last_part_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_NONE,
 | 
						|
#endif
 | 
						|
                       bsize, ctx, INT64_MAX);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &last_part_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_HORZ,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->horizontal[0], INT64_MAX);
 | 
						|
      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
 | 
						|
          mi_row + hbs < cm->mi_rows) {
 | 
						|
        RD_COST tmp_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        int rt_nocoef = 0;
 | 
						|
#endif
 | 
						|
        PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
 | 
						|
        av1_rd_cost_init(&tmp_rdc);
 | 
						|
        update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
 | 
						|
        encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
 | 
						|
        rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                         &rt_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                         PARTITION_HORZ,
 | 
						|
#endif
 | 
						|
                         subsize, &pc_tree->horizontal[1], INT64_MAX);
 | 
						|
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
 | 
						|
          av1_rd_cost_reset(&last_part_rdc);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          last_part_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        last_part_rdc.rate += tmp_rdc.rate;
 | 
						|
        last_part_rdc.dist += tmp_rdc.dist;
 | 
						|
        last_part_rdc.rdcost += tmp_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        last_part_rate_nocoef += rt_nocoef;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &last_part_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_VERT,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->vertical[0], INT64_MAX);
 | 
						|
      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
 | 
						|
          mi_col + hbs < cm->mi_cols) {
 | 
						|
        RD_COST tmp_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        int rt_nocoef = 0;
 | 
						|
#endif
 | 
						|
        PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
 | 
						|
        av1_rd_cost_init(&tmp_rdc);
 | 
						|
        update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
 | 
						|
        encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
 | 
						|
        rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                         &rt_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                         PARTITION_VERT,
 | 
						|
#endif
 | 
						|
                         subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
 | 
						|
                         INT64_MAX);
 | 
						|
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
 | 
						|
          av1_rd_cost_reset(&last_part_rdc);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          last_part_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        last_part_rdc.rate += tmp_rdc.rate;
 | 
						|
        last_part_rdc.dist += tmp_rdc.dist;
 | 
						|
        last_part_rdc.rdcost += tmp_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        last_part_rate_nocoef += rt_nocoef;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                         &last_part_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                         PARTITION_SPLIT,
 | 
						|
#endif
 | 
						|
                         subsize, pc_tree->leaf_split[0], INT64_MAX);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      last_part_rdc.rate = 0;
 | 
						|
      last_part_rdc.dist = 0;
 | 
						|
      last_part_rdc.rdcost = 0;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      last_part_rate_nocoef = 0;
 | 
						|
#endif
 | 
						|
      for (i = 0; i < 4; i++) {
 | 
						|
        int x_idx = (i & 1) * hbs;
 | 
						|
        int y_idx = (i >> 1) * hbs;
 | 
						|
        int jj = i >> 1, ii = i & 0x01;
 | 
						|
        RD_COST tmp_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        int rt_nocoef;
 | 
						|
#endif
 | 
						|
        if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
 | 
						|
          continue;
 | 
						|
 | 
						|
        av1_rd_cost_init(&tmp_rdc);
 | 
						|
        rd_use_partition(cpi, td, tile_data,
 | 
						|
                         mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
 | 
						|
                         mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
 | 
						|
                         &tmp_rdc.dist,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                         &rt_nocoef,
 | 
						|
#endif
 | 
						|
                         i != 3, pc_tree->split[i]);
 | 
						|
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
 | 
						|
          av1_rd_cost_reset(&last_part_rdc);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          last_part_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        last_part_rdc.rate += tmp_rdc.rate;
 | 
						|
        last_part_rdc.dist += tmp_rdc.dist;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        last_part_rate_nocoef += rt_nocoef;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
    case PARTITION_HORZ_B: assert(0 && "Cannot handle extended partiton types");
 | 
						|
#endif  //  CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0); break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (last_part_rdc.rate < INT_MAX) {
 | 
						|
    last_part_rdc.rate += cpi->partition_cost[pl][partition];
 | 
						|
    last_part_rdc.rdcost =
 | 
						|
        RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    last_part_rate_nocoef += cpi->partition_cost[pl][partition];
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
 | 
						|
      cpi->sf.partition_search_type == SEARCH_PARTITION &&
 | 
						|
      partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
 | 
						|
      (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
 | 
						|
      (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
 | 
						|
    BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
    chosen_rdc.rate = 0;
 | 
						|
    chosen_rdc.dist = 0;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    chosen_rate_nocoef = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
    pc_tree->partitioning = PARTITION_SPLIT;
 | 
						|
 | 
						|
    // Split partition.
 | 
						|
    for (i = 0; i < 4; i++) {
 | 
						|
      int x_idx = (i & 1) * hbs;
 | 
						|
      int y_idx = (i >> 1) * hbs;
 | 
						|
      RD_COST tmp_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      int rt_nocoef = 0;
 | 
						|
#endif
 | 
						|
      RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
 | 
						|
 | 
						|
      if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
 | 
						|
        continue;
 | 
						|
 | 
						|
      save_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
      pc_tree->split[i]->partitioning = PARTITION_NONE;
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
 | 
						|
                       &tmp_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &rt_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_SPLIT,
 | 
						|
#endif
 | 
						|
                       split_subsize, &pc_tree->split[i]->none, INT64_MAX);
 | 
						|
 | 
						|
      restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
      if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
 | 
						|
        av1_rd_cost_reset(&chosen_rdc);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        chosen_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      chosen_rdc.rate += tmp_rdc.rate;
 | 
						|
      chosen_rdc.dist += tmp_rdc.dist;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      chosen_rate_nocoef += rt_nocoef;
 | 
						|
#endif
 | 
						|
 | 
						|
      if (i != 3)
 | 
						|
        encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
 | 
						|
                  split_subsize, pc_tree->split[i]);
 | 
						|
 | 
						|
      chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_SPLIT];
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    if (chosen_rdc.rate < INT_MAX) {
 | 
						|
      chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
 | 
						|
      chosen_rdc.rdcost =
 | 
						|
          RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If last_part is better set the partitioning to that.
 | 
						|
  if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
 | 
						|
    mib[0]->mbmi.sb_type = bsize;
 | 
						|
    if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
 | 
						|
    chosen_rdc = last_part_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    chosen_rate_nocoef = last_part_rate_nocoef;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  // If none was better set the partitioning to that.
 | 
						|
  if (none_rdc.rdcost < chosen_rdc.rdcost) {
 | 
						|
    if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
 | 
						|
    chosen_rdc = none_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    chosen_rate_nocoef = none_rate_nocoef;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
  // We must have chosen a partitioning and encoding or we'll fail later on.
 | 
						|
  // No other opportunities for success.
 | 
						|
  if (bsize == cm->sb_size)
 | 
						|
    assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
 | 
						|
 | 
						|
  if (do_recon) {
 | 
						|
    int output_enabled = (bsize == cm->sb_size);
 | 
						|
    encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
 | 
						|
              pc_tree);
 | 
						|
  }
 | 
						|
 | 
						|
  *rate = chosen_rdc.rate;
 | 
						|
  *dist = chosen_rdc.dist;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  *rate_nocoef = chosen_rate_nocoef;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* clang-format off */
 | 
						|
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
 | 
						|
                            BLOCK_4X4,    //                     4x4
 | 
						|
  BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,    //    4x8,    8x4,     8x8
 | 
						|
  BLOCK_4X4,   BLOCK_4X4,   BLOCK_8X8,    //   8x16,   16x8,   16x16
 | 
						|
  BLOCK_8X8,   BLOCK_8X8,   BLOCK_16X16,  //  16x32,  32x16,   32x32
 | 
						|
  BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,  //  32x64,  64x32,   64x64
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  BLOCK_16X16, BLOCK_16X16, BLOCK_16X16   // 64x128, 128x64, 128x128
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
 | 
						|
                                  BLOCK_8X8,    //                     4x4
 | 
						|
  BLOCK_16X16,   BLOCK_16X16,   BLOCK_16X16,    //    4x8,    8x4,     8x8
 | 
						|
  BLOCK_32X32,   BLOCK_32X32,   BLOCK_32X32,    //   8x16,   16x8,   16x16
 | 
						|
  BLOCK_64X64,   BLOCK_64X64,   BLOCK_64X64,    //  16x32,  32x16,   32x32
 | 
						|
  BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST,  //  32x64,  64x32,   64x64
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST   // 64x128, 128x64, 128x128
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
// Next square block size less or equal than current block size.
 | 
						|
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
 | 
						|
                              BLOCK_4X4,    //                     4x4
 | 
						|
  BLOCK_4X4,   BLOCK_4X4,     BLOCK_8X8,    //    4x8,    8x4,     8x8
 | 
						|
  BLOCK_8X8,   BLOCK_8X8,     BLOCK_16X16,  //   8x16,   16x8,   16x16
 | 
						|
  BLOCK_16X16, BLOCK_16X16,   BLOCK_32X32,  //  16x32,  32x16,   32x32
 | 
						|
  BLOCK_32X32, BLOCK_32X32,   BLOCK_64X64,  //  32x64,  64x32,   64x64
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  BLOCK_64X64, BLOCK_64X64, BLOCK_128X128   // 64x128, 128x64, 128x128
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
/* clang-format on */
 | 
						|
 | 
						|
// Look at all the mode_info entries for blocks that are part of this
 | 
						|
// partition and find the min and max values for sb_type.
 | 
						|
// At the moment this is designed to work on a superblock but could be
 | 
						|
// adjusted to use a size parameter.
 | 
						|
//
 | 
						|
// The min and max are assumed to have been initialized prior to calling this
 | 
						|
// function so repeat calls can accumulate a min and max of more than one
 | 
						|
// superblock.
 | 
						|
static void get_sb_partition_size_range(const AV1_COMMON *const cm,
 | 
						|
                                        MACROBLOCKD *xd, MODE_INFO **mib,
 | 
						|
                                        BLOCK_SIZE *min_block_size,
 | 
						|
                                        BLOCK_SIZE *max_block_size) {
 | 
						|
  int i, j;
 | 
						|
  int index = 0;
 | 
						|
 | 
						|
  // Check the sb_type for each block that belongs to this region.
 | 
						|
  for (i = 0; i < cm->mib_size; ++i) {
 | 
						|
    for (j = 0; j < cm->mib_size; ++j) {
 | 
						|
      MODE_INFO *mi = mib[index + j];
 | 
						|
      BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4;
 | 
						|
      *min_block_size = AOMMIN(*min_block_size, sb_type);
 | 
						|
      *max_block_size = AOMMAX(*max_block_size, sb_type);
 | 
						|
    }
 | 
						|
    index += xd->mi_stride;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Look at neighboring blocks and set a min and max partition size based on
 | 
						|
// what they chose.
 | 
						|
static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile,
 | 
						|
                                    MACROBLOCKD *const xd, int mi_row,
 | 
						|
                                    int mi_col, BLOCK_SIZE *min_block_size,
 | 
						|
                                    BLOCK_SIZE *max_block_size) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MODE_INFO **mi = xd->mi;
 | 
						|
  const int left_in_image = xd->left_available && mi[-1];
 | 
						|
  const int above_in_image = xd->up_available && mi[-xd->mi_stride];
 | 
						|
  const int mi_rows_remaining = tile->mi_row_end - mi_row;
 | 
						|
  const int mi_cols_remaining = tile->mi_col_end - mi_col;
 | 
						|
  int bh, bw;
 | 
						|
  BLOCK_SIZE min_size = BLOCK_4X4;
 | 
						|
  BLOCK_SIZE max_size = BLOCK_LARGEST;
 | 
						|
 | 
						|
  // Trap case where we do not have a prediction.
 | 
						|
  if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
 | 
						|
    // Default "min to max" and "max to min"
 | 
						|
    min_size = BLOCK_LARGEST;
 | 
						|
    max_size = BLOCK_4X4;
 | 
						|
 | 
						|
    // NOTE: each call to get_sb_partition_size_range() uses the previous
 | 
						|
    // passed in values for min and max as a starting point.
 | 
						|
    // Find the min and max partition used in previous frame at this location
 | 
						|
    if (cm->frame_type != KEY_FRAME) {
 | 
						|
      MODE_INFO **prev_mi =
 | 
						|
          &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
 | 
						|
      get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size);
 | 
						|
    }
 | 
						|
    // Find the min and max partition sizes used in the left superblock
 | 
						|
    if (left_in_image) {
 | 
						|
      MODE_INFO **left_sb_mi = &mi[-cm->mib_size];
 | 
						|
      get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size);
 | 
						|
    }
 | 
						|
    // Find the min and max partition sizes used in the above suprblock.
 | 
						|
    if (above_in_image) {
 | 
						|
      MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size];
 | 
						|
      get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size);
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust observed min and max for "relaxed" auto partition case.
 | 
						|
    if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
 | 
						|
      min_size = min_partition_size[min_size];
 | 
						|
      max_size = max_partition_size[max_size];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check border cases where max and min from neighbors may not be legal.
 | 
						|
  max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining,
 | 
						|
                                 &bh, &bw);
 | 
						|
  min_size = AOMMIN(min_size, max_size);
 | 
						|
 | 
						|
  // Test for blocks at the edge of the active image.
 | 
						|
  // This may be the actual edge of the image or where there are formatting
 | 
						|
  // bars.
 | 
						|
  if (av1_active_edge_sb(cpi, mi_row, mi_col)) {
 | 
						|
    min_size = BLOCK_4X4;
 | 
						|
  } else {
 | 
						|
    min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size);
 | 
						|
  }
 | 
						|
 | 
						|
  // When use_square_partition_only is true, make sure at least one square
 | 
						|
  // partition is allowed by selecting the next smaller square size as
 | 
						|
  // *min_block_size.
 | 
						|
  if (cpi->sf.use_square_partition_only) {
 | 
						|
    min_size = AOMMIN(min_size, next_square_size[max_size]);
 | 
						|
  }
 | 
						|
 | 
						|
  *min_block_size = AOMMIN(min_size, cm->sb_size);
 | 
						|
  *max_block_size = AOMMIN(max_size, cm->sb_size);
 | 
						|
}
 | 
						|
 | 
						|
// TODO(jingning) refactor functions setting partition search range
 | 
						|
static void set_partition_range(AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row,
 | 
						|
                                int mi_col, BLOCK_SIZE bsize,
 | 
						|
                                BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
 | 
						|
  int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  int idx, idy;
 | 
						|
 | 
						|
  MODE_INFO *mi;
 | 
						|
  const int idx_str = cm->mi_stride * mi_row + mi_col;
 | 
						|
  MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
 | 
						|
  BLOCK_SIZE bs, min_size, max_size;
 | 
						|
 | 
						|
  min_size = BLOCK_LARGEST;
 | 
						|
  max_size = BLOCK_4X4;
 | 
						|
 | 
						|
  if (prev_mi) {
 | 
						|
    for (idy = 0; idy < mi_height; ++idy) {
 | 
						|
      for (idx = 0; idx < mi_width; ++idx) {
 | 
						|
        mi = prev_mi[idy * cm->mi_stride + idx];
 | 
						|
        bs = mi ? mi->mbmi.sb_type : bsize;
 | 
						|
        min_size = AOMMIN(min_size, bs);
 | 
						|
        max_size = AOMMAX(max_size, bs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (xd->left_available) {
 | 
						|
    for (idy = 0; idy < mi_height; ++idy) {
 | 
						|
      mi = xd->mi[idy * cm->mi_stride - 1];
 | 
						|
      bs = mi ? mi->mbmi.sb_type : bsize;
 | 
						|
      min_size = AOMMIN(min_size, bs);
 | 
						|
      max_size = AOMMAX(max_size, bs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (xd->up_available) {
 | 
						|
    for (idx = 0; idx < mi_width; ++idx) {
 | 
						|
      mi = xd->mi[idx - cm->mi_stride];
 | 
						|
      bs = mi ? mi->mbmi.sb_type : bsize;
 | 
						|
      min_size = AOMMIN(min_size, bs);
 | 
						|
      max_size = AOMMAX(max_size, bs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (min_size == max_size) {
 | 
						|
    min_size = min_partition_size[min_size];
 | 
						|
    max_size = max_partition_size[max_size];
 | 
						|
  }
 | 
						|
 | 
						|
  *min_bs = AOMMIN(min_size, cm->sb_size);
 | 
						|
  *max_bs = AOMMIN(max_size, cm->sb_size);
 | 
						|
}
 | 
						|
 | 
						|
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
 | 
						|
  memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
 | 
						|
}
 | 
						|
 | 
						|
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
 | 
						|
  memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
 | 
						|
  0,
 | 
						|
  10,
 | 
						|
  10,
 | 
						|
  30,
 | 
						|
  40,
 | 
						|
  40,
 | 
						|
  60,
 | 
						|
  80,
 | 
						|
  80,
 | 
						|
  90,
 | 
						|
  100,
 | 
						|
  100,
 | 
						|
  120,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  // TODO(debargha): What are the correct numbers here?
