vpx/vp8/encoder/rdopt.c

3722 lines
123 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp8/common/pragmas.h"
#include "tokenize.h"
#include "treewriter.h"
#include "onyx_int.h"
#include "modecosts.h"
#include "encodeintra.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/reconinter.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/quant_common.h"
#include "encodemb.h"
#include "quantize.h"
#include "vp8/common/idct.h"
#include "vp8/common/g_common.h"
#include "variance.h"
#include "mcomp.h"
#include "rdopt.h"
#include "ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "dct.h"
#include "vp8/common/systemdependent.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x);
extern void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x);
#if CONFIG_HYBRIDTRANSFORM
extern void vp8_ht_quantize_b(BLOCK *b, BLOCKD *d);
#endif
#define XMVCOST (x->e_mbd.allow_high_precision_mv?x->mvcost_hp:x->mvcost)
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
#define INVALID_MV 0x80008000
#if CONFIG_SWITCHABLE_INTERP
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
#endif
static const int auto_speed_thresh[17] = {
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
#if CONFIG_PRED_FILTER
const MODE_DEFINITION vp8_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, 0, 0},
{ZEROMV, LAST_FRAME, 0, 1},
{DC_PRED, INTRA_FRAME, 0, 0},
{NEARESTMV, LAST_FRAME, 0, 0},
{NEARESTMV, LAST_FRAME, 0, 1},
{NEARMV, LAST_FRAME, 0, 0},
{NEARMV, LAST_FRAME, 0, 1},
{ZEROMV, GOLDEN_FRAME, 0, 0},
{ZEROMV, GOLDEN_FRAME, 0, 1},
{NEARESTMV, GOLDEN_FRAME, 0, 0},
{NEARESTMV, GOLDEN_FRAME, 0, 1},
{ZEROMV, ALTREF_FRAME, 0, 0},
{ZEROMV, ALTREF_FRAME, 0, 1},
{NEARESTMV, ALTREF_FRAME, 0, 0},
{NEARESTMV, ALTREF_FRAME, 0, 1},
{NEARMV, GOLDEN_FRAME, 0, 0},
{NEARMV, GOLDEN_FRAME, 0, 1},
{NEARMV, ALTREF_FRAME, 0, 0},
{NEARMV, ALTREF_FRAME, 0, 1},
{V_PRED, INTRA_FRAME, 0, 0},
{H_PRED, INTRA_FRAME, 0, 0},
{D45_PRED, INTRA_FRAME, 0, 0},
{D135_PRED, INTRA_FRAME, 0, 0},
{D117_PRED, INTRA_FRAME, 0, 0},
{D153_PRED, INTRA_FRAME, 0, 0},
{D27_PRED, INTRA_FRAME, 0, 0},
{D63_PRED, INTRA_FRAME, 0, 0},
{TM_PRED, INTRA_FRAME, 0, 0},
{NEWMV, LAST_FRAME, 0, 0},
{NEWMV, LAST_FRAME, 0, 1},
{NEWMV, GOLDEN_FRAME, 0, 0},
{NEWMV, GOLDEN_FRAME, 0, 1},
{NEWMV, ALTREF_FRAME, 0, 0},
{NEWMV, ALTREF_FRAME, 0, 1},
{SPLITMV, LAST_FRAME, 0, 0},
{SPLITMV, GOLDEN_FRAME, 0, 0},
{SPLITMV, ALTREF_FRAME, 0, 0},
{B_PRED, INTRA_FRAME, 0, 0},
{I8X8_PRED, INTRA_FRAME, 0, 0},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEARMV, LAST_FRAME, GOLDEN_FRAME, 0},
{ZEROMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEARMV, ALTREF_FRAME, LAST_FRAME, 0},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEWMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEWMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME, 0},
{SPLITMV, ALTREF_FRAME, LAST_FRAME, 0},
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME, 0}
};
#else
const MODE_DEFINITION vp8_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, 0},
{DC_PRED, INTRA_FRAME, 0},
{NEARESTMV, LAST_FRAME, 0},
{NEARMV, LAST_FRAME, 0},
{ZEROMV, GOLDEN_FRAME, 0},
{NEARESTMV, GOLDEN_FRAME, 0},
{ZEROMV, ALTREF_FRAME, 0},
{NEARESTMV, ALTREF_FRAME, 0},
{NEARMV, GOLDEN_FRAME, 0},
{NEARMV, ALTREF_FRAME, 0},
{V_PRED, INTRA_FRAME, 0},
{H_PRED, INTRA_FRAME, 0},
{D45_PRED, INTRA_FRAME, 0},
{D135_PRED, INTRA_FRAME, 0},
{D117_PRED, INTRA_FRAME, 0},
{D153_PRED, INTRA_FRAME, 0},
{D27_PRED, INTRA_FRAME, 0},
{D63_PRED, INTRA_FRAME, 0},
{TM_PRED, INTRA_FRAME, 0},
{NEWMV, LAST_FRAME, 0},
{NEWMV, GOLDEN_FRAME, 0},
{NEWMV, ALTREF_FRAME, 0},
{SPLITMV, LAST_FRAME, 0},
{SPLITMV, GOLDEN_FRAME, 0},
{SPLITMV, ALTREF_FRAME, 0},
{B_PRED, INTRA_FRAME, 0},
{I8X8_PRED, INTRA_FRAME, 0},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME},