 | 
						|
  130,
 | 
						|
  130,
 | 
						|
  150
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
 | 
						|
  0,
 | 
						|
  3,
 | 
						|
  3,
 | 
						|
  7,
 | 
						|
  15,
 | 
						|
  15,
 | 
						|
  30,
 | 
						|
  40,
 | 
						|
  40,
 | 
						|
  60,
 | 
						|
  80,
 | 
						|
  80,
 | 
						|
  120,
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  // TODO(debargha): What are the correct numbers here?
 | 
						|
  160,
 | 
						|
  160,
 | 
						|
  240
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  1,
 | 
						|
  4,
 | 
						|
  4,
 | 
						|
  6
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  // TODO(debargha): What are the correct numbers here?
 | 
						|
  8,
 | 
						|
  8,
 | 
						|
  10
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
};
 | 
						|
 | 
						|
typedef enum {
 | 
						|
  MV_ZERO = 0,
 | 
						|
  MV_LEFT = 1,
 | 
						|
  MV_UP = 2,
 | 
						|
  MV_RIGHT = 3,
 | 
						|
  MV_DOWN = 4,
 | 
						|
  MV_INVALID
 | 
						|
} MOTION_DIRECTION;
 | 
						|
 | 
						|
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
 | 
						|
  if (fp_byte & FPMB_MOTION_ZERO_MASK) {
 | 
						|
    return MV_ZERO;
 | 
						|
  } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
 | 
						|
    return MV_LEFT;
 | 
						|
  } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
 | 
						|
    return MV_RIGHT;
 | 
						|
  } else if (fp_byte & FPMB_MOTION_UP_MASK) {
 | 
						|
    return MV_UP;
 | 
						|
  } else {
 | 
						|
    return MV_DOWN;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
 | 
						|
                                           MOTION_DIRECTION that_mv) {
 | 
						|
  if (this_mv == that_mv) {
 | 
						|
    return 0;
 | 
						|
  } else {
 | 
						|
    return abs(this_mv - that_mv) == 2 ? 2 : 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
static void rd_test_partition3(
 | 
						|
    AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp,
 | 
						|
    PC_TREE *pc_tree, RD_COST *best_rdc, PICK_MODE_CONTEXT ctxs[3],
 | 
						|
    PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize,
 | 
						|
    PARTITION_TYPE partition,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    int64_t best_rd, int *best_rate_nocoef, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
 | 
						|
#endif
 | 
						|
    int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1,
 | 
						|
    BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  RD_COST this_rdc, sum_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  TileInfo *const tile_info = &tile_data->tile_info;
 | 
						|
  int this_rate_nocoef, sum_rate_nocoef;
 | 
						|
  int abort_flag;
 | 
						|
  const int supertx_allowed = !frame_is_intra_only(cm) &&
 | 
						|
                              bsize <= MAX_SUPERTX_BLOCK_SIZE &&
 | 
						|
                              !xd->lossless[0];
 | 
						|
#endif
 | 
						|
  if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
  rd_pick_sb_modes(cpi, tile_data, x, mi_row0, mi_col0, &sum_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                   &sum_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                   partition,
 | 
						|
#endif
 | 
						|
                   subsize0, &ctxs[0], best_rdc->rdcost);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  abort_flag = sum_rdc.rdcost >= best_rd;
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  if (sum_rdc.rdcost < INT64_MAX) {
 | 
						|
#else
 | 
						|
  if (sum_rdc.rdcost < best_rdc->rdcost) {
 | 
						|
#endif
 | 
						|
    PICK_MODE_CONTEXT *ctx = &ctxs[0];
 | 
						|
    update_state(cpi, td, ctx, mi_row0, mi_col0, subsize0, 0);
 | 
						|
    encode_superblock(cpi, td, tp, 0, mi_row0, mi_col0, subsize0, ctx);
 | 
						|
 | 
						|
    if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
 | 
						|
                     &this_rate_nocoef,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     partition,
 | 
						|
#endif
 | 
						|
                     subsize1, &ctxs[1], INT64_MAX - sum_rdc.rdcost);
 | 
						|
#else
 | 
						|
    rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     partition,
 | 
						|
#endif
 | 
						|
                     subsize1, &ctxs[1], best_rdc->rdcost - sum_rdc.rdcost);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
    if (this_rdc.rate == INT_MAX) {
 | 
						|
      sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      sum_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
      sum_rdc.rate += this_rdc.rate;
 | 
						|
      sum_rdc.dist += this_rdc.dist;
 | 
						|
      sum_rdc.rdcost += this_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      sum_rate_nocoef += this_rate_nocoef;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    if (sum_rdc.rdcost < INT64_MAX) {
 | 
						|
#else
 | 
						|
    if (sum_rdc.rdcost < best_rdc->rdcost) {
 | 
						|
#endif
 | 
						|
      PICK_MODE_CONTEXT *ctx = &ctxs[1];
 | 
						|
      update_state(cpi, td, ctx, mi_row1, mi_col1, subsize1, 0);
 | 
						|
      encode_superblock(cpi, td, tp, 0, mi_row1, mi_col1, subsize1, ctx);
 | 
						|
 | 
						|
      if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
 | 
						|
                       &this_rate_nocoef,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       partition,
 | 
						|
#endif
 | 
						|
                       subsize2, &ctxs[2], INT64_MAX - sum_rdc.rdcost);
 | 
						|
#else
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       partition,
 | 
						|
#endif
 | 
						|
                       subsize2, &ctxs[2], best_rdc->rdcost - sum_rdc.rdcost);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
      if (this_rdc.rate == INT_MAX) {
 | 
						|
        sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
      } else {
 | 
						|
        sum_rdc.rate += this_rdc.rate;
 | 
						|
        sum_rdc.dist += this_rdc.dist;
 | 
						|
        sum_rdc.rdcost += this_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef += this_rate_nocoef;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      if (supertx_allowed && !abort_flag && sum_rdc.rdcost < INT64_MAX) {
 | 
						|
        TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
        const PARTITION_TYPE best_partition = pc_tree->partitioning;
 | 
						|
        pc_tree->partitioning = partition;
 | 
						|
        sum_rdc.rate += av1_cost_bit(
 | 
						|
            cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
 | 
						|
                                [supertx_size],
 | 
						|
            0);
 | 
						|
        sum_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
 | 
						|
        if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
 | 
						|
          TX_TYPE best_tx = DCT_DCT;
 | 
						|
          RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
 | 
						|
 | 
						|
          restore_context(x, x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
          rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
 | 
						|
                        &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
 | 
						|
 | 
						|
          tmp_rdc.rate += av1_cost_bit(
 | 
						|
              cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
 | 
						|
                                  [supertx_size],
 | 
						|
              1);
 | 
						|
          tmp_rdc.rdcost =
 | 
						|
              RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
 | 
						|
          if (tmp_rdc.rdcost < sum_rdc.rdcost) {
 | 
						|
            sum_rdc = tmp_rdc;
 | 
						|
            update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
 | 
						|
                                    supertx_size, pc_tree);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        pc_tree->partitioning = best_partition;
 | 
						|
      }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
      if (sum_rdc.rdcost < best_rdc->rdcost) {
 | 
						|
        int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
 | 
						|
        sum_rdc.rate += cpi->partition_cost[pl][partition];
 | 
						|
        sum_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef += cpi->partition_cost[pl][partition];
 | 
						|
#endif
 | 
						|
        if (sum_rdc.rdcost < best_rdc->rdcost) {
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          *best_rate_nocoef = sum_rate_nocoef;
 | 
						|
          assert(*best_rate_nocoef >= 0);
 | 
						|
#endif
 | 
						|
          *best_rdc = sum_rdc;
 | 
						|
          pc_tree->partitioning = partition;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
 | 
						|
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
 | 
						|
// unlikely to be selected depending on previous rate-distortion optimization
 | 
						|
// results, for encoding speed-up.
 | 
						|
static void rd_pick_partition(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                              TileDataEnc *tile_data, TOKENEXTRA **tp,
 | 
						|
                              int mi_row, int mi_col, BLOCK_SIZE bsize,
 | 
						|
                              RD_COST *rd_cost,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                              int *rate_nocoef,
 | 
						|
#endif
 | 
						|
                              int64_t best_rd, PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  TileInfo *const tile_info = &tile_data->tile_info;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
 | 
						|
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
 | 
						|
  TOKENEXTRA *tp_orig = *tp;
 | 
						|
  PICK_MODE_CONTEXT *ctx = &pc_tree->none;
 | 
						|
  int i;
 | 
						|
  const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
 | 
						|
  int *partition_cost = cpi->partition_cost[pl];
 | 
						|
  int tmp_partition_cost[PARTITION_TYPES];
 | 
						|
  BLOCK_SIZE subsize;
 | 
						|
  RD_COST this_rdc, sum_rdc, best_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  int this_rate_nocoef, sum_rate_nocoef = 0, best_rate_nocoef = INT_MAX;
 | 
						|
  int abort_flag;
 | 
						|
  const int supertx_allowed = !frame_is_intra_only(cm) &&
 | 
						|
                              bsize <= MAX_SUPERTX_BLOCK_SIZE &&
 | 
						|
                              !xd->lossless[0];
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
  int do_split = bsize >= BLOCK_8X8;
 | 
						|
  int do_rect = 1;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
#endif
 | 
						|
 | 
						|
  // Override skipping rectangular partition operations for edge blocks
 | 
						|
  const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
 | 
						|
  const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
 | 
						|
  const int xss = x->e_mbd.plane[1].subsampling_x;
 | 
						|
  const int yss = x->e_mbd.plane[1].subsampling_y;
 | 
						|
 | 
						|
  BLOCK_SIZE min_size = x->min_partition_size;
 | 
						|
  BLOCK_SIZE max_size = x->max_partition_size;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
  unsigned int src_diff_var = UINT_MAX;
 | 
						|
  int none_complexity = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  int partition_none_allowed = !force_horz_split && !force_vert_split;
 | 
						|
  int partition_horz_allowed =
 | 
						|
      !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
 | 
						|
  int partition_vert_allowed =
 | 
						|
      !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
 | 
						|
  (void)*tp_orig;
 | 
						|
 | 
						|
  if (force_horz_split || force_vert_split) {
 | 
						|
    tmp_partition_cost[PARTITION_NONE] = INT_MAX;
 | 
						|
 | 
						|
    if (!force_vert_split) {  // force_horz_split only
 | 
						|
      tmp_partition_cost[PARTITION_VERT] = INT_MAX;
 | 
						|
      tmp_partition_cost[PARTITION_HORZ] =
 | 
						|
          av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 0);
 | 
						|
      tmp_partition_cost[PARTITION_SPLIT] =
 | 
						|
          av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 1);
 | 
						|
    } else if (!force_horz_split) {  // force_vert_split only
 | 
						|
      tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
 | 
						|
      tmp_partition_cost[PARTITION_VERT] =
 | 
						|
          av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 0);
 | 
						|
      tmp_partition_cost[PARTITION_SPLIT] =
 | 
						|
          av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 1);
 | 
						|
    } else {  // force_ horz_split && force_vert_split horz_split
 | 
						|
      tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
 | 
						|
      tmp_partition_cost[PARTITION_VERT] = INT_MAX;
 | 
						|
      tmp_partition_cost[PARTITION_SPLIT] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    partition_cost = tmp_partition_cost;
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Nothing should rely on the default value of this array (which is just
 | 
						|
  // leftover from encoding the previous block. Setting it to magic number
 | 
						|
  // when debugging.
 | 
						|
  memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0]));
 | 
						|
#endif  // NDEBUG
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
 | 
						|
  assert(num_8x8_blocks_wide_lookup[bsize] ==
 | 
						|
         num_8x8_blocks_high_lookup[bsize]);
 | 
						|
 | 
						|
  av1_rd_cost_init(&this_rdc);
 | 
						|
  av1_rd_cost_init(&sum_rdc);
 | 
						|
  av1_rd_cost_reset(&best_rdc);
 | 
						|
  best_rdc.rdcost = best_rd;
 | 
						|
 | 
						|
  set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
  if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
 | 
						|
    x->mb_energy = av1_block_energy(cpi, x, bsize);
 | 
						|
 | 
						|
  if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
 | 
						|
    int cb_partition_search_ctrl =
 | 
						|
        ((pc_tree->index == 0 || pc_tree->index == 3) +
 | 
						|
         get_chessboard_index(cm->current_video_frame)) &
 | 
						|
        0x1;
 | 
						|
 | 
						|
    if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
 | 
						|
      set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine partition types in search according to the speed features.
 | 
						|
  // The threshold set here has to be of square block size.
 | 
						|
  if (cpi->sf.auto_min_max_partition_size) {
 | 
						|
    partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
 | 
						|
    partition_horz_allowed &=
 | 
						|
        ((bsize <= max_size && bsize > min_size) || force_horz_split);
 | 
						|
    partition_vert_allowed &=
 | 
						|
        ((bsize <= max_size && bsize > min_size) || force_vert_split);
 | 
						|
    do_split &= bsize > min_size;
 | 
						|
  }
 | 
						|
  if (cpi->sf.use_square_partition_only) {
 | 
						|
    partition_horz_allowed &= force_horz_split;
 | 
						|
    partition_vert_allowed &= force_vert_split;
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  xd->above_txfm_context = cm->above_txfm_context + mi_col;
 | 
						|
  xd->left_txfm_context =
 | 
						|
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
 | 
						|
#endif
 | 
						|
 | 
						|
  save_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
  if (cpi->use_fp_mb_stats) {
 | 
						|
    set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
 | 
						|
    src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
 | 
						|
                                                  mi_col, bsize);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
  // Decide whether we shall split directly and skip searching NONE by using
 | 
						|
  // the first pass block statistics
 | 
						|
  if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
 | 
						|
      partition_none_allowed && src_diff_var > 4 &&
 | 
						|
      cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
 | 
						|
    int mb_row = mi_row >> 1;
 | 
						|
    int mb_col = mi_col >> 1;
 | 
						|
    int mb_row_end =
 | 
						|
        AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
 | 
						|
    int mb_col_end =
 | 
						|
        AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
 | 
						|
    int r, c;
 | 
						|
 | 
						|
    // compute a complexity measure, basically measure inconsistency of motion
 | 
						|
    // vectors obtained from the first pass in the current block
 | 
						|
    for (r = mb_row; r < mb_row_end; r++) {
 | 
						|
      for (c = mb_col; c < mb_col_end; c++) {
 | 
						|
        const int mb_index = r * cm->mb_cols + c;
 | 
						|
 | 
						|
        MOTION_DIRECTION this_mv;
 | 
						|
        MOTION_DIRECTION right_mv;
 | 
						|
        MOTION_DIRECTION bottom_mv;
 | 
						|
 | 
						|
        this_mv =
 | 
						|
            get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
 | 
						|
 | 
						|
        // to its right
 | 
						|
        if (c != mb_col_end - 1) {
 | 
						|
          right_mv = get_motion_direction_fp(
 | 
						|
              cpi->twopass.this_frame_mb_stats[mb_index + 1]);
 | 
						|
          none_complexity += get_motion_inconsistency(this_mv, right_mv);
 | 
						|
        }
 | 
						|
 | 
						|
        // to its bottom
 | 
						|
        if (r != mb_row_end - 1) {
 | 
						|
          bottom_mv = get_motion_direction_fp(
 | 
						|
              cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
 | 
						|
          none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
 | 
						|
        }
 | 
						|
 | 
						|
        // do not count its left and top neighbors to avoid double counting
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
 | 
						|
      partition_none_allowed = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // PARTITION_NONE
 | 
						|
  if (partition_none_allowed) {
 | 
						|
    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                     &this_rate_nocoef,
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     PARTITION_NONE,
 | 
						|
#endif
 | 
						|
                     bsize, ctx, best_rdc.rdcost);
 | 
						|
    if (this_rdc.rate != INT_MAX) {
 | 
						|
      if (bsize >= BLOCK_8X8) {
 | 
						|
        this_rdc.rate += partition_cost[PARTITION_NONE];
 | 
						|
        this_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        this_rate_nocoef += partition_cost[PARTITION_NONE];
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
      if (this_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
        int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
 | 
						|
        int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
 | 
						|
 | 
						|
        best_rdc = this_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        best_rate_nocoef = this_rate_nocoef;
 | 
						|
        assert(best_rate_nocoef >= 0);
 | 
						|
#endif
 | 
						|
        if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
 | 
						|
 | 
						|
        // Adjust dist breakout threshold according to the partition size.
 | 
						|
        dist_breakout_thr >>=
 | 
						|
            (2 * (MAX_SB_SIZE_LOG2 - 2)) -
 | 
						|
            (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
 | 
						|
 | 
						|
        rate_breakout_thr *= num_pels_log2_lookup[bsize];
 | 
						|
 | 
						|
        // If all y, u, v transform blocks in this partition are skippable, and
 | 
						|
        // the dist & rate are within the thresholds, the partition search is
 | 
						|
        // terminated for current branch of the partition search tree.
 | 
						|
        // The dist & rate thresholds are set to 0 at speed 0 to disable the
 | 
						|
        // early termination at that speed.
 | 
						|
        if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
 | 
						|
            (ctx->skippable && best_rdc.dist < dist_breakout_thr &&
 | 
						|
             best_rdc.rate < rate_breakout_thr)) {
 | 
						|
          do_split = 0;
 | 
						|
          do_rect = 0;
 | 
						|
        }
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
        // Check if every 16x16 first pass block statistics has zero
 | 
						|
        // motion and the corresponding first pass residue is small enough.
 | 
						|
        // If that is the case, check the difference variance between the
 | 
						|
        // current frame and the last frame. If the variance is small enough,
 | 
						|
        // stop further splitting in RD optimization
 | 
						|
        if (cpi->use_fp_mb_stats && do_split != 0 &&
 | 
						|
            cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
 | 
						|
          int mb_row = mi_row >> 1;
 | 
						|
          int mb_col = mi_col >> 1;
 | 
						|
          int mb_row_end =
 | 
						|
              AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
 | 
						|
          int mb_col_end =
 | 
						|
              AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
 | 
						|
          int r, c;
 | 
						|
 | 
						|
          int skip = 1;
 | 
						|
          for (r = mb_row; r < mb_row_end; r++) {
 | 
						|
            for (c = mb_col; c < mb_col_end; c++) {
 | 
						|
              const int mb_index = r * cm->mb_cols + c;
 | 
						|
              if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
 | 
						|
                    FPMB_MOTION_ZERO_MASK) ||
 | 
						|
                  !(cpi->twopass.this_frame_mb_stats[mb_index] &
 | 
						|
                    FPMB_ERROR_SMALL_MASK)) {
 | 
						|
                skip = 0;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            if (skip == 0) {
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (skip) {
 | 
						|
            if (src_diff_var == UINT_MAX) {
 | 
						|
              set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
 | 
						|
              src_diff_var = get_sby_perpixel_diff_variance(
 | 
						|
                  cpi, &x->plane[0].src, mi_row, mi_col, bsize);
 | 
						|
            }
 | 
						|
            if (src_diff_var < 8) {
 | 
						|
              do_split = 0;
 | 
						|
              do_rect = 0;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
 | 
						|
  // store estimated motion vector
 | 
						|
  if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx);
 | 
						|
 | 
						|
  // PARTITION_SPLIT
 | 
						|
  // TODO(jingning): use the motion vectors given by the above search as
 | 
						|
  // the starting point of motion search in the following partition type check.
 | 
						|
  if (do_split) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
    if (bsize == BLOCK_8X8) {
 | 
						|
      i = 4;
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
 | 
						|
        pc_tree->leaf_split[0]->pred_interp_filter =
 | 
						|
            ctx->mic.mbmi.interp_filter[0];
 | 
						|
#else
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
 | 
						|
        pc_tree->leaf_split[0]->pred_interp_filter =
 | 
						|
            ctx->mic.mbmi.interp_filter;
 | 
						|
#endif
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
 | 
						|
                       &sum_rate_nocoef,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_SPLIT,
 | 
						|
#endif
 | 
						|
                       subsize, pc_tree->leaf_split[0], INT64_MAX);
 | 
						|
#else
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_SPLIT,
 | 
						|
#endif
 | 
						|
                       subsize, pc_tree->leaf_split[0], best_rdc.rdcost);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      if (sum_rdc.rate == INT_MAX) {
 | 
						|
        sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef = INT_MAX;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      if (supertx_allowed && sum_rdc.rdcost < INT64_MAX) {
 | 
						|
        TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
        const PARTITION_TYPE best_partition = pc_tree->partitioning;
 | 
						|
 | 
						|
        pc_tree->partitioning = PARTITION_SPLIT;
 | 
						|
 | 
						|
        sum_rdc.rate +=
 | 
						|
            av1_cost_bit(cm->fc->supertx_prob
 | 
						|
                             [partition_supertx_context_lookup[PARTITION_SPLIT]]
 | 
						|
                             [supertx_size],
 | 
						|
                         0);
 | 
						|
        sum_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
 | 
						|
        if (is_inter_mode(pc_tree->leaf_split[0]->mic.mbmi.mode)) {
 | 
						|
          TX_TYPE best_tx = DCT_DCT;
 | 
						|
          RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
 | 
						|
 | 
						|
          restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
          rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
 | 
						|
                        &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
 | 
						|
 | 
						|
          tmp_rdc.rate += av1_cost_bit(
 | 
						|
              cm->fc->supertx_prob
 | 
						|
                  [partition_supertx_context_lookup[PARTITION_SPLIT]]
 | 
						|
                  [supertx_size],
 | 
						|
              1);
 | 
						|
          tmp_rdc.rdcost =
 | 
						|
              RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
 | 
						|
          if (tmp_rdc.rdcost < sum_rdc.rdcost) {
 | 
						|
            sum_rdc = tmp_rdc;
 | 
						|
            update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
 | 
						|
                                    supertx_size, pc_tree);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        pc_tree->partitioning = best_partition;
 | 
						|
      }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
    } else {
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      for (i = 0; i < 4 && sum_rdc.rdcost < INT64_MAX; ++i) {
 | 
						|
#else
 | 
						|
      for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        const int x_idx = (i & 1) * mi_step;
 | 
						|
        const int y_idx = (i >> 1) * mi_step;
 | 
						|
 | 
						|
        if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
        pc_tree->split[i]->index = i;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
 | 
						|
                          mi_col + x_idx, subsize, &this_rdc, &this_rate_nocoef,
 | 
						|
                          INT64_MAX - sum_rdc.rdcost, pc_tree->split[i]);
 | 
						|
#else
 | 
						|
        rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
 | 
						|
                          mi_col + x_idx, subsize, &this_rdc,
 | 
						|
                          best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
        if (this_rdc.rate == INT_MAX) {
 | 
						|
          sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          sum_rate_nocoef = INT_MAX;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          sum_rdc.rate += this_rdc.rate;
 | 
						|
          sum_rdc.dist += this_rdc.dist;
 | 
						|
          sum_rdc.rdcost += this_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          sum_rate_nocoef += this_rate_nocoef;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        }
 | 
						|
      }
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && i == 4) {
 | 
						|
        TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
        const PARTITION_TYPE best_partition = pc_tree->partitioning;
 | 
						|
 | 
						|
        pc_tree->partitioning = PARTITION_SPLIT;
 | 
						|
 | 
						|
        sum_rdc.rate +=
 | 
						|
            av1_cost_bit(cm->fc->supertx_prob
 | 
						|
                             [partition_supertx_context_lookup[PARTITION_SPLIT]]
 | 
						|
                             [supertx_size],
 | 
						|
                         0);
 | 
						|
        sum_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
 | 
						|
        if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
 | 
						|
          TX_TYPE best_tx = DCT_DCT;
 | 
						|
          RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
 | 
						|
 | 
						|
          restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
          rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
 | 
						|
                        &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
 | 
						|
 | 
						|
          tmp_rdc.rate += av1_cost_bit(
 | 
						|
              cm->fc->supertx_prob
 | 
						|
                  [partition_supertx_context_lookup[PARTITION_SPLIT]]
 | 
						|
                  [supertx_size],
 | 
						|
              1);
 | 
						|
          tmp_rdc.rdcost =
 | 
						|
              RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
 | 
						|
          if (tmp_rdc.rdcost < sum_rdc.rdcost) {
 | 
						|
            sum_rdc = tmp_rdc;
 | 
						|
            update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
 | 
						|
                                    supertx_size, pc_tree);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        pc_tree->partitioning = best_partition;
 | 
						|
      }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
    }
 | 
						|
 | 
						|
    if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
 | 
						|
      sum_rdc.rate += partition_cost[PARTITION_SPLIT];
 | 
						|
      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      sum_rate_nocoef += partition_cost[PARTITION_SPLIT];
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
      if (sum_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
        best_rdc = sum_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        best_rate_nocoef = sum_rate_nocoef;
 | 
						|
        assert(best_rate_nocoef >= 0);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        pc_tree->partitioning = PARTITION_SPLIT;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // skip rectangular partition test when larger block size
 | 
						|
      // gives better rd cost
 | 
						|
      if (cpi->sf.less_rectangular_check) do_rect &= !partition_none_allowed;
 | 
						|
    }
 | 
						|
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }  // if (do_split)
 | 
						|
 | 
						|
  // PARTITION_HORZ
 | 
						|
  if (partition_horz_allowed &&
 | 
						|
      (do_rect || av1_active_h_edge(cpi, mi_row, mi_step))) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_HORZ);
 | 
						|
    if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
        partition_none_allowed)
 | 
						|
      pc_tree->horizontal[0].pred_interp_filter =
 | 
						|
          ctx->mic.mbmi.interp_filter[0];
 | 
						|
#else
 | 
						|
    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
        partition_none_allowed)
 | 
						|
      pc_tree->horizontal[0].pred_interp_filter = ctx->mic.mbmi.interp_filter;
 | 
						|
#endif
 | 
						|
    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                     &sum_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     PARTITION_HORZ,
 | 
						|
#endif
 | 
						|
                     subsize, &pc_tree->horizontal[0], best_rdc.rdcost);
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) ||
 | 
						|
                 (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
 | 
						|
    if (sum_rdc.rdcost < INT64_MAX &&
 | 
						|
#else
 | 
						|
    if (sum_rdc.rdcost < best_rdc.rdcost &&
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        mi_row + mi_step < cm->mi_rows && bsize > BLOCK_8X8) {
 | 
						|
      PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
 | 
						|
      update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
 | 
						|
      encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
 | 
						|
 | 
						|
      if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
          partition_none_allowed)
 | 
						|
        pc_tree->horizontal[1].pred_interp_filter =
 | 
						|
            ctx->mic.mbmi.interp_filter[0];
 | 
						|
#else
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
          partition_none_allowed)
 | 
						|
        pc_tree->horizontal[1].pred_interp_filter = ctx->mic.mbmi.interp_filter;
 | 
						|
#endif
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
 | 
						|
                       &this_rate_nocoef,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_HORZ,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->horizontal[1], INT64_MAX);
 | 
						|
#else
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_HORZ,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->horizontal[1],
 | 
						|
                       best_rdc.rdcost - sum_rdc.rdcost);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      if (this_rdc.rate == INT_MAX) {
 | 
						|
        sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef = INT_MAX;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      } else {
 | 
						|
        sum_rdc.rate += this_rdc.rate;
 | 
						|
        sum_rdc.dist += this_rdc.dist;
 | 
						|
        sum_rdc.rdcost += this_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef += this_rate_nocoef;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
 | 
						|
      TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
      const PARTITION_TYPE best_partition = pc_tree->partitioning;
 | 
						|
 | 
						|
      pc_tree->partitioning = PARTITION_HORZ;
 | 
						|
 | 
						|
      sum_rdc.rate += av1_cost_bit(
 | 
						|
          cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
 | 
						|
                              [supertx_size],
 | 
						|
          0);
 | 
						|
      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
 | 
						|
      if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
 | 
						|
        TX_TYPE best_tx = DCT_DCT;
 | 
						|
        RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
 | 
						|
 | 
						|
        restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
        rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
 | 
						|
                      &tmp_rdc.dist, &best_tx, pc_tree);
 | 
						|
 | 
						|
        tmp_rdc.rate += av1_cost_bit(
 | 
						|
            cm->fc
 | 
						|
                ->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
 | 
						|
                              [supertx_size],
 | 
						|
            1);
 | 
						|
        tmp_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
 | 
						|
        if (tmp_rdc.rdcost < sum_rdc.rdcost) {
 | 
						|
          sum_rdc = tmp_rdc;
 | 
						|
          update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
 | 
						|
                                  supertx_size, pc_tree);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      pc_tree->partitioning = best_partition;
 | 
						|
    }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
    if (sum_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
      sum_rdc.rate += partition_cost[PARTITION_HORZ];
 | 
						|
      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      sum_rate_nocoef += partition_cost[PARTITION_HORZ];
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      if (sum_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
        best_rdc = sum_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        best_rate_nocoef = sum_rate_nocoef;
 | 
						|
        assert(best_rate_nocoef >= 0);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        pc_tree->partitioning = PARTITION_HORZ;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
 | 
						|
  // PARTITION_VERT
 | 
						|
  if (partition_vert_allowed &&
 | 
						|
      (do_rect || av1_active_v_edge(cpi, mi_col, mi_step))) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_VERT);
 | 
						|
 | 
						|
    if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
        partition_none_allowed)
 | 
						|
      pc_tree->vertical[0].pred_interp_filter = ctx->mic.mbmi.interp_filter[0];
 | 
						|
#else
 | 
						|
    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
        partition_none_allowed)
 | 
						|
      pc_tree->vertical[0].pred_interp_filter = ctx->mic.mbmi.interp_filter;
 | 
						|
#endif
 | 
						|
    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                     &sum_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                     PARTITION_VERT,
 | 
						|
#endif
 | 
						|
                     subsize, &pc_tree->vertical[0], best_rdc.rdcost);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) ||
 | 
						|
                 (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
 | 
						|
    if (sum_rdc.rdcost < INT64_MAX &&
 | 
						|
#else
 | 
						|
    if (sum_rdc.rdcost < best_rdc.rdcost &&
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        mi_col + mi_step < cm->mi_cols && bsize > BLOCK_8X8) {
 | 
						|
      update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
 | 
						|
      encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
 | 
						|
                        &pc_tree->vertical[0]);
 | 
						|
 | 
						|
      if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
          partition_none_allowed)
 | 
						|
        pc_tree->vertical[1].pred_interp_filter =
 | 
						|
            ctx->mic.mbmi.interp_filter[0];
 | 
						|
#else
 | 
						|
      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
 | 
						|
          partition_none_allowed)
 | 
						|
        pc_tree->vertical[1].pred_interp_filter = ctx->mic.mbmi.interp_filter;
 | 
						|
#endif
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
 | 
						|
                       &this_rate_nocoef,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_VERT,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->vertical[1],
 | 
						|
                       INT64_MAX - sum_rdc.rdcost);
 | 
						|
#else
 | 
						|
      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
                       PARTITION_VERT,
 | 
						|
#endif
 | 
						|
                       subsize, &pc_tree->vertical[1],
 | 
						|
                       best_rdc.rdcost - sum_rdc.rdcost);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      if (this_rdc.rate == INT_MAX) {
 | 
						|
        sum_rdc.rdcost = INT64_MAX;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef = INT_MAX;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      } else {
 | 
						|
        sum_rdc.rate += this_rdc.rate;
 | 
						|
        sum_rdc.dist += this_rdc.dist;
 | 
						|
        sum_rdc.rdcost += this_rdc.rdcost;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        sum_rate_nocoef += this_rate_nocoef;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      }
 | 
						|
    }
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
 | 
						|
      TX_SIZE supertx_size = max_txsize_lookup[bsize];
 | 
						|
      const PARTITION_TYPE best_partition = pc_tree->partitioning;
 | 
						|
 | 
						|
      pc_tree->partitioning = PARTITION_VERT;
 | 
						|
 | 
						|
      sum_rdc.rate += av1_cost_bit(
 | 
						|
          cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
 | 
						|
                              [supertx_size],
 | 
						|
          0);
 | 
						|
      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
 | 
						|
      if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
 | 
						|
        TX_TYPE best_tx = DCT_DCT;
 | 
						|
        RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
 | 
						|
 | 
						|
        restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
        rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
 | 
						|
                      &tmp_rdc.dist, &best_tx, pc_tree);
 | 
						|
 | 
						|
        tmp_rdc.rate += av1_cost_bit(
 | 
						|
            cm->fc
 | 
						|
                ->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
 | 
						|
                              [supertx_size],
 | 
						|
            1);
 | 
						|
        tmp_rdc.rdcost =
 | 
						|
            RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
 | 
						|
        if (tmp_rdc.rdcost < sum_rdc.rdcost) {
 | 
						|
          sum_rdc = tmp_rdc;
 | 
						|
          update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
 | 
						|
                                  supertx_size, pc_tree);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      pc_tree->partitioning = best_partition;
 | 
						|
    }
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
    if (sum_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
      sum_rdc.rate += partition_cost[PARTITION_VERT];
 | 
						|
      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
      sum_rate_nocoef += partition_cost[PARTITION_VERT];
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
      if (sum_rdc.rdcost < best_rdc.rdcost) {
 | 
						|
        best_rdc = sum_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
        best_rate_nocoef = sum_rate_nocoef;
 | 
						|
        assert(best_rate_nocoef >= 0);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
        pc_tree->partitioning = PARTITION_VERT;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  // PARTITION_HORZ_A
 | 
						|
  if (partition_horz_allowed && do_rect && bsize > BLOCK_8X8 &&
 | 
						|
      partition_none_allowed) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_HORZ_A);
 | 
						|
    rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
 | 
						|
                       pc_tree->horizontala, ctx, mi_row, mi_col, bsize,
 | 
						|
                       PARTITION_HORZ_A,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       best_rd, &best_rate_nocoef, &x_ctx,
 | 
						|
#endif
 | 
						|
                       mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2,
 | 
						|
                       mi_row + mi_step, mi_col, subsize);
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
  // PARTITION_HORZ_B
 | 
						|
  if (partition_horz_allowed && do_rect && bsize > BLOCK_8X8 &&
 | 
						|
      partition_none_allowed) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_HORZ_B);
 | 
						|
    rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
 | 
						|
                       pc_tree->horizontalb, ctx, mi_row, mi_col, bsize,
 | 
						|
                       PARTITION_HORZ_B,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       best_rd, &best_rate_nocoef, &x_ctx,
 | 
						|
#endif
 | 
						|
                       mi_row, mi_col, subsize, mi_row + mi_step, mi_col,
 | 
						|
                       bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
  // PARTITION_VERT_A
 | 
						|
  if (partition_vert_allowed && do_rect && bsize > BLOCK_8X8 &&
 | 
						|
      partition_none_allowed) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_VERT_A);
 | 
						|
    rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
 | 
						|
                       pc_tree->verticala, ctx, mi_row, mi_col, bsize,
 | 
						|
                       PARTITION_VERT_A,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       best_rd, &best_rate_nocoef, &x_ctx,
 | 
						|
#endif
 | 
						|
                       mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2,
 | 
						|
                       mi_row, mi_col + mi_step, subsize);
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
  // PARTITION_VERT_B
 | 
						|
  if (partition_vert_allowed && do_rect && bsize > BLOCK_8X8 &&
 | 
						|
      partition_none_allowed) {
 | 
						|
    subsize = get_subsize(bsize, PARTITION_VERT_B);
 | 
						|
    rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
 | 
						|
                       pc_tree->verticalb, ctx, mi_row, mi_col, bsize,
 | 
						|
                       PARTITION_VERT_B,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       best_rd, &best_rate_nocoef, &x_ctx,
 | 
						|
#endif
 | 
						|
                       mi_row, mi_col, subsize, mi_row, mi_col + mi_step,
 | 
						|
                       bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
 | 
						|
    restore_context(x, &x_ctx, mi_row, mi_col, bsize);
 | 
						|
  }
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
 | 
						|
  // TODO(jbb): This code added so that we avoid static analysis
 | 
						|
  // warning related to the fact that best_rd isn't used after this
 | 
						|
  // point.  This code should be refactored so that the duplicate
 | 
						|
  // checks occur in some sub function and thus are used...