{NEARMV, LAST_FRAME, GOLDEN_FRAME},
{ZEROMV, ALTREF_FRAME, LAST_FRAME},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME},
{NEARMV, ALTREF_FRAME, LAST_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, GOLDEN_FRAME},
{NEWMV, ALTREF_FRAME, LAST_FRAME },
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME},
{SPLITMV, ALTREF_FRAME, LAST_FRAME },
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}
};
#endif
static void fill_token_costs(
unsigned int (*c)[COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS],
const vp8_prob(*p)[COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES],
int block_type_counts) {
int i, j, k;
for (i = 0; i < block_type_counts; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k == 0 && ((j > 0 && i > 0) || (j > 1 && i == 0)))
vp8_cost_tokens_skip((int *)(c [i][j][k]),
p [i][j][k],
vp8_coef_tree);
else
vp8_cost_tokens((int *)(c [i][j][k]),
p [i][j][k],
vp8_coef_tree);
}
}
static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp8_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp8_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)((0.063 * vp8_convert_qindex_to_q(i)) + 2.742);
}
}
int compute_rd_mult(int qindex) {
int q;
q = vp8_dc_quant(qindex, 0);
return (11 * q * q) >> 6;
}
void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
}
void vp8_initialize_rd_consts(VP8_COMP *cpi, int QIndex) {
int q, i;
vp8_clear_system_state(); // __asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
QIndex = (QIndex < 0) ? 0 : ((QIndex > MAXQ) ? MAXQ : QIndex);
cpi->RDMULT = compute_rd_mult(QIndex);
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0) {
double oq_factor;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
cpi->RDMULT = (int)((double)cpi->RDMULT * oq_factor * oq_factor);
}
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
if (cpi->RDMULT < 7)
cpi->RDMULT = 7;
cpi->mb.errorperbit = (cpi->RDMULT / 110);
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp8_set_speed_features(cpi);
q = (int)pow(vp8_dc_quant(QIndex, 0) >> 2, 1.25);
q = q << 2;
cpi->RDMULT = cpi->RDMULT << 4;
if (q < 8)
q = 8;
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < INT_MAX) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
} else {
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(
cpi->mb.token_costs[TX_4X4],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs,
BLOCK_TYPES);
fill_token_costs(
cpi->mb.token_costs[TX_8X8],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_8x8,
BLOCK_TYPES_8X8);
#if CONFIG_TX16X16
fill_token_costs(
cpi->mb.token_costs[TX_16X16],
(const vp8_prob(*)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_16x16,
BLOCK_TYPES_16X16);
#endif
/*rough estimate for costing*/
cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4;
vp8_init_mode_costs(cpi);
}
void vp8_auto_select_speed(VP8_COMP *cpi) {
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16;
#if 0
if (0) {
FILE *f;
f = fopen("speed.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time);
fclose(f);
}
#endif
/*
// this is done during parameter valid check
if( cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
if( cpi->oxcf.cpu_used < -16)
cpi->oxcf.cpu_used = -16;
*/
if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress) {
if (cpi->avg_pick_mode_time == 0) {
cpi->Speed = 4;
} else {
if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) {
cpi->Speed += 2;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
if (cpi->Speed > 16) {
cpi->Speed = 16;
}
}
if (milliseconds_for_compress * 100 > cpi->avg_encode_time * auto_speed_thresh[cpi->Speed]) {
cpi->Speed -= 1;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
// In real-time mode, cpi->speed is in [4, 16].