 | 
						|
  (void)best_rd;
 | 
						|
  *rd_cost = best_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
  *rate_nocoef = best_rate_nocoef;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
  if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
 | 
						|
      pc_tree->index != 3) {
 | 
						|
    int output_enabled = (bsize == cm->sb_size);
 | 
						|
    encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
 | 
						|
              pc_tree);
 | 
						|
  }
 | 
						|
 | 
						|
  if (bsize == cm->sb_size) {
 | 
						|
    assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
 | 
						|
    assert(best_rdc.rate < INT_MAX);
 | 
						|
    assert(best_rdc.dist < INT64_MAX);
 | 
						|
  } else {
 | 
						|
    assert(tp_orig == *tp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                             TileDataEnc *tile_data, int mi_row,
 | 
						|
                             TOKENEXTRA **tp) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const TileInfo *const tile_info = &tile_data->tile_info;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  SPEED_FEATURES *const sf = &cpi->sf;
 | 
						|
  int mi_col;
 | 
						|
#if CONFIG_EXT_PARTITION
 | 
						|
  const int leaf_nodes = 256;
 | 
						|
#else
 | 
						|
  const int leaf_nodes = 64;
 | 
						|
#endif  // CONFIG_EXT_PARTITION
 | 
						|
 | 
						|
  // Initialize the left context for the new SB row
 | 
						|
  av1_zero_left_context(xd);
 | 
						|
 | 
						|
  // Code each SB in the row
 | 
						|
  for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
 | 
						|
       mi_col += cm->mib_size) {
 | 
						|
    const struct segmentation *const seg = &cm->seg;
 | 
						|
    int dummy_rate;
 | 
						|
    int64_t dummy_dist;
 | 
						|
    RD_COST dummy_rdc;
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
    int dummy_rate_nocoef;
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
    int i;
 | 
						|
    int seg_skip = 0;
 | 
						|
 | 
						|
    const int idx_str = cm->mi_stride * mi_row + mi_col;
 | 
						|
    MODE_INFO **mi = cm->mi_grid_visible + idx_str;
 | 
						|
    PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
 | 
						|
 | 
						|
    if (sf->adaptive_pred_interp_filter) {
 | 
						|
      for (i = 0; i < leaf_nodes; ++i)
 | 
						|
        td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
 | 
						|
 | 
						|
      for (i = 0; i < leaf_nodes; ++i) {
 | 
						|
        td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
 | 
						|
        td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
 | 
						|
        td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
 | 
						|
        td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    av1_zero(x->pred_mv);
 | 
						|
    pc_root->index = 0;
 | 
						|
 | 
						|
    if (seg->enabled) {
 | 
						|
      const uint8_t *const map =
 | 
						|
          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
 | 
						|
      int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
 | 
						|
      seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
 | 
						|
    }
 | 
						|
 | 
						|
    x->source_variance = UINT_MAX;
 | 
						|
    if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
 | 
						|
      BLOCK_SIZE bsize;
 | 
						|
      set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
 | 
						|
      bsize = seg_skip ? cm->sb_size : sf->always_this_block_size;
 | 
						|
      set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
 | 
						|
      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
 | 
						|
                       &dummy_rate, &dummy_dist,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &dummy_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                       1, pc_root);
 | 
						|
    } else if (cpi->partition_search_skippable_frame) {
 | 
						|
      BLOCK_SIZE bsize;
 | 
						|
      set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
 | 
						|
      bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
 | 
						|
      set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
 | 
						|
      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
 | 
						|
                       &dummy_rate, &dummy_dist,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &dummy_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                       1, pc_root);
 | 
						|
    } else if (sf->partition_search_type == VAR_BASED_PARTITION) {
 | 
						|
      choose_partitioning(cpi, td, tile_info, x, mi_row, mi_col);
 | 
						|
      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
 | 
						|
                       &dummy_rate, &dummy_dist,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                       &dummy_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                       1, pc_root);
 | 
						|
    } else {
 | 
						|
      // If required set upper and lower partition size limits
 | 
						|
      if (sf->auto_min_max_partition_size) {
 | 
						|
        set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
 | 
						|
        rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
 | 
						|
                                &x->min_partition_size, &x->max_partition_size);
 | 
						|
      }
 | 
						|
      rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size,
 | 
						|
                        &dummy_rdc,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                        &dummy_rate_nocoef,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                        INT64_MAX, pc_root);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#if CONFIG_ENTROPY
 | 
						|
  if (cm->do_subframe_update &&
 | 
						|
      cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
 | 
						|
    if ((mi_row + MI_SIZE) %
 | 
						|
                (MI_SIZE *
 | 
						|
                 AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) ==
 | 
						|
            0 &&
 | 
						|
        mi_row + MI_SIZE < cm->mi_rows &&
 | 
						|
        cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) {
 | 
						|
      TX_SIZE t;
 | 
						|
      SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats;
 | 
						|
 | 
						|
      for (t = TX_4X4; t <= TX_32X32; ++t)
 | 
						|
        av1_full_to_model_counts(cpi->td.counts->coef[t],
 | 
						|
                                 cpi->td.rd_counts.coef_counts[t]);
 | 
						|
      av1_partial_adapt_probs(cm, mi_row, mi_col);
 | 
						|
      ++cm->coef_probs_update_idx;
 | 
						|
      av1_copy(subframe_stats->coef_probs_buf[cm->coef_probs_update_idx],
 | 
						|
               cm->fc->coef_probs);
 | 
						|
      av1_copy(subframe_stats->coef_counts_buf[cm->coef_probs_update_idx],
 | 
						|
               cpi->td.rd_counts.coef_counts);
 | 
						|
      av1_copy(subframe_stats->eob_counts_buf[cm->coef_probs_update_idx],
 | 
						|
               cm->counts.eob_branch);
 | 
						|
      av1_fill_token_costs(x->token_costs,
 | 
						|
#if CONFIG_ANS
 | 
						|
                           cm->fc->coef_cdfs,
 | 
						|
#endif  // CONFIG_ANS
 | 
						|
                           cm->fc->coef_probs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif  // CONFIG_ENTROPY
 | 
						|
}
 | 
						|
 | 
						|
static void init_encode_frame_mb_context(AV1_COMP *cpi) {
 | 
						|
  MACROBLOCK *const x = &cpi->td.mb;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
 | 
						|
  // Copy data over into macro block data structures.
 | 
						|
  av1_setup_src_planes(x, cpi->Source, 0, 0);
 | 
						|
 | 
						|
  av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
 | 
						|
}
 | 
						|
 | 
						|
static int check_dual_ref_flags(AV1_COMP *cpi) {
 | 
						|
  const int ref_flags = cpi->ref_frame_flags;
 | 
						|
 | 
						|
  if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
 | 
						|
    return 0;
 | 
						|
  } else {
 | 
						|
    return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) +
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
            !!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) +
 | 
						|
            !!(ref_flags & AOM_BWD_FLAG) +
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
            !!(ref_flags & AOM_ALT_FLAG)) >= 2;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if !CONFIG_VAR_TX
 | 
						|
static void reset_skip_tx_size(AV1_COMMON *cm, TX_SIZE max_tx_size) {
 | 
						|
  int mi_row, mi_col;
 | 
						|
  const int mis = cm->mi_stride;
 | 
						|
  MODE_INFO **mi_ptr = cm->mi_grid_visible;
 | 
						|
 | 
						|
  for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
 | 
						|
    for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
 | 
						|
      if (txsize_sqr_up_map[mi_ptr[mi_col]->mbmi.tx_size] > max_tx_size)
 | 
						|
        mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) {
 | 
						|
  if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME;
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
  // We will not update the golden frame with an internal overlay frame
 | 
						|
  else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) ||
 | 
						|
           cpi->rc.is_src_frame_ext_arf)
 | 
						|
#else
 | 
						|
  else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
 | 
						|
#endif
 | 
						|
    return ALTREF_FRAME;
 | 
						|
  else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
 | 
						|
    return GOLDEN_FRAME;
 | 
						|
  else
 | 
						|
    // TODO(zoeliu): To investigate whether a frame_type other than
 | 
						|
    // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
 | 
						|
    return LAST_FRAME;
 | 
						|
}
 | 
						|
 | 
						|
static TX_MODE select_tx_mode(const AV1_COMP *cpi, MACROBLOCKD *const xd) {
 | 
						|
  if (xd->lossless[0]) return ONLY_4X4;
 | 
						|
  if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
 | 
						|
    return ALLOW_32X32;
 | 
						|
  else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
 | 
						|
           cpi->sf.tx_size_search_method == USE_TX_8X8)
 | 
						|
    return TX_MODE_SELECT;
 | 
						|
  else
 | 
						|
    return cpi->common.tx_mode;
 | 
						|
}
 | 
						|
 | 
						|
void av1_init_tile_data(AV1_COMP *cpi) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  const int tile_cols = cm->tile_cols;
 | 
						|
  const int tile_rows = cm->tile_rows;
 | 
						|
  int tile_col, tile_row;
 | 
						|
  TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
 | 
						|
  unsigned int tile_tok = 0;
 | 
						|
 | 
						|
  if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
 | 
						|
    if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
 | 
						|
    CHECK_MEM_ERROR(cm, cpi->tile_data, aom_malloc(tile_cols * tile_rows *
 | 
						|
                                                   sizeof(*cpi->tile_data)));
 | 
						|
    cpi->allocated_tiles = tile_cols * tile_rows;
 | 
						|
 | 
						|
    for (tile_row = 0; tile_row < tile_rows; ++tile_row)
 | 
						|
      for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
 | 
						|
        TileDataEnc *const tile_data =
 | 
						|
            &cpi->tile_data[tile_row * tile_cols + tile_col];
 | 
						|
        int i, j;
 | 
						|
        for (i = 0; i < BLOCK_SIZES; ++i) {
 | 
						|
          for (j = 0; j < MAX_MODES; ++j) {
 | 
						|
            tile_data->thresh_freq_fact[i][j] = 32;
 | 
						|
            tile_data->mode_map[i][j] = j;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
 | 
						|
    for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
 | 
						|
      TileInfo *const tile_info =
 | 
						|
          &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
 | 
						|
      av1_tile_init(tile_info, cm, tile_row, tile_col);
 | 
						|
 | 
						|
      cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
 | 
						|
      pre_tok = cpi->tile_tok[tile_row][tile_col];
 | 
						|
      tile_tok = allocated_tokens(*tile_info);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
 | 
						|
                     int tile_col) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  TileDataEnc *const this_tile =
 | 
						|
      &cpi->tile_data[tile_row * cm->tile_cols + tile_col];
 | 
						|
  const TileInfo *const tile_info = &this_tile->tile_info;
 | 
						|
  TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
 | 
						|
  int mi_row;
 | 
						|
 | 
						|
  av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end);
 | 
						|
 | 
						|
  // Set up pointers to per thread motion search counters.
 | 
						|
  td->mb.m_search_count_ptr = &td->rd_counts.m_search_count;
 | 
						|
  td->mb.ex_search_count_ptr = &td->rd_counts.ex_search_count;
 | 
						|
 | 
						|
  for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
 | 
						|
       mi_row += cm->mib_size) {
 | 
						|
    encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
 | 
						|
  }
 | 
						|
 | 
						|
  cpi->tok_count[tile_row][tile_col] =
 | 
						|
      (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
 | 
						|
  assert(cpi->tok_count[tile_row][tile_col] <= allocated_tokens(*tile_info));
 | 
						|
}
 | 
						|
 | 
						|
static void encode_tiles(AV1_COMP *cpi) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  int tile_col, tile_row;
 | 
						|
 | 
						|
  av1_init_tile_data(cpi);
 | 
						|
 | 
						|
  for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row)
 | 
						|
    for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col)
 | 
						|
      av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
 | 
						|
                            AV1_COMMON *cm, uint8_t **this_frame_mb_stats) {
 | 
						|
  uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
 | 
						|
                         cm->current_video_frame * cm->MBs * sizeof(uint8_t);
 | 
						|
 | 
						|
  if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
 | 
						|
 | 
						|
  *this_frame_mb_stats = mb_stats_in;
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_GLOBAL_MOTION
 | 
						|
#define MIN_TRANS_THRESH 8
 | 
						|
#define GLOBAL_MOTION_ADVANTAGE_THRESH 0.60
 | 
						|
#define GLOBAL_MOTION_MODEL ROTZOOM
 | 
						|
static void refine_integerized_param(WarpedMotionParams *wm,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                                     int use_hbd, int bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                                     uint8_t *ref, int r_width, int r_height,
 | 
						|
                                     int r_stride, uint8_t *dst, int d_width,
 | 
						|
                                     int d_height, int d_stride,
 | 
						|
                                     int n_refinements) {
 | 
						|
  int i = 0, p;
 | 
						|
  int n_params = n_trans_model_params[wm->wmtype];
 | 
						|
  int16_t *param_mat = (int16_t *)wm->wmmat;
 | 
						|
  double step_error;
 | 
						|
  int step;
 | 
						|
  int16_t *param;
 | 
						|
  int16_t curr_param;
 | 
						|
  int16_t best_param;
 | 
						|
 | 
						|
  double best_error =
 | 
						|
      av1_warp_erroradv(wm,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                        use_hbd, bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                        ref, r_width, r_height, r_stride, dst, 0, 0, d_width,
 | 
						|
                        d_height, d_stride, 0, 0, 16, 16);
 | 
						|
  for (p = 0; p < n_params; ++p) {
 | 
						|
    param = param_mat + p;
 | 
						|
    step = 1 << (n_refinements + 1);
 | 
						|
    curr_param = *param;
 | 
						|
    best_param = curr_param;
 | 
						|
    for (i = 0; i < n_refinements; i++) {
 | 
						|
      // look to the left
 | 
						|
      *param = curr_param - step;
 | 
						|
      step_error =
 | 
						|
          av1_warp_erroradv(wm,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                            use_hbd, bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                            ref, r_width, r_height, r_stride, dst, 0, 0,
 | 
						|
                            d_width, d_height, d_stride, 0, 0, 16, 16);
 | 
						|
      if (step_error < best_error) {
 | 
						|
        step >>= 1;
 | 
						|
        best_error = step_error;
 | 
						|
        best_param = *param;
 | 
						|
        curr_param = best_param;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // look to the right
 | 
						|
      *param = curr_param + step;
 | 
						|
      step_error =
 | 
						|
          av1_warp_erroradv(wm,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                            use_hbd, bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                            ref, r_width, r_height, r_stride, dst, 0, 0,
 | 
						|
                            d_width, d_height, d_stride, 0, 0, 16, 16);
 | 
						|
      if (step_error < best_error) {
 | 
						|
        step >>= 1;
 | 
						|
        best_error = step_error;
 | 
						|
        best_param = *param;
 | 
						|
        curr_param = best_param;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // no improvement found-> means we're either already at a minimum or
 | 
						|
      // step is too wide
 | 
						|
      step >>= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    *param = best_param;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void convert_to_params(const double *params, TransformationType type,
 | 
						|
                              int16_t *model) {
 | 
						|
  int i, diag_value;
 | 
						|
  int alpha_present = 0;
 | 
						|
  int n_params = n_trans_model_params[type];
 | 
						|
  model[0] = (int16_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
 | 
						|
  model[1] = (int16_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
 | 
						|
  model[0] = (int16_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
 | 
						|
             GM_TRANS_DECODE_FACTOR;
 | 
						|
  model[1] = (int16_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
 | 
						|
             GM_TRANS_DECODE_FACTOR;
 | 
						|
 | 
						|
  for (i = 2; i < n_params; ++i) {
 | 
						|
    diag_value = ((i && 1) ? (1 << GM_ALPHA_PREC_BITS) : 0);
 | 
						|
    model[i] = (int16_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
 | 
						|
    model[i] =
 | 
						|
        (int16_t)(clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX) +
 | 
						|
                  diag_value) *
 | 
						|
        GM_ALPHA_DECODE_FACTOR;
 | 
						|
    alpha_present |= (model[i] != 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!alpha_present) {
 | 
						|
    if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
 | 
						|
      model[0] = 0;
 | 
						|
      model[1] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void convert_model_to_params(const double *params,
 | 
						|
                                    TransformationType type,
 | 
						|
                                    Global_Motion_Params *model) {
 | 
						|
  // TODO(sarahparker) implement for homography
 | 
						|
  if (type > HOMOGRAPHY)
 | 
						|
    convert_to_params(params, type, (int16_t *)model->motion_params.wmmat);
 | 
						|
  model->gmtype = get_gmtype(model);
 | 
						|
  model->motion_params.wmtype = gm_to_trans_type(model->gmtype);
 | 
						|
}
 | 
						|
#endif  // CONFIG_GLOBAL_MOTION
 | 
						|
 | 
						|
static void encode_frame_internal(AV1_COMP *cpi) {
 | 
						|
  ThreadData *const td = &cpi->td;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  RD_COUNTS *const rdc = &cpi->td.rd_counts;
 | 
						|
  int i;
 | 
						|
 | 
						|
  x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size);
 | 
						|
  x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size);
 | 
						|
 | 
						|
  xd->mi = cm->mi_grid_visible;
 | 
						|
  xd->mi[0] = cm->mi;
 | 
						|
 | 
						|
  av1_zero(*td->counts);
 | 
						|
  av1_zero(rdc->coef_counts);
 | 
						|
  av1_zero(rdc->comp_pred_diff);
 | 
						|
  rdc->m_search_count = 0;   // Count of motion search hits.
 | 
						|
  rdc->ex_search_count = 0;  // Exhaustive mesh search hits.
 | 
						|
 | 
						|
#if CONFIG_GLOBAL_MOTION
 | 
						|
  aom_clear_system_state();
 | 
						|
  av1_zero(cpi->global_motion_used);
 | 
						|
  if (cpi->common.frame_type == INTER_FRAME && cpi->Source) {
 | 
						|
    YV12_BUFFER_CONFIG *ref_buf;
 | 
						|
    int frame;
 | 
						|
    double erroradvantage = 0;
 | 
						|
    double params[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 | 
						|
    for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
 | 
						|
      ref_buf = get_ref_frame_buffer(cpi, frame);
 | 
						|
      if (ref_buf) {
 | 
						|
        if (compute_global_motion_feature_based(GLOBAL_MOTION_MODEL,
 | 
						|
                                                cpi->Source, ref_buf, params)) {
 | 
						|
          convert_model_to_params(params, GLOBAL_MOTION_MODEL,
 | 
						|
                                  &cm->global_motion[frame]);
 | 
						|
          if (get_gmtype(&cm->global_motion[frame]) > GLOBAL_ZERO) {
 | 
						|
            refine_integerized_param(
 | 
						|
                &cm->global_motion[frame].motion_params,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height,
 | 
						|
                ref_buf->y_stride, cpi->Source->y_buffer, cpi->Source->y_width,
 | 
						|
                cpi->Source->y_height, cpi->Source->y_stride, 3);
 | 
						|
            // compute the advantage of using gm parameters over 0 motion
 | 
						|
            erroradvantage = av1_warp_erroradv(
 | 
						|
                &cm->global_motion[frame].motion_params,
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
                ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height,
 | 
						|
                ref_buf->y_stride, cpi->Source->y_buffer, 0, 0,
 | 
						|
                cpi->Source->y_width, cpi->Source->y_height,
 | 
						|
                cpi->Source->y_stride, 0, 0, 16, 16);
 | 
						|
            if (erroradvantage > GLOBAL_MOTION_ADVANTAGE_THRESH)
 | 
						|
              // Not enough advantage in using a global model. Make 0.
 | 
						|
              memset(&cm->global_motion[frame], 0,
 | 
						|
                     sizeof(cm->global_motion[frame]));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif  // CONFIG_GLOBAL_MOTION
 | 
						|
 | 
						|
  for (i = 0; i < MAX_SEGMENTS; ++i) {
 | 
						|
    const int qindex = cm->seg.enabled
 | 
						|
                           ? av1_get_qindex(&cm->seg, i, cm->base_qindex)
 | 
						|
                           : cm->base_qindex;
 | 
						|
    xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
 | 
						|
                      cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0;
 | 
						|
 | 
						|
  cm->tx_mode = select_tx_mode(cpi, xd);
 | 
						|
  av1_frame_init_quantizer(cpi);
 | 
						|
 | 
						|
  av1_initialize_rd_consts(cpi);
 | 
						|
  av1_initialize_me_consts(cpi, x, cm->base_qindex);
 | 
						|
  init_encode_frame_mb_context(cpi);
 | 
						|
 | 
						|
  cm->use_prev_frame_mvs =
 | 
						|
      !cm->error_resilient_mode && cm->width == cm->last_width &&
 | 
						|
      cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
  // NOTE(zoeliu): As cm->prev_frame can take neither a frame of
 | 
						|
  //               show_exisiting_frame=1, nor can it take a frame not used as
 | 
						|
  //               a reference, it is probable that by the time it is being
 | 
						|
  //               referred to, the frame buffer it originally points to may
 | 
						|
  //               already get expired and have been reassigned to the current
 | 
						|
  //               newly coded frame. Hence, we need to check whether this is
 | 
						|
  //               the case, and if yes, we have 2 choices:
 | 
						|
  //               (1) Simply disable the use of previous frame mvs; or
 | 
						|
  //               (2) Have cm->prev_frame point to one reference frame buffer,
 | 
						|
  //                   e.g. LAST_FRAME.
 | 
						|
  if (cm->use_prev_frame_mvs && !enc_is_ref_frame_buf(cpi, cm->prev_frame)) {
 | 
						|
    // Reassign the LAST_FRAME buffer to cm->prev_frame.
 | 
						|
    const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME);
 | 
						|
    cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx];
 | 
						|
  }
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
 | 
						|
  // Special case: set prev_mi to NULL when the previous mode info
 | 
						|
  // context cannot be used.
 | 
						|
  cm->prev_mi =
 | 
						|
      cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
#if CONFIG_REF_MV
 | 
						|
  av1_zero(x->blk_skip_drl);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
  if (cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
 | 
						|
      cpi->td.var_root[0] == NULL)
 | 
						|
    av1_setup_var_tree(&cpi->common, &cpi->td);
 | 
						|
 | 
						|
  {
 | 
						|
    struct aom_usec_timer emr_timer;
 | 
						|
    aom_usec_timer_start(&emr_timer);
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
    if (cpi->use_fp_mb_stats) {
 | 
						|
      input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
 | 
						|
                       &cpi->twopass.this_frame_mb_stats);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // If allowed, encoding tiles in parallel with one thread handling one tile.
 | 
						|
    // TODO(geza.lore): The multi-threaded encoder is not safe with more than
 | 
						|
    // 1 tile rows, as it uses the single above_context et al arrays from
 | 
						|
    // cpi->common
 | 
						|
    if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1)
 | 
						|
      av1_encode_tiles_mt(cpi);
 | 
						|
    else
 | 
						|
      encode_tiles(cpi);
 | 
						|
 | 
						|
    aom_usec_timer_mark(&emr_timer);
 | 
						|
    cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer);
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  // Keep record of the total distortion this time around for future use
 | 
						|
  cpi->last_frame_distortion = cpi->frame_distortion;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void av1_encode_frame(AV1_COMP *cpi) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
 | 
						|
  // In the longer term the encoder should be generalized to match the
 | 
						|
  // decoder such that we allow compound where one of the 3 buffers has a
 | 
						|
  // different sign bias and that buffer is then the fixed ref. However, this
 | 
						|
  // requires further work in the rd loop. For now the only supported encoder
 | 
						|
  // side behavior is where the ALT ref buffer has opposite sign bias to
 | 
						|
  // the other two.
 | 
						|
  if (!frame_is_intra_only(cm)) {
 | 
						|
    if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
 | 
						|
         cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
 | 
						|
        (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
 | 
						|
         cm->ref_frame_sign_bias[LAST_FRAME])) {
 | 
						|
      cpi->allow_comp_inter_inter = 0;
 | 
						|
    } else {
 | 
						|
      cpi->allow_comp_inter_inter = 1;
 | 
						|
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
      cm->comp_fwd_ref[0] = LAST_FRAME;
 | 
						|
      cm->comp_fwd_ref[1] = LAST2_FRAME;
 | 
						|
      cm->comp_fwd_ref[2] = LAST3_FRAME;
 | 
						|
      cm->comp_fwd_ref[3] = GOLDEN_FRAME;
 | 
						|
      cm->comp_bwd_ref[0] = BWDREF_FRAME;
 | 
						|
      cm->comp_bwd_ref[1] = ALTREF_FRAME;
 | 
						|
#else
 | 
						|
      cm->comp_fixed_ref = ALTREF_FRAME;
 | 
						|
      cm->comp_var_ref[0] = LAST_FRAME;
 | 
						|
      cm->comp_var_ref[1] = GOLDEN_FRAME;
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    cpi->allow_comp_inter_inter = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (cpi->sf.frame_parameter_update) {
 | 
						|
    int i;
 | 
						|
    RD_OPT *const rd_opt = &cpi->rd;
 | 
						|
    FRAME_COUNTS *counts = cpi->td.counts;
 | 
						|
    RD_COUNTS *const rdc = &cpi->td.rd_counts;
 | 
						|
 | 
						|
    // This code does a single RD pass over the whole frame assuming
 | 
						|
    // either compound, single or hybrid prediction as per whatever has
 | 
						|
    // worked best for that type of frame in the past.
 | 
						|
    // It also predicts whether another coding mode would have worked
 | 
						|
    // better than this coding mode. If that is the case, it remembers
 | 
						|
    // that for subsequent frames.
 | 
						|
    // It does the same analysis for transform size selection also.
 | 
						|
    //
 | 
						|
    // TODO(zoeliu): To investigate whether a frame_type other than
 | 
						|
    // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
 | 
						|
    const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
 | 
						|
    int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
 | 
						|
    const int is_alt_ref = frame_type == ALTREF_FRAME;
 | 
						|
 | 
						|
    /* prediction (compound, single or hybrid) mode selection */
 | 
						|
    if (is_alt_ref || !cpi->allow_comp_inter_inter)
 | 
						|
      cm->reference_mode = SINGLE_REFERENCE;
 | 
						|
    else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
 | 
						|
             mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
 | 
						|
             check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
 | 
						|
      cm->reference_mode = COMPOUND_REFERENCE;
 | 
						|
    else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
 | 
						|
      cm->reference_mode = SINGLE_REFERENCE;
 | 
						|
    else
 | 
						|
      cm->reference_mode = REFERENCE_MODE_SELECT;
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    cm->interp_filter = SWITCHABLE;
 | 
						|
#endif
 | 
						|
 | 
						|
    encode_frame_internal(cpi);
 | 
						|
 | 
						|
    for (i = 0; i < REFERENCE_MODES; ++i)
 | 
						|
      mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
 | 
						|
 | 
						|
    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
 | 
						|
      int single_count_zero = 0;
 | 
						|
      int comp_count_zero = 0;
 | 
						|
 | 
						|
      for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
 | 
						|
        single_count_zero += counts->comp_inter[i][0];
 | 
						|
        comp_count_zero += counts->comp_inter[i][1];
 | 
						|
      }
 | 
						|
 | 
						|
      if (comp_count_zero == 0) {
 | 
						|
        cm->reference_mode = SINGLE_REFERENCE;
 | 
						|
        av1_zero(counts->comp_inter);
 | 
						|
      } else if (single_count_zero == 0) {
 | 
						|
        cm->reference_mode = COMPOUND_REFERENCE;
 | 
						|
        av1_zero(counts->comp_inter);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if !CONFIG_VAR_TX
 | 
						|
    if (cm->tx_mode == TX_MODE_SELECT) {
 | 
						|
      int count4x4 = 0;
 | 
						|
      int count8x8_lp = 0, count8x8_8x8p = 0;
 | 
						|
      int count16x16_16x16p = 0, count16x16_lp = 0;
 | 
						|
      int count32x32 = 0;
 | 
						|
      for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
 | 
						|
        count4x4 += counts->tx_size[0][i][TX_4X4];
 | 
						|
        count4x4 += counts->tx_size[1][i][TX_4X4];
 | 
						|
        count4x4 += counts->tx_size[2][i][TX_4X4];