if (cpi->Speed < 4) { // if ( cpi->Speed < 0 )
cpi->Speed = 4; // cpi->Speed = 0;
}
}
}
} else {
cpi->Speed += 4;
if (cpi->Speed > 16)
cpi->Speed = 16;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
}
}
int vp8_block_error_c(short *coeff, short *dqcoeff, int block_size) {
int i, error = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) {
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++) {
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp8_mbuverror_c(MACROBLOCK *mb) {
BLOCK *be;
BLOCKD *bd;
int i, error = 0;
for (i = 16; i < 24; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff, 16);
}
return error;
}
int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd) {
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.row;
int mv_col = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
if (mv_row < 0)
mv_row -= 1;
else
mv_row += 1;
if (mv_col < 0)
mv_col -= 1;
else
mv_col += 1;
mv_row /= 2;
mv_col /= 2;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7) {
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride,
(mv_col & 7) << 1, (mv_row & 7) << 1, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride,
(mv_col & 7) << 1, (mv_row & 7) << 1, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
} else {
VARIANCE_INVOKE(rtcd, var8x8)(uptr, pre_stride,
upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, var8x8)(vptr, pre_stride,
vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
}
static int cost_coeffs_2x2(MACROBLOCK *mb,
BLOCKD *b, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int c = !type; /* start at coef 0, unless Y with Y2 */
int eob = b->eob;
int pt; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
assert(eob <= 4);
for (; c < eob; c++) {
int v = qcoeff_ptr[vp8_default_zig_zag1d[c]];
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]][pt][t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
if (c < 4)
cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]]
[pt] [DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int tx_type) {
const int eob = b->eob;
int c = !type; /* start at coef 0, unless Y with Y2 */
int cost = 0, default_eob, seg_eob;
int pt; /* surrounding block/prev coef predictor */
int const *scan, *band;
short *qcoeff_ptr = b->qcoeff;
MB_MODE_INFO * mbmi = &mb->e_mbd.mode_info_context->mbmi;
int segment_id = mbmi->segment_id;
switch (tx_type) {
case TX_4X4:
scan = vp8_default_zig_zag1d;
band = vp8_coef_bands;
default_eob = 16;
#if CONFIG_HYBRIDTRANSFORM
{
int active_ht = (mb->q_index < ACTIVE_HT) &&
(mbmi->mode_rdopt == B_PRED);
if((type == PLANE_TYPE_Y_WITH_DC) && active_ht) {
switch (b->bmi.as_mode.tx_type) {
case ADST_DCT:
scan = vp8_row_scan;
break;
case DCT_ADST:
scan = vp8_col_scan;
break;
default:
scan = vp8_default_zig_zag1d;
break;
}
} else
scan = vp8_default_zig_zag1d;
}
#endif
break;
case TX_8X8:
scan = vp8_default_zig_zag1d_8x8;
band = vp8_coef_bands_8x8;
default_eob = 64;
break;
#if CONFIG_TX16X16
case TX_16X16:
scan = vp8_default_zig_zag1d_16x16;
band = vp8_coef_bands_16x16;
default_eob = 256;
break;
#endif
default:
break;
}
if (segfeature_active(&mb->e_mbd, segment_id, SEG_LVL_EOB))
seg_eob = get_segdata(&mb->e_mbd, segment_id, SEG_LVL_EOB);
else
seg_eob = default_eob;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs[tx_type][type][band[c]][pt][t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
if (c < seg_eob)
cost += mb->token_costs[tx_type][type][band[c]]
[pt][DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int vp8_rdcost_mby(MACROBLOCK *mb) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC,
ta + vp8_block2above[b], tl + vp8_block2left[b],
TX_4X4);
cost += cost_coeffs(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24],
TX_4X4);
return cost;
}
static void macro_block_yrd(MACROBLOCK *mb,
int *Rate,
int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
int b;
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
short *Y2DCPtr = mb_y2->src_diff;
BLOCK *beptr;
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
xd->predictor,
mb->block[0].src_stride);
// Fdct and building the 2nd order block
for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) {
mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32);
*Y2DCPtr++ = beptr->coeff[0];
*Y2DCPtr++ = beptr->coeff[16];
}
// 2nd order fdct
mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8);
// Quantization
for (b = 0; b < 16; b++) {
mb->quantize_b(&mb->block[b], &xd->block[b]);
}