 | 
						|
 | 
						|
        count8x8_lp += counts->tx_size[1][i][TX_8X8];
 | 
						|
        count8x8_lp += counts->tx_size[2][i][TX_8X8];
 | 
						|
        count8x8_8x8p += counts->tx_size[0][i][TX_8X8];
 | 
						|
 | 
						|
        count16x16_16x16p += counts->tx_size[1][i][TX_16X16];
 | 
						|
        count16x16_lp += counts->tx_size[2][i][TX_16X16];
 | 
						|
        count32x32 += counts->tx_size[2][i][TX_32X32];
 | 
						|
      }
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      count4x4 += counts->tx_size_implied[0][TX_4X4];
 | 
						|
      count4x4 += counts->tx_size_implied[1][TX_4X4];
 | 
						|
      count4x4 += counts->tx_size_implied[2][TX_4X4];
 | 
						|
      count4x4 += counts->tx_size_implied[3][TX_4X4];
 | 
						|
      count8x8_lp += counts->tx_size_implied[2][TX_8X8];
 | 
						|
      count8x8_lp += counts->tx_size_implied[3][TX_8X8];
 | 
						|
      count8x8_8x8p += counts->tx_size_implied[1][TX_8X8];
 | 
						|
      count16x16_lp += counts->tx_size_implied[3][TX_16X16];
 | 
						|
      count16x16_16x16p += counts->tx_size_implied[2][TX_16X16];
 | 
						|
      count32x32 += counts->tx_size_implied[3][TX_32X32];
 | 
						|
#endif  // CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
          cm->counts.supertx_size[TX_16X16] == 0 &&
 | 
						|
          cm->counts.supertx_size[TX_32X32] == 0 &&
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
          count32x32 == 0) {
 | 
						|
        cm->tx_mode = ALLOW_8X8;
 | 
						|
        reset_skip_tx_size(cm, TX_8X8);
 | 
						|
      } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
 | 
						|
                 count8x8_lp == 0 && count16x16_lp == 0 &&
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                 cm->counts.supertx_size[TX_8X8] == 0 &&
 | 
						|
                 cm->counts.supertx_size[TX_16X16] == 0 &&
 | 
						|
                 cm->counts.supertx_size[TX_32X32] == 0 &&
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                 count32x32 == 0) {
 | 
						|
        cm->tx_mode = ONLY_4X4;
 | 
						|
        reset_skip_tx_size(cm, TX_4X4);
 | 
						|
      } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
 | 
						|
        cm->tx_mode = ALLOW_32X32;
 | 
						|
      } else if (count32x32 == 0 && count8x8_lp == 0 &&
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                 cm->counts.supertx_size[TX_32X32] == 0 &&
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                 count4x4 == 0) {
 | 
						|
        cm->tx_mode = ALLOW_16X16;
 | 
						|
        reset_skip_tx_size(cm, TX_16X16);
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  } else {
 | 
						|
    encode_frame_internal(cpi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi,
 | 
						|
                            const MODE_INFO *above_mi, const MODE_INFO *left_mi,
 | 
						|
                            const int intraonly) {
 | 
						|
  const PREDICTION_MODE y_mode = mi->mbmi.mode;
 | 
						|
  const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
 | 
						|
  const BLOCK_SIZE bsize = mi->mbmi.sb_type;
 | 
						|
 | 
						|
  if (bsize < BLOCK_8X8) {
 | 
						|
    int idx, idy;
 | 
						|
    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
 | 
						|
    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
 | 
						|
    for (idy = 0; idy < 2; idy += num_4x4_h)
 | 
						|
      for (idx = 0; idx < 2; idx += num_4x4_w) {
 | 
						|
        const int bidx = idy * 2 + idx;
 | 
						|
        const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode;
 | 
						|
        if (intraonly) {
 | 
						|
          const PREDICTION_MODE a = av1_above_block_mode(mi, above_mi, bidx);
 | 
						|
          const PREDICTION_MODE l = av1_left_block_mode(mi, left_mi, bidx);
 | 
						|
          ++counts->kf_y_mode[a][l][bmode];
 | 
						|
        } else {
 | 
						|
          ++counts->y_mode[0][bmode];
 | 
						|
        }
 | 
						|
      }
 | 
						|
  } else {
 | 
						|
    if (intraonly) {
 | 
						|
      const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0);
 | 
						|
      const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0);
 | 
						|
      ++counts->kf_y_mode[above][left][y_mode];
 | 
						|
    } else {
 | 
						|
      ++counts->y_mode[size_group_lookup[bsize]][y_mode];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ++counts->uv_mode[y_mode][uv_mode];
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
static void update_txfm_count(MACROBLOCKD *xd, FRAME_COUNTS *counts,
 | 
						|
                              TX_SIZE tx_size, int blk_row, int blk_col) {
 | 
						|
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
 | 
						|
  const int tx_row = blk_row >> 1;
 | 
						|
  const int tx_col = blk_col >> 1;
 | 
						|
  int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
 | 
						|
  int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
 | 
						|
  int ctx = txfm_partition_context(xd->above_txfm_context + tx_col,
 | 
						|
                                   xd->left_txfm_context + tx_row, tx_size);
 | 
						|
  const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
 | 
						|
 | 
						|
  if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> 5;
 | 
						|
  if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> 5;
 | 
						|
 | 
						|
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
 | 
						|
 | 
						|
  if (tx_size == plane_tx_size) {
 | 
						|
    ++counts->txfm_partition[ctx][0];
 | 
						|
    mbmi->tx_size = tx_size;
 | 
						|
    txfm_partition_update(xd->above_txfm_context + tx_col,
 | 
						|
                          xd->left_txfm_context + tx_row, tx_size);
 | 
						|
  } else {
 | 
						|
    BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
 | 
						|
    int bh = num_4x4_blocks_high_lookup[bsize];
 | 
						|
    int i;
 | 
						|
    ++counts->txfm_partition[ctx][1];
 | 
						|
 | 
						|
    if (tx_size == TX_8X8) {
 | 
						|
      mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
 | 
						|
      mbmi->tx_size = TX_4X4;
 | 
						|
      txfm_partition_update(xd->above_txfm_context + tx_col,
 | 
						|
                            xd->left_txfm_context + tx_row, TX_4X4);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 4; ++i) {
 | 
						|
      int offsetr = (i >> 1) * bh / 2;
 | 
						|
      int offsetc = (i & 0x01) * bh / 2;
 | 
						|
      update_txfm_count(xd, counts, tx_size - 1, blk_row + offsetr,
 | 
						|
                        blk_col + offsetc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void tx_partition_count_update(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                      BLOCK_SIZE plane_bsize, int mi_row,
 | 
						|
                                      int mi_col, FRAME_COUNTS *td_counts) {
 | 
						|
  const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
 | 
						|
  const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
 | 
						|
  TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
 | 
						|
  BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
 | 
						|
  int bh = num_4x4_blocks_wide_lookup[txb_size];
 | 
						|
  int idx, idy;
 | 
						|
 | 
						|
  xd->above_txfm_context = cm->above_txfm_context + mi_col;
 | 
						|
  xd->left_txfm_context =
 | 
						|
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
 | 
						|
 | 
						|
  for (idy = 0; idy < mi_height; idy += bh)
 | 
						|
    for (idx = 0; idx < mi_width; idx += bh)
 | 
						|
      update_txfm_count(xd, td_counts, max_tx_size, idy, idx);
 | 
						|
}
 | 
						|
 | 
						|
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
 | 
						|
                             int blk_col) {
 | 
						|
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
 | 
						|
  const int tx_row = blk_row >> 1;
 | 
						|
  const int tx_col = blk_col >> 1;
 | 
						|
  int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
 | 
						|
  int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
 | 
						|
  const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
 | 
						|
 | 
						|
  if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> 5;
 | 
						|
  if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> 5;
 | 
						|
 | 
						|
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
 | 
						|
 | 
						|
  if (tx_size == plane_tx_size) {
 | 
						|
    mbmi->tx_size = tx_size;
 | 
						|
    txfm_partition_update(xd->above_txfm_context + tx_col,
 | 
						|
                          xd->left_txfm_context + tx_row, tx_size);
 | 
						|
 | 
						|
  } else {
 | 
						|
    BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
 | 
						|
    int bsl = b_width_log2_lookup[bsize];
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (tx_size == TX_8X8) {
 | 
						|
      mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
 | 
						|
      mbmi->tx_size = TX_4X4;
 | 
						|
      txfm_partition_update(xd->above_txfm_context + tx_col,
 | 
						|
                            xd->left_txfm_context + tx_row, TX_4X4);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(bsl > 0);
 | 
						|
    --bsl;
 | 
						|
    for (i = 0; i < 4; ++i) {
 | 
						|
      int offsetr = (i >> 1) << bsl;
 | 
						|
      int offsetc = (i & 0x01) << bsl;
 | 
						|
      set_txfm_context(xd, tx_size - 1, blk_row + offsetr, blk_col + offsetc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void tx_partition_set_contexts(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                      BLOCK_SIZE plane_bsize, int mi_row,
 | 
						|
                                      int mi_col) {
 | 
						|
  const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
 | 
						|
  const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
 | 
						|
  TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
 | 
						|
  BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
 | 
						|
  int bh = num_4x4_blocks_wide_lookup[txb_size];
 | 
						|
  int idx, idy;
 | 
						|
 | 
						|
  xd->above_txfm_context = cm->above_txfm_context + mi_col;
 | 
						|
  xd->left_txfm_context =
 | 
						|
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
 | 
						|
 | 
						|
  for (idy = 0; idy < mi_height; idy += bh)
 | 
						|
    for (idx = 0; idx < mi_width; idx += bh)
 | 
						|
      set_txfm_context(xd, max_tx_size, idy, idx);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void encode_superblock(AV1_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
 | 
						|
                              int output_enabled, int mi_row, int mi_col,
 | 
						|
                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MODE_INFO **mi_8x8 = xd->mi;
 | 
						|
  MODE_INFO *mi = mi_8x8[0];
 | 
						|
  MB_MODE_INFO *mbmi = &mi->mbmi;
 | 
						|
  const int seg_skip =
 | 
						|
      segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
 | 
						|
  const int mis = cm->mi_stride;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
 | 
						|
  x->skip_optimize = ctx->is_coded;
 | 
						|
  ctx->is_coded = 1;
 | 
						|
  x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
 | 
						|
 | 
						|
  if (!is_inter_block(mbmi)) {
 | 
						|
    int plane;
 | 
						|
    mbmi->skip = 1;
 | 
						|
    for (plane = 0; plane < MAX_MB_PLANE; ++plane)
 | 
						|
      av1_encode_intra_block_plane(x, AOMMAX(bsize, BLOCK_8X8), plane, 1);
 | 
						|
    if (output_enabled)
 | 
						|
      sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi,
 | 
						|
                      frame_is_intra_only(cm));
 | 
						|
 | 
						|
#if CONFIG_EXT_INTRA
 | 
						|
    if (output_enabled && bsize >= BLOCK_8X8) {
 | 
						|
      FRAME_COUNTS *counts = td->counts;
 | 
						|
      if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0)
 | 
						|
        ++counts->ext_intra[0][mbmi->ext_intra_mode_info.use_ext_intra_mode[0]];
 | 
						|
      if (mbmi->uv_mode == DC_PRED &&
 | 
						|
          mbmi->palette_mode_info.palette_size[1] == 0)
 | 
						|
        ++counts->ext_intra[1][mbmi->ext_intra_mode_info.use_ext_intra_mode[1]];
 | 
						|
      if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) {
 | 
						|
        int p_angle;
 | 
						|
        const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
 | 
						|
        p_angle =
 | 
						|
            mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
 | 
						|
        if (av1_is_intra_filter_switchable(p_angle))
 | 
						|
          ++counts->intra_filter[intra_filter_ctx][mbmi->intra_filter];
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif  // CONFIG_EXT_INTRA
 | 
						|
 | 
						|
    if (bsize >= BLOCK_8X8 && output_enabled) {
 | 
						|
      for (plane = 0; plane <= 1; ++plane) {
 | 
						|
        if (mbmi->palette_mode_info.palette_size[plane] > 0) {
 | 
						|
          mbmi->palette_mode_info.palette_first_color_idx[plane] =
 | 
						|
              xd->plane[plane].color_index_map[0];
 | 
						|
          // TODO(huisu): this increases the use of token buffer. Needs stretch
 | 
						|
          // test to verify.
 | 
						|
          av1_tokenize_palette_sb(td, bsize, plane, t);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    av1_tokenize_sb(cpi, td, t, !output_enabled, AOMMAX(bsize, BLOCK_8X8));
 | 
						|
  } else {
 | 
						|
    int ref;
 | 
						|
    const int is_compound = has_second_ref(mbmi);
 | 
						|
 | 
						|
    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
 | 
						|
    for (ref = 0; ref < 1 + is_compound; ++ref) {
 | 
						|
      YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
 | 
						|
      assert(cfg != NULL);
 | 
						|
      av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
 | 
						|
                           &xd->block_refs[ref]->sf);
 | 
						|
    }
 | 
						|
    if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
 | 
						|
      av1_build_inter_predictors_sby(xd, mi_row, mi_col,
 | 
						|
                                     AOMMAX(bsize, BLOCK_8X8));
 | 
						|
 | 
						|
    av1_build_inter_predictors_sbuv(xd, mi_row, mi_col,
 | 
						|
                                    AOMMAX(bsize, BLOCK_8X8));
 | 
						|
 | 
						|
#if CONFIG_OBMC
 | 
						|
    if (mbmi->motion_variation == OBMC_CAUSAL) {
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
						|
      DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
						|
#else
 | 
						|
      DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
						|
      DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
 | 
						|
      int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
      int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
      int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
      int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
      int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
      int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
 | 
						|
 | 
						|
      assert(mbmi->sb_type >= BLOCK_8X8);
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
        int len = sizeof(uint16_t);
 | 
						|
        dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
 | 
						|
        dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
 | 
						|
        dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
 | 
						|
        dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
 | 
						|
        dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
 | 
						|
        dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
 | 
						|
      } else {
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
        dst_buf1[0] = tmp_buf1;
 | 
						|
        dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
 | 
						|
        dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
 | 
						|
        dst_buf2[0] = tmp_buf2;
 | 
						|
        dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
 | 
						|
        dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      }
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
      av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
 | 
						|
                                          dst_width1, dst_height1, dst_stride1);
 | 
						|
      av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
 | 
						|
                                         dst_width2, dst_height2, dst_stride2);
 | 
						|
      av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
 | 
						|
      av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1,
 | 
						|
                                      dst_stride1, dst_buf2, dst_stride2);
 | 
						|
    }
 | 
						|
#endif  // CONFIG_OBMC
 | 
						|
 | 
						|
    av1_encode_sb(x, AOMMAX(bsize, BLOCK_8X8));
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
    if (is_rect_tx(mbmi->tx_size))
 | 
						|
      av1_tokenize_sb(cpi, td, t, !output_enabled, AOMMAX(bsize, BLOCK_8X8));
 | 
						|
    else
 | 
						|
#endif
 | 
						|
      av1_tokenize_sb_inter(cpi, td, t, !output_enabled, mi_row, mi_col,
 | 
						|
                            AOMMAX(bsize, BLOCK_8X8));
 | 
						|
#else
 | 
						|
    av1_tokenize_sb(cpi, td, t, !output_enabled, AOMMAX(bsize, BLOCK_8X8));
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (output_enabled) {
 | 
						|
    if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 &&
 | 
						|
        !(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
 | 
						|
      const int is_inter = is_inter_block(mbmi);
 | 
						|
      const int tx_size_ctx = get_tx_size_context(xd);
 | 
						|
      const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
 | 
						|
                                       : intra_tx_size_cat_lookup[bsize];
 | 
						|
      const TX_SIZE coded_tx_size = txsize_sqr_up_map[mbmi->tx_size];
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(mbmi)));
 | 
						|
#endif  // CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      if (is_rect_tx_allowed(mbmi)) {
 | 
						|
        td->counts->rect_tx[tx_size_cat][is_rect_tx(mbmi->tx_size)]++;
 | 
						|
      }
 | 
						|
      if (!is_rect_tx_allowed(mbmi) || !is_rect_tx(mbmi->tx_size)) {
 | 
						|
#endif  // CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
        if (is_inter)
 | 
						|
          tx_partition_count_update(cm, xd, bsize, mi_row, mi_col, td->counts);
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      }
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
      ++td->counts->tx_size[tx_size_cat][tx_size_ctx][coded_tx_size];
 | 
						|
    } else {
 | 
						|
      int x, y;
 | 
						|
      TX_SIZE tx_size;
 | 
						|
      // The new intra coding scheme requires no change of transform size