// DC predication and Quantization of 2nd Order block
mb->quantize_b(mb_y2, x_y2);
// Distortion
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 1);
d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby(mb);
}
static int vp8_rdcost_mby_8x8(MACROBLOCK *mb) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above,xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b += 4)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC,
ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b],
TX_8X8);
cost += cost_coeffs_2x2(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
return cost;
}
static void macro_block_yrd_8x8(MACROBLOCK *mb,
int *Rate,
int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
xd->predictor,
mb->block[0].src_stride);
vp8_transform_mby_8x8(mb);
vp8_quantize_mby_8x8(mb);
/* remove 1st order dc to properly combine 1st/2nd order distortion */
mb->coeff[0] = 0;
mb->coeff[64] = 0;
mb->coeff[128] = 0;
mb->coeff[192] = 0;
xd->dqcoeff[0] = 0;
xd->dqcoeff[64] = 0;
xd->dqcoeff[128] = 0;
xd->dqcoeff[192] = 0;
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0);
d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby_8x8(mb);
}
#if CONFIG_TX16X16
static int vp8_rdcost_mby_16x16(MACROBLOCK *mb) {
int cost;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
cost = cost_coeffs(mb, xd->block, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_16X16);
return cost;
}
static void macro_block_yrd_16x16(MACROBLOCK *mb, int *Rate, int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
mb->e_mbd.predictor,
mb->block[0].src_stride);
vp8_transform_mby_16x16(mb);
vp8_quantize_mby_16x16(mb);
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby_16x16(mb);
}
#endif
static void copy_predictor(unsigned char *dst, const unsigned char *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[4] = p[4];
d[8] = p[8];
d[12] = p[12];
}
static void copy_predictor_8x8(unsigned char *dst, const unsigned char *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[1] = p[1];
d[4] = p[4];
d[5] = p[5];
d[8] = p[8];
d[9] = p[9];
d[12] = p[12];
d[13] = p[13];
d[16] = p[16];
d[17] = p[17];
d[20] = p[20];
d[21] = p[21];
d[24] = p[24];
d[25] = p[25];
d[28] = p[28];
d[29] = p[29];
}
static int64_t rd_pick_intra4x4block(VP8_COMP *cpi, MACROBLOCK *x, BLOCK *be,
BLOCKD *b, B_PREDICTION_MODE *best_mode,
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE *best_second_mode,
int allow_comp,
#endif
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
B_PREDICTION_MODE mode;
#if CONFIG_HYBRIDTRANSFORM
int QIndex = x->q_index;
int active_ht = (QIndex < ACTIVE_HT);
TX_TYPE best_tx_type;
#endif
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE mode2;
#endif
int64_t best_rd = INT64_MAX;
int rate = 0;
int distortion;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 4x4 block
* */
DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 4);
DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16);
for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = (allow_comp ? 0 : (B_DC_PRED - 1));
mode2 != (allow_comp ? (mode + 1) : 0); mode2++) {
#endif
int64_t this_rd;
int ratey;
// TODO Temporarily ignore modes that need the above-right data. SB
// encoding means this data is not available for the bottom right MB
// Do we need to do this for mode2 also?
if (mode == B_LD_PRED || mode == B_VL_PRED)
continue;
rate = bmode_costs[mode];
#if CONFIG_COMP_INTRA_PRED
if (mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, intra4x4_predict)
(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra4x4_predict)
(b, mode, mode2, b->predictor);
rate += bmode_costs[mode2];
}
#endif
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), subb)(be, b, 16);
#if CONFIG_HYBRIDTRANSFORM
if (active_ht) {
b->bmi.as_mode.test = mode;
txfm_map(b, mode);
vp8_fht_c(be->src_diff, be->coeff, 32, b->bmi.as_mode.tx_type, 4);
vp8_ht_quantize_b(be, b);
} else {
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b(be, b);
}
#else
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b(be, b);
#endif
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(
be->coeff, b->dqcoeff, 16) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
#if CONFIG_HYBRIDTRANSFORM
best_tx_type = b->bmi.as_mode.tx_type ;
#endif
#if CONFIG_COMP_INTRA_PRED
*best_second_mode = mode2;
#endif
*a = tempa;
*l = templ;
copy_predictor(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 32);
}
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