 | 
						|
      if (is_inter_block(&mi->mbmi)) {
 | 
						|
        if (xd->lossless[mbmi->segment_id]) {
 | 
						|
          tx_size = TX_4X4;
 | 
						|
        } else {
 | 
						|
          tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
 | 
						|
        }
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
        ++td->counts->tx_size_implied[max_txsize_lookup[bsize]]
 | 
						|
                                     [txsize_sqr_up_map[mbmi->tx_size]];
 | 
						|
#endif  // CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
      } else {
 | 
						|
        tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
 | 
						|
      }
 | 
						|
 | 
						|
      for (y = 0; y < mi_height; y++)
 | 
						|
        for (x = 0; x < mi_width; x++)
 | 
						|
          if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
 | 
						|
            mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
 | 
						|
    }
 | 
						|
    ++td->counts->tx_size_totals[txsize_sqr_map[mbmi->tx_size]];
 | 
						|
    ++td->counts
 | 
						|
          ->tx_size_totals[txsize_sqr_map[get_uv_tx_size(mbmi, &xd->plane[1])]];
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
    if (get_ext_tx_types(mbmi->tx_size, bsize, is_inter_block(mbmi)) > 1 &&
 | 
						|
        cm->base_qindex > 0 && !mbmi->skip &&
 | 
						|
        !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
 | 
						|
      int eset = get_ext_tx_set(mbmi->tx_size, bsize, is_inter_block(mbmi));
 | 
						|
      if (eset > 0) {
 | 
						|
        if (is_inter_block(mbmi)) {
 | 
						|
          ++td->counts->inter_ext_tx[eset][txsize_sqr_map[mbmi->tx_size]]
 | 
						|
                                    [mbmi->tx_type];
 | 
						|
        } else {
 | 
						|
          ++td->counts->intra_ext_tx[eset][mbmi->tx_size][mbmi->mode]
 | 
						|
                                    [mbmi->tx_type];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
 | 
						|
        !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
 | 
						|
      if (is_inter_block(mbmi)) {
 | 
						|
        ++td->counts->inter_ext_tx[mbmi->tx_size][mbmi->tx_type];
 | 
						|
      } else {
 | 
						|
        ++td->counts->intra_ext_tx[mbmi->tx_size]
 | 
						|
                                  [intra_mode_to_tx_type_context[mbmi->mode]]
 | 
						|
                                  [mbmi->tx_type];
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 &&
 | 
						|
      is_inter_block(mbmi) && !(mbmi->skip || seg_skip)) {
 | 
						|
    if (!output_enabled)
 | 
						|
      tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
    if (is_rect_tx(mbmi->tx_size)) {
 | 
						|
      set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, xd);
 | 
						|
    }
 | 
						|
#endif  // CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
  } else {
 | 
						|
    TX_SIZE tx_size;
 | 
						|
    // The new intra coding scheme requires no change of transform size
 | 
						|
    if (is_inter_block(mbmi))
 | 
						|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
 | 
						|
    {
 | 
						|
      tx_size = AOMMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
 | 
						|
                       max_txsize_lookup[bsize]);
 | 
						|
      if (txsize_sqr_map[max_txsize_rect_lookup[bsize]] <= tx_size)
 | 
						|
        tx_size = max_txsize_rect_lookup[bsize];
 | 
						|
      if (xd->lossless[mbmi->segment_id]) tx_size = TX_4X4;
 | 
						|
    }
 | 
						|
#else
 | 
						|
      tx_size = AOMMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
 | 
						|
                       max_txsize_lookup[bsize]);
 | 
						|
#endif
 | 
						|
    else
 | 
						|
      tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
 | 
						|
    mbmi->tx_size = tx_size;
 | 
						|
    set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, xd);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
static int check_intra_b(PICK_MODE_CONTEXT *ctx) {
 | 
						|
  if (!is_inter_mode((&ctx->mic)->mbmi.mode)) return 1;
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
  if (ctx->mic.mbmi.ref_frame[1] == INTRA_FRAME) return 1;
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int check_intra_sb(AV1_COMP *cpi, const TileInfo *const tile, int mi_row,
 | 
						|
                          int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
 | 
						|
  const AV1_COMMON *const cm = &cpi->common;
 | 
						|
 | 
						|
  const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
 | 
						|
  const PARTITION_TYPE partition = pc_tree->partitioning;
 | 
						|
  const BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  int i;
 | 
						|
#endif
 | 
						|
 | 
						|
  assert(bsize >= BLOCK_8X8);
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return 1;
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE: return check_intra_b(&pc_tree->none); break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      if (check_intra_b(&pc_tree->vertical[0])) return 1;
 | 
						|
      if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
 | 
						|
        if (check_intra_b(&pc_tree->vertical[1])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      if (check_intra_b(&pc_tree->horizontal[0])) return 1;
 | 
						|
      if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
 | 
						|
        if (check_intra_b(&pc_tree->horizontal[1])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        if (check_intra_b(pc_tree->leaf_split[0])) return 1;
 | 
						|
      } else {
 | 
						|
        if (check_intra_sb(cpi, tile, mi_row, mi_col, subsize,
 | 
						|
                           pc_tree->split[0]))
 | 
						|
          return 1;
 | 
						|
        if (check_intra_sb(cpi, tile, mi_row, mi_col + hbs, subsize,
 | 
						|
                           pc_tree->split[1]))
 | 
						|
          return 1;
 | 
						|
        if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col, subsize,
 | 
						|
                           pc_tree->split[2]))
 | 
						|
          return 1;
 | 
						|
        if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col + hbs, subsize,
 | 
						|
                           pc_tree->split[3]))
 | 
						|
          return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      for (i = 0; i < 3; i++) {
 | 
						|
        if (check_intra_b(&pc_tree->horizontala[i])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      for (i = 0; i < 3; i++) {
 | 
						|
        if (check_intra_b(&pc_tree->horizontalb[i])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      for (i = 0; i < 3; i++) {
 | 
						|
        if (check_intra_b(&pc_tree->verticala[i])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      for (i = 0; i < 3; i++) {
 | 
						|
        if (check_intra_b(&pc_tree->verticalb[i])) return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int check_supertx_b(TX_SIZE supertx_size, PICK_MODE_CONTEXT *ctx) {
 | 
						|
  return ctx->mic.mbmi.tx_size == supertx_size;
 | 
						|
}
 | 
						|
 | 
						|
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
 | 
						|
                            PC_TREE *pc_tree) {
 | 
						|
  PARTITION_TYPE partition;
 | 
						|
  BLOCK_SIZE subsize;
 | 
						|
 | 
						|
  partition = pc_tree->partitioning;
 | 
						|
  subsize = get_subsize(bsize, partition);
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE: return check_supertx_b(supertx_size, &pc_tree->none);
 | 
						|
    case PARTITION_VERT:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->vertical[0]);
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->horizontal[0]);
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8)
 | 
						|
        return check_supertx_b(supertx_size, pc_tree->leaf_split[0]);
 | 
						|
      else
 | 
						|
        return check_supertx_sb(subsize, supertx_size, pc_tree->split[0]);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->horizontala[0]);
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->horizontalb[0]);
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->verticala[0]);
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
      return check_supertx_b(supertx_size, &pc_tree->verticalb[0]);
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0); return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void predict_superblock(AV1_COMP *cpi, ThreadData *td,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                               int mi_row_ori, int mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                               int mi_row_pred, int mi_col_pred,
 | 
						|
                               BLOCK_SIZE bsize_pred, int b_sub8x8, int block) {
 | 
						|
  // Used in supertx
 | 
						|
  // (mi_row_ori, mi_col_ori): location for mv
 | 
						|
  // (mi_row_pred, mi_col_pred, bsize_pred): region to predict
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MODE_INFO *mi_8x8 = xd->mi[0];
 | 
						|
  MODE_INFO *mi = mi_8x8;
 | 
						|
  MB_MODE_INFO *mbmi = &mi->mbmi;
 | 
						|
  int ref;
 | 
						|
  const int is_compound = has_second_ref(mbmi);
 | 
						|
 | 
						|
  set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
 | 
						|
 | 
						|
  for (ref = 0; ref < 1 + is_compound; ++ref) {
 | 
						|
    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
 | 
						|
    av1_setup_pre_planes(xd, ref, cfg, mi_row_pred, mi_col_pred,
 | 
						|
                         &xd->block_refs[ref]->sf);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!b_sub8x8)
 | 
						|
    av1_build_inter_predictors_sb_extend(xd,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                         mi_row_ori, mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                         mi_row_pred, mi_col_pred, bsize_pred);
 | 
						|
  else
 | 
						|
    av1_build_inter_predictors_sb_sub8x8_extend(xd,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                                mi_row_ori, mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                                mi_row_pred, mi_col_pred,
 | 
						|
                                                bsize_pred, block);
 | 
						|
}
 | 
						|
 | 
						|
static void predict_b_extend(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                             const TileInfo *const tile, int block,
 | 
						|
                             int mi_row_ori, int mi_col_ori, int mi_row_pred,
 | 
						|
                             int mi_col_pred, int mi_row_top, int mi_col_top,
 | 
						|
                             uint8_t *dst_buf[3], int dst_stride[3],
 | 
						|
                             BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred,
 | 
						|
                             int output_enabled, int b_sub8x8, int bextend) {
 | 
						|
  // Used in supertx
 | 
						|
  // (mi_row_ori, mi_col_ori): location for mv
 | 
						|
  // (mi_row_pred, mi_col_pred, bsize_pred): region to predict
 | 
						|
  // (mi_row_top, mi_col_top, bsize_top): region of the top partition size
 | 
						|
  // block: sub location of sub8x8 blocks
 | 
						|
  // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
 | 
						|
  // bextend: 1: region to predict is an extension of ori; 0: not
 | 
						|
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  int r = (mi_row_pred - mi_row_top) * MI_SIZE;
 | 
						|
  int c = (mi_col_pred - mi_col_top) * MI_SIZE;
 | 
						|
  const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top];
 | 
						|
  const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top];
 | 
						|
 | 
						|
  if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
 | 
						|
      mi_row_pred >= mi_row_top + mi_height_top ||
 | 
						|
      mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
 | 
						|
      mi_col_pred >= cm->mi_cols)
 | 
						|
    return;
 | 
						|
 | 
						|
  set_offsets_extend(cpi, td, tile, mi_row_pred, mi_col_pred, mi_row_ori,
 | 
						|
                     mi_col_ori, bsize_pred);
 | 
						|
  xd->plane[0].dst.stride = dst_stride[0];
 | 
						|
  xd->plane[1].dst.stride = dst_stride[1];
 | 
						|
  xd->plane[2].dst.stride = dst_stride[2];
 | 
						|
  xd->plane[0].dst.buf = dst_buf[0] +
 | 
						|
                         (r >> xd->plane[0].subsampling_y) * dst_stride[0] +
 | 
						|
                         (c >> xd->plane[0].subsampling_x);
 | 
						|
  xd->plane[1].dst.buf = dst_buf[1] +
 | 
						|
                         (r >> xd->plane[1].subsampling_y) * dst_stride[1] +
 | 
						|
                         (c >> xd->plane[1].subsampling_x);
 | 
						|
  xd->plane[2].dst.buf = dst_buf[2] +
 | 
						|
                         (r >> xd->plane[2].subsampling_y) * dst_stride[2] +
 | 
						|
                         (c >> xd->plane[2].subsampling_x);
 | 
						|
 | 
						|
  predict_superblock(cpi, td,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                     mi_row_ori, mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                     mi_row_pred, mi_col_pred, bsize_pred, b_sub8x8, block);
 | 
						|
 | 
						|
  if (output_enabled && !bextend) update_stats(&cpi->common, td, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void extend_dir(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                       const TileInfo *const tile, int block, BLOCK_SIZE bsize,
 | 
						|
                       BLOCK_SIZE top_bsize, int mi_row, int mi_col,
 | 
						|
                       int mi_row_top, int mi_col_top, int output_enabled,
 | 
						|
                       uint8_t *dst_buf[3], int dst_stride[3], int dir) {
 | 
						|
  // dir: 0-lower, 1-upper, 2-left, 3-right
 | 
						|
  //      4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
 | 
						|
  MACROBLOCKD *xd = &td->mb.e_mbd;
 | 
						|
  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
 | 
						|
  const int mi_height = num_8x8_blocks_high_lookup[bsize];
 | 
						|
  int xss = xd->plane[1].subsampling_x;
 | 
						|
  int yss = xd->plane[1].subsampling_y;
 | 
						|
  int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0;
 | 
						|
 | 
						|
  BLOCK_SIZE extend_bsize;
 | 
						|
  int unit, mi_row_pred, mi_col_pred;
 | 
						|
 | 
						|
  if (dir == 0 || dir == 1) {  // lower and upper
 | 
						|
    extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss)
 | 
						|
                       ? BLOCK_8X8
 | 
						|
                       : BLOCK_16X8;
 | 
						|
    unit = num_8x8_blocks_wide_lookup[extend_bsize];
 | 
						|
    mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1);
 | 
						|
    mi_col_pred = mi_col;
 | 
						|
 | 
						|
    predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
 | 
						|
                     mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
 | 
						|
                     top_bsize, extend_bsize, output_enabled, b_sub8x8, 1);
 | 
						|
 | 
						|
    if (mi_width > unit) {
 | 
						|
      int i;
 | 
						|
      for (i = 0; i < mi_width / unit - 1; i++) {
 | 
						|
        mi_col_pred += unit;
 | 
						|
        predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
 | 
						|
                         mi_col_pred, mi_row_top, mi_col_top, dst_buf,
 | 
						|
                         dst_stride, top_bsize, extend_bsize, output_enabled,
 | 
						|
                         b_sub8x8, 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (dir == 2 || dir == 3) {  // left and right
 | 
						|
    extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss)
 | 
						|
                       ? BLOCK_8X8
 | 
						|
                       : BLOCK_8X16;
 | 
						|
    unit = num_8x8_blocks_high_lookup[extend_bsize];
 | 
						|
    mi_row_pred = mi_row;
 | 
						|
    mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1);
 | 
						|
 | 
						|
    predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
 | 
						|
                     mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
 | 
						|
                     top_bsize, extend_bsize, output_enabled, b_sub8x8, 1);
 | 
						|
 | 
						|
    if (mi_height > unit) {
 | 
						|
      int i;
 | 
						|
      for (i = 0; i < mi_height / unit - 1; i++) {
 | 
						|
        mi_row_pred += unit;
 | 
						|
        predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
 | 
						|
                         mi_col_pred, mi_row_top, mi_col_top, dst_buf,
 | 
						|
                         dst_stride, top_bsize, extend_bsize, output_enabled,
 | 
						|
                         b_sub8x8, 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    extend_bsize = BLOCK_8X8;
 | 
						|
    mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1);
 | 
						|
    mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1);
 | 
						|
 | 
						|
    predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
 | 
						|
                     mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
 | 
						|
                     top_bsize, extend_bsize, output_enabled, b_sub8x8, 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void extend_all(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                       const TileInfo *const tile, int block, BLOCK_SIZE bsize,
 | 
						|
                       BLOCK_SIZE top_bsize, int mi_row, int mi_col,
 | 
						|
                       int mi_row_top, int mi_col_top, int output_enabled,
 | 
						|
                       uint8_t *dst_buf[3], int dst_stride[3]) {
 | 
						|
  assert(block >= 0 && block < 4);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 0);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 1);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 2);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 3);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 4);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 5);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 6);
 | 
						|
  extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
             mi_col_top, output_enabled, dst_buf, dst_stride, 7);
 | 
						|
}
 | 
						|
 | 
						|
// This function generates prediction for multiple blocks, between which
 | 
						|
// discontinuity around boundary is reduced by smoothing masks. The basic
 | 
						|
// smoothing mask is a soft step function along horz/vert direction. In more
 | 
						|
// complicated case when a block is split into 4 subblocks, the basic mask is
 | 
						|
// first applied to neighboring subblocks (2 pairs) in horizontal direction and
 | 
						|
// then applied to the 2 masked prediction mentioned above in vertical direction
 | 
						|
// If the block is split into more than one level, at every stage, masked
 | 
						|
// prediction is stored in dst_buf[] passed from higher level.