b->bmi.as_mode.first = (B_PREDICTION_MODE)(*best_mode);
#if CONFIG_COMP_INTRA_PRED
b->bmi.as_mode.second = (B_PREDICTION_MODE)(*best_second_mode);
#endif
#if CONFIG_HYBRIDTRANSFORM
b->bmi.as_mode.tx_type = best_tx_type;
// inverse transform
if (active_ht)
vp8_ihtllm_c(best_dqcoeff, b->diff, 32, b->bmi.as_mode.tx_type, 4);
else
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff,
b->diff, 32);
#else
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff, 32);
#endif
RECON_INVOKE(IF_RTCD(&cpi->rtcd.common->recon), recon)(best_predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
return best_rd;
}
static int64_t rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate,
int *rate_y, int *Distortion, int64_t best_rd,
#if CONFIG_COMP_INTRA_PRED
int allow_comp,
#endif
int update_contexts) {
int i;
MACROBLOCKD *const xd = &mb->e_mbd;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *bmode_costs;
if (update_contexts) {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
} else {
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
}
// TODO(agrange)
// vp8_intra_prediction_down_copy(xd);
bmode_costs = mb->inter_bmode_costs;
for (i = 0; i < 16; i++) {
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode);
#endif
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
if (xd->frame_type == KEY_FRAME) {
const B_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const B_PREDICTION_MODE L = left_block_mode(mic, i);
bmode_costs = mb->bmode_costs[A][L];
}
total_rd += rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode,
#if CONFIG_COMP_INTRA_PRED
& best_second_mode, allow_comp,
#endif
bmode_costs, ta + vp8_block2above[i],
tl + vp8_block2left[i], &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
#if CONFIG_COMP_INTRA_PRED
mic->bmi[i].as_mode.second = best_second_mode;
#endif
if (total_rd >= best_rd)
break;
}
if (total_rd >= best_rd)
return INT64_MAX;
#if CONFIG_COMP_INTRA_PRED
cost += vp8_cost_bit(128, allow_comp);
#endif
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int64_t rd_pick_intra16x16mby_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *Rate,
int *rate_y,
int *Distortion) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected);
#endif
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, ratey;
int distortion;
int64_t best_rd = INT64_MAX;
int64_t this_rd;
// Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
mbmi->mode = mode;
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
mbmi->second_mode = mode2;
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby)
(&x->e_mbd);
#if CONFIG_COMP_INTRA_PRED
} else {
continue; // i.e. disable for now
RECON_INVOKE(&cpi->common.rtcd.recon, build_comp_intra_predictors_mby)
(&x->e_mbd);
}
#endif
#if CONFIG_TX16X16
macro_block_yrd_16x16(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd));
#else
macro_block_yrd_8x8(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd));
#endif
// FIXME add compoundmode cost
// FIXME add rate for mode2
rate = ratey + x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
mode_selected = mode;
#if CONFIG_COMP_INTRA_PRED
mode2_selected = mode2;
#endif
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = distortion;
}
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
mbmi->mode = mode_selected;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = mode2_selected;
#endif
return best_rd;
}
static int64_t rd_pick_intra8x8block(VP8_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE *best_second_mode,
#endif
int *mode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
MB_PREDICTION_MODE mode;
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
#endif
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int distortion, rate = 0;
BLOCK *be = x->block + ib;
BLOCKD *b = xd->block + ib;
ENTROPY_CONTEXT ta0, ta1, besta0 = 0, besta1 = 0;
ENTROPY_CONTEXT tl0, tl1, bestl0 = 0, bestl1 = 0;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 8x8 block
* */
DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 8);
DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16 * 4);
#if CONFIG_HYBRIDTRANSFORM8X8
// perform transformation of dimension 8x8
// note the input and output index mapping
int idx = (ib & 0x02) ? (ib + 2) : ib;
#endif
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
#endif
int64_t this_rd;
int rate_t;
// FIXME rate for compound mode and second intrapred mode
rate = mode_costs[mode];
#if CONFIG_COMP_INTRA_PRED