 | 
						|
static void predict_sb_complex(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                               const TileInfo *const tile, int mi_row,
 | 
						|
                               int mi_col, int mi_row_top, int mi_col_top,
 | 
						|
                               int output_enabled, BLOCK_SIZE bsize,
 | 
						|
                               BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
 | 
						|
                               int dst_stride[3], PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
 | 
						|
  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
 | 
						|
  const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
 | 
						|
  const PARTITION_TYPE partition = pc_tree->partitioning;
 | 
						|
  const BLOCK_SIZE subsize = get_subsize(bsize, partition);
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
 | 
						|
#endif
 | 
						|
 | 
						|
  int i;
 | 
						|
  uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
 | 
						|
  DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
 | 
						|
  DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
 | 
						|
  DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
 | 
						|
  int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
 | 
						|
  int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
 | 
						|
  int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
 | 
						|
 | 
						|
  assert(bsize >= BLOCK_8X8);
 | 
						|
 | 
						|
  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
    int len = sizeof(uint16_t);
 | 
						|
    dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
 | 
						|
    dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
 | 
						|
    dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
 | 
						|
    dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
 | 
						|
    dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
 | 
						|
    dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
 | 
						|
    dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
 | 
						|
    dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
 | 
						|
    dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
 | 
						|
  } else {
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
    dst_buf1[0] = tmp_buf1;
 | 
						|
    dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
 | 
						|
    dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
 | 
						|
    dst_buf2[0] = tmp_buf2;
 | 
						|
    dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
 | 
						|
    dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
 | 
						|
    dst_buf3[0] = tmp_buf3;
 | 
						|
    dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
 | 
						|
    dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  }
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
  if (output_enabled && bsize < top_bsize)
 | 
						|
    cm->counts.partition[ctx][partition]++;
 | 
						|
 | 
						|
  for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
    xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
    xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
  }
 | 
						|
 | 
						|
  switch (partition) {
 | 
						|
    case PARTITION_NONE:
 | 
						|
      assert(bsize < top_bsize);
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                       mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                       bsize, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top,
 | 
						|
                 mi_col_top, output_enabled, dst_buf, dst_stride);
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        // Fisrt half
 | 
						|
        predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                         BLOCK_8X8, output_enabled, 1, 0);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride);
 | 
						|
 | 
						|
        // Second half
 | 
						|
        predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf1, dst_stride1,
 | 
						|
                         top_bsize, BLOCK_8X8, output_enabled, 1, 1);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf1,
 | 
						|
                     dst_stride1);
 | 
						|
 | 
						|
        // Smooth
 | 
						|
        xd->plane[0].dst.buf = dst_buf[0];
 | 
						|
        xd->plane[0].dst.stride = dst_stride[0];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
 | 
						|
            0);
 | 
						|
      } else {
 | 
						|
        // First half
 | 
						|
        predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                         subsize, output_enabled, 0, 0);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride);
 | 
						|
        else
 | 
						|
          extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride, 0);
 | 
						|
 | 
						|
        if (mi_row + hbs < cm->mi_rows) {
 | 
						|
          // Second half
 | 
						|
          predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
 | 
						|
                           mi_col, mi_row_top, mi_col_top, dst_buf1,
 | 
						|
                           dst_stride1, top_bsize, subsize, output_enabled, 0,
 | 
						|
                           0);
 | 
						|
          if (bsize < top_bsize)
 | 
						|
            extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
 | 
						|
                       mi_col, mi_row_top, mi_col_top, output_enabled, dst_buf1,
 | 
						|
                       dst_stride1);
 | 
						|
          else
 | 
						|
            extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
 | 
						|
                       mi_col, mi_row_top, mi_col_top, output_enabled, dst_buf1,
 | 
						|
                       dst_stride1, 1);
 | 
						|
 | 
						|
          // Smooth
 | 
						|
          for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
            xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
            xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
            av1_build_masked_inter_predictor_complex(
 | 
						|
                xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
 | 
						|
                mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
                PARTITION_HORZ, i);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        // First half
 | 
						|
        predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                         BLOCK_8X8, output_enabled, 1, 0);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride);
 | 
						|
 | 
						|
        // Second half
 | 
						|
        predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf1, dst_stride1,
 | 
						|
                         top_bsize, BLOCK_8X8, output_enabled, 1, 1);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf1,
 | 
						|
                     dst_stride1);
 | 
						|
 | 
						|
        // Smooth
 | 
						|
        xd->plane[0].dst.buf = dst_buf[0];
 | 
						|
        xd->plane[0].dst.stride = dst_stride[0];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
 | 
						|
            0);
 | 
						|
      } else {
 | 
						|
        // bsize: not important, not useful
 | 
						|
        predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                         subsize, output_enabled, 0, 0);
 | 
						|
        if (bsize < top_bsize)
 | 
						|
          extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride);
 | 
						|
        else
 | 
						|
          extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride, 3);
 | 
						|
 | 
						|
        if (mi_col + hbs < cm->mi_cols) {
 | 
						|
          predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
 | 
						|
                           mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
 | 
						|
                           dst_stride1, top_bsize, subsize, output_enabled, 0,
 | 
						|
                           0);
 | 
						|
          if (bsize < top_bsize)
 | 
						|
            extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row,
 | 
						|
                       mi_col + hbs, mi_row_top, mi_col_top, output_enabled,
 | 
						|
                       dst_buf1, dst_stride1);
 | 
						|
          else
 | 
						|
            extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row,
 | 
						|
                       mi_col + hbs, mi_row_top, mi_col_top, output_enabled,
 | 
						|
                       dst_buf1, dst_stride1, 2);
 | 
						|
 | 
						|
          for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
            xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
            xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
            av1_build_masked_inter_predictor_complex(
 | 
						|
                xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
 | 
						|
                mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
                PARTITION_VERT, i);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_SPLIT:
 | 
						|
      if (bsize == BLOCK_8X8) {
 | 
						|
        predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                         BLOCK_8X8, output_enabled, 1, 0);
 | 
						|
        predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf1, dst_stride1,
 | 
						|
                         top_bsize, BLOCK_8X8, output_enabled, 1, 1);
 | 
						|
        predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf2, dst_stride2,
 | 
						|
                         top_bsize, BLOCK_8X8, output_enabled, 1, 1);
 | 
						|
        predict_b_extend(cpi, td, tile, 3, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                         mi_row_top, mi_col_top, dst_buf3, dst_stride3,
 | 
						|
                         top_bsize, BLOCK_8X8, output_enabled, 1, 1);
 | 
						|
 | 
						|
        if (bsize < top_bsize) {
 | 
						|
          extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf,
 | 
						|
                     dst_stride);
 | 
						|
          extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf1,
 | 
						|
                     dst_stride1);
 | 
						|
          extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                     dst_stride2);
 | 
						|
          extend_all(cpi, td, tile, 3, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                     mi_row_top, mi_col_top, output_enabled, dst_buf3,
 | 
						|
                     dst_stride3);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row_top,
 | 
						|
                           mi_col_top, output_enabled, subsize, top_bsize,
 | 
						|
                           dst_buf, dst_stride, pc_tree->split[0]);
 | 
						|
        if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
 | 
						|
          predict_sb_complex(cpi, td, tile, mi_row, mi_col + hbs, mi_row_top,
 | 
						|
                             mi_col_top, output_enabled, subsize, top_bsize,
 | 
						|
                             dst_buf1, dst_stride1, pc_tree->split[1]);
 | 
						|
        if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
 | 
						|
          predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col, mi_row_top,
 | 
						|
                             mi_col_top, output_enabled, subsize, top_bsize,
 | 
						|
                             dst_buf2, dst_stride2, pc_tree->split[2]);
 | 
						|
        if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
 | 
						|
          predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col + hbs,
 | 
						|
                             mi_row_top, mi_col_top, output_enabled, subsize,
 | 
						|
                             top_bsize, dst_buf3, dst_stride3,
 | 
						|
                             pc_tree->split[3]);
 | 
						|
      }
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        if (bsize == BLOCK_8X8 && i != 0)
 | 
						|
          continue;  // Skip <4x4 chroma smoothing
 | 
						|
        if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
 | 
						|
          av1_build_masked_inter_predictor_complex(
 | 
						|
              xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
 | 
						|
              mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
              PARTITION_VERT, i);
 | 
						|
          if (mi_row + hbs < cm->mi_rows) {
 | 
						|
            av1_build_masked_inter_predictor_complex(
 | 
						|
                xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
 | 
						|
                mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
                PARTITION_VERT, i);
 | 
						|
            av1_build_masked_inter_predictor_complex(
 | 
						|
                xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
 | 
						|
                mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
                PARTITION_HORZ, i);
 | 
						|
          }
 | 
						|
        } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
 | 
						|
          av1_build_masked_inter_predictor_complex(
 | 
						|
              xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
 | 
						|
              mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
              PARTITION_HORZ, i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
    case PARTITION_HORZ_A:
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                       mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                       bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
 | 
						|
                       mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
 | 
						|
                       dst_stride1, top_bsize, bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf1, dst_stride1);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
 | 
						|
                       mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
 | 
						|
                       top_bsize, subsize, output_enabled, 0, 0);
 | 
						|
      if (bsize < top_bsize)
 | 
						|
        extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                   dst_stride2);
 | 
						|
      else
 | 
						|
        extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                   dst_stride2, 1);
 | 
						|
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_A:
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                       mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                       bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
 | 
						|
                       mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
 | 
						|
                       top_bsize, bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf1, dst_stride1);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
 | 
						|
                       mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
 | 
						|
                       dst_stride2, top_bsize, subsize, output_enabled, 0, 0);
 | 
						|
      if (bsize < top_bsize)
 | 
						|
        extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                   dst_stride2);
 | 
						|
      else
 | 
						|
        extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                   dst_stride2, 2);
 | 
						|
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_HORZ_B:
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                       mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                       subsize, output_enabled, 0, 0);
 | 
						|
      if (bsize < top_bsize)
 | 
						|
        extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride);
 | 
						|
      else
 | 
						|
        extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride,
 | 
						|
                   0);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
 | 
						|
                       mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
 | 
						|
                       top_bsize, bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf1, dst_stride1);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
 | 
						|
                       mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
 | 
						|
                       dst_buf2, dst_stride2, top_bsize, bsize2, output_enabled,
 | 
						|
                       0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
 | 
						|
                 mi_col + hbs, mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                 dst_stride2);
 | 
						|
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf1[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride1[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
 | 
						|
            mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
            PARTITION_VERT, i);
 | 
						|
      }
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PARTITION_VERT_B:
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
 | 
						|
                       mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
 | 
						|
                       subsize, output_enabled, 0, 0);
 | 
						|
      if (bsize < top_bsize)
 | 
						|
        extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride);
 | 
						|
      else
 | 
						|
        extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
 | 
						|
                   mi_row_top, mi_col_top, output_enabled, dst_buf, dst_stride,
 | 
						|
                   3);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
 | 
						|
                       mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
 | 
						|
                       dst_stride1, top_bsize, bsize2, output_enabled, 0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
 | 
						|
                 mi_row_top, mi_col_top, output_enabled, dst_buf1, dst_stride1);
 | 
						|
 | 
						|
      predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
 | 
						|
                       mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
 | 
						|
                       dst_buf2, dst_stride2, top_bsize, bsize2, output_enabled,
 | 
						|
                       0, 0);
 | 
						|
      extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
 | 
						|
                 mi_col + hbs, mi_row_top, mi_col_top, output_enabled, dst_buf2,
 | 
						|
                 dst_stride2);
 | 
						|
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf1[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride1[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
 | 
						|
            mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
 | 
						|
            PARTITION_HORZ, i);
 | 
						|
      }
 | 
						|
      for (i = 0; i < MAX_MB_PLANE; i++) {
 | 
						|
        xd->plane[i].dst.buf = dst_buf[i];
 | 
						|
        xd->plane[i].dst.stride = dst_stride[i];
 | 
						|
        av1_build_masked_inter_predictor_complex(
 | 
						|
            xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
 | 
						|
            mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
 | 
						|
            i);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
    default: assert(0);
 | 
						|
  }
 | 
						|
 | 
						|
#if CONFIG_EXT_PARTITION_TYPES
 | 
						|
  if (bsize < top_bsize)
 | 
						|
    update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
 | 
						|
#else
 | 
						|
  if (bsize < top_bsize && (partition != PARTITION_SPLIT || bsize == BLOCK_8X8))
 | 
						|
    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
 | 
						|
#endif  // CONFIG_EXT_PARTITION_TYPES
 | 
						|
}
 | 
						|
 | 
						|
static void rd_supertx_sb(AV1_COMP *cpi, ThreadData *td,
 | 
						|
                          const TileInfo *const tile, int mi_row, int mi_col,
 | 
						|
                          BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
 | 
						|
                          TX_TYPE *best_tx, PC_TREE *pc_tree) {
 | 
						|
  AV1_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCK *const x = &td->mb;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  int plane, pnskip, skippable, skippable_uv, rate_uv, this_rate,
 | 
						|
      base_rate = *tmp_rate;
 | 
						|
  int64_t sse, pnsse, sse_uv, this_dist, dist_uv;
 | 
						|
  uint8_t *dst_buf[3];
 | 
						|
  int dst_stride[3];
 | 
						|
  TX_SIZE tx_size;
 | 
						|
  MB_MODE_INFO *mbmi;
 | 
						|
  TX_TYPE tx_type, best_tx_nostx;
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
  int ext_tx_set;
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
  int tmp_rate_tx = 0, skip_tx = 0;
 | 
						|
  int64_t tmp_dist_tx = 0, rd_tx, bestrd_tx = INT64_MAX;
 | 
						|
 | 
						|
  set_skip_context(xd, mi_row, mi_col);
 | 
						|
  set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
 | 
						|
  update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, 0, pc_tree);
 | 
						|
  av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
 | 
						|
  for (plane = 0; plane < MAX_MB_PLANE; plane++) {
 | 
						|
    dst_buf[plane] = xd->plane[plane].dst.buf;
 | 
						|
    dst_stride[plane] = xd->plane[plane].dst.stride;
 | 
						|
  }
 | 
						|
  predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, 0, bsize,
 | 
						|
                     bsize, dst_buf, dst_stride, pc_tree);
 | 
						|
 | 
						|
  set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
 | 
						|
  set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
 | 
						|
 | 
						|
  mbmi = &xd->mi[0]->mbmi;
 | 
						|
  best_tx_nostx = mbmi->tx_type;
 | 
						|
 | 
						|
  *best_tx = DCT_DCT;
 | 
						|
 | 
						|
  // chroma
 | 
						|
  skippable_uv = 1;
 | 
						|
  rate_uv = 0;
 | 
						|
  dist_uv = 0;
 | 
						|
  sse_uv = 0;
 | 
						|
  for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
    ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
 | 
						|
    ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
 | 
						|
    const struct macroblockd_plane *const pd = &xd->plane[plane];
 | 
						|
    int coeff_ctx = 1;
 | 
						|
 | 
						|
    this_rate = 0;
 | 
						|
    this_dist = 0;
 | 
						|
    pnsse = 0;
 | 
						|
    pnskip = 1;
 | 
						|
 | 
						|
    tx_size = max_txsize_lookup[bsize];
 | 
						|
    tx_size =
 | 
						|
        uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
 | 
						|
    av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
 | 
						|
    coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
 | 
						|
 | 
						|
    av1_subtract_plane(x, bsize, plane);
 | 
						|
    av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, plane, 0,
 | 
						|
                      get_plane_block_size(bsize, pd), coeff_ctx, &this_rate,
 | 
						|
                      &this_dist, &pnsse, &pnskip);
 | 
						|
#else
 | 
						|
    tx_size = max_txsize_lookup[bsize];
 | 
						|
    tx_size =
 | 
						|
        uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
 | 
						|
    av1_subtract_plane(x, bsize, plane);
 | 
						|
    av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
 | 
						|
                                 &pnsse, INT64_MAX, plane, bsize, tx_size, 0);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
 | 
						|
    rate_uv += this_rate;
 | 
						|
    dist_uv += this_dist;
 | 
						|
    sse_uv += pnsse;
 | 
						|
    skippable_uv &= pnskip;
 | 
						|
  }
 | 
						|
 | 
						|
  // luma
 | 
						|
  tx_size = max_txsize_lookup[bsize];
 | 
						|
  av1_subtract_plane(x, bsize, 0);
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
  ext_tx_set = get_ext_tx_set(tx_size, bsize, 1);
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
  for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
    ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
 | 
						|
    ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
 | 
						|
    const struct macroblockd_plane *const pd = &xd->plane[0];
 | 
						|
    int coeff_ctx = 1;
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
    if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
 | 
						|
#else
 | 
						|
    if (tx_size >= TX_32X32 && tx_type != DCT_DCT) continue;
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
    mbmi->tx_type = tx_type;
 | 
						|
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
    this_rate = 0;
 | 
						|
    this_dist = 0;
 | 
						|
    pnsse = 0;
 | 
						|
    pnskip = 1;
 | 
						|
 | 
						|
    av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
 | 
						|
    coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
 | 
						|
    av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, 0, 0, bsize, coeff_ctx, &this_rate,
 | 
						|
                      &this_dist, &pnsse, &pnskip);
 | 
						|
#else
 | 
						|
    av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
 | 
						|
                                 &pnsse, INT64_MAX, 0, bsize, tx_size, 0);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
 | 
						|
#if CONFIG_EXT_TX
 | 
						|
    if (get_ext_tx_types(tx_size, bsize, 1) > 1 &&
 | 
						|
        !xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) {
 | 
						|
      if (ext_tx_set > 0)
 | 
						|
        this_rate +=
 | 
						|
            cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->tx_type];
 | 
						|
    }
 | 
						|
#else
 | 
						|
    if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
 | 
						|
        this_rate != INT_MAX) {
 | 
						|
      this_rate += cpi->inter_tx_type_costs[tx_size][mbmi->tx_type];
 | 
						|
    }
 | 
						|
#endif  // CONFIG_EXT_TX
 | 
						|
    *tmp_rate = rate_uv + this_rate;
 | 
						|
    *tmp_dist = dist_uv + this_dist;
 | 
						|
    sse = sse_uv + pnsse;
 | 
						|
    skippable = skippable_uv && pnskip;
 | 
						|
    if (skippable) {
 | 
						|
      *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
 | 
						|
      x->skip = 1;
 | 
						|
    } else {
 | 
						|
      if (RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist) <
 | 
						|
          RDCOST(x->rdmult, x->rddiv, 0, sse)) {
 | 
						|
        *tmp_rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
 | 
						|
        x->skip = 0;
 | 
						|
      } else {
 | 
						|
        *tmp_dist = sse;
 | 
						|
        *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
 | 
						|
        x->skip = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    *tmp_rate += base_rate;
 | 
						|
    rd_tx = RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist);
 | 
						|
    if (rd_tx < bestrd_tx * 0.99 || tx_type == DCT_DCT) {
 | 
						|
      *best_tx = tx_type;
 | 
						|
      bestrd_tx = rd_tx;
 | 
						|
      tmp_rate_tx = *tmp_rate;
 | 
						|
      tmp_dist_tx = *tmp_dist;
 | 
						|
      skip_tx = x->skip;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  *tmp_rate = tmp_rate_tx;
 | 
						|
  *tmp_dist = tmp_dist_tx;
 | 
						|
  x->skip = skip_tx;
 | 
						|
#if CONFIG_VAR_TX
 | 
						|
  for (plane = 0; plane < 1; ++plane)
 | 
						|
    memset(x->blk_skip[plane], x->skip,
 | 
						|
           sizeof(uint8_t) * pc_tree->none.num_4x4_blk);
 | 
						|
#endif  // CONFIG_VAR_TX
 | 
						|
  xd->mi[0]->mbmi.tx_type = best_tx_nostx;
 | 
						|
}
 | 
						|
#endif  // CONFIG_SUPERTX
 |