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, intra8x8_predict)
(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
continue; // i.e. disable for now
RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra8x8_predict)
(b, mode, mode2, b->predictor);
}
#endif
vp8_subtract_4b_c(be, b, 16);
#if CONFIG_HYBRIDTRANSFORM8X8
txfm_map(b, pred_mode_conv(mode));
vp8_fht_c(be->src_diff, (x->block + idx)->coeff, 32,
b->bmi.as_mode.tx_type, 8);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
// compute quantization mse of 8x8 block
distortion = vp8_block_error_c((x->block + idx)->coeff,
(xd->block + idx)->dqcoeff, 64)>>2;
ta0 = *(a + vp8_block2above_8x8[idx]);
tl0 = *(l + vp8_block2left_8x8 [idx]);
rate_t = cost_coeffs(x, xd->block + idx, PLANE_TYPE_Y_WITH_DC,
&ta0, &tl0, TX_8X8);
rate += rate_t;
ta1 = ta0;
tl1 = tl0;
#else
x->vp8_short_fdct8x4(be->src_diff, be->coeff, 32);
x->vp8_short_fdct8x4(be->src_diff + 64, be->coeff + 64, 32);
x->quantize_b_pair(x->block + ib, x->block + ib + 1,
xd->block + ib, xd->block + ib + 1);
x->quantize_b_pair(x->block + ib + 4, x->block + ib + 5,
xd->block + ib + 4, xd->block + ib + 5);
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)
((x->block + ib)->coeff, (xd->block + ib)->dqcoeff, 16) >> 2;
distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)
((x->block + ib + 1)->coeff, (xd->block + ib + 1)->dqcoeff, 16) >> 2;
distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)
((x->block + ib + 4)->coeff, (xd->block + ib + 4)->dqcoeff, 16) >> 2;
distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)
((x->block + ib + 5)->coeff, (xd->block + ib + 5)->dqcoeff, 16) >> 2;
ta0 = *(a + vp8_block2above[ib]);
ta1 = *(a + vp8_block2above[ib + 1]);
tl0 = *(l + vp8_block2above[ib]);
tl1 = *(l + vp8_block2above[ib + 4]);
rate_t = cost_coeffs(x, xd->block + ib, PLANE_TYPE_Y_WITH_DC,
&ta0, &tl0, TX_4X4);
rate_t += cost_coeffs(x, xd->block + ib + 1, PLANE_TYPE_Y_WITH_DC,
&ta1, &tl0, TX_4X4);
rate_t += cost_coeffs(x, xd->block + ib + 4, PLANE_TYPE_Y_WITH_DC,
&ta0, &tl1, TX_4X4);
rate_t += cost_coeffs(x, xd->block + ib + 5, PLANE_TYPE_Y_WITH_DC,
&ta1, &tl1, TX_4X4);
rate += rate_t;
#endif
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = rate_t;
*bestdistortion = distortion;
besta0 = ta0;
besta1 = ta1;
bestl0 = tl0;
bestl1 = tl1;
best_rd = this_rd;
*best_mode = mode;
#if CONFIG_COMP_INTRA_PRED
*best_second_mode = mode2;
#endif
copy_predictor_8x8(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 64);
vpx_memcpy(best_dqcoeff + 32, b->dqcoeff + 64, 64);
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
}
b->bmi.as_mode.first = (*best_mode);
#if CONFIG_COMP_INTRA_PRED
b->bmi.as_mode.second = (*best_second_mode);
#endif
vp8_encode_intra8x8(IF_RTCD(&cpi->rtcd), x, ib);
#if CONFIG_HYBRIDTRANSFORM8X8
*(a + vp8_block2above_8x8[idx]) = besta0;
*(a + vp8_block2above_8x8[idx] + 1) = besta1;
*(l + vp8_block2left_8x8 [idx]) = bestl0;
*(l + vp8_block2left_8x8 [idx] + 1) = bestl1;
#else
*(a + vp8_block2above[ib]) = besta0;
*(a + vp8_block2above[ib + 1]) = besta1;
*(l + vp8_block2above[ib]) = bestl0;
*(l + vp8_block2above[ib + 4]) = bestl1;
#endif
return best_rd;
}
const int vp8_i8x8_block[4] = {0, 2, 8, 10};
int64_t rd_pick_intra8x8mby_modes(VP8_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
MACROBLOCKD *const xd = &mb->e_mbd;
int i, ib;
int cost = mb->mbmode_cost [xd->frame_type] [I8X8_PRED];
int distortion = 0;
int tot_rate_y = 0;
long long total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *i8x8mode_costs;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
i8x8mode_costs = mb->i8x8_mode_costs;
for (i = 0; i < 4; i++) {
MODE_INFO *const mic = xd->mode_info_context;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode);
#endif
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
ib = vp8_i8x8_block[i];
total_rd += rd_pick_intra8x8block(
cpi, mb, ib, &best_mode,
#if CONFIG_COMP_INTRA_PRED
& best_second_mode,
#endif
i8x8mode_costs, ta, tl, &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[ib].as_mode.first = best_mode;
#if CONFIG_COMP_INTRA_PRED
mic->bmi[ib].as_mode.second = best_second_mode;
#endif
}
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int rd_cost_mbuv(MACROBLOCK *mb) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b],
TX_4X4);
return cost;
}
static int64_t rd_inter16x16_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int rd_cost_mbuv_8x8(MACROBLOCK *mb) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b += 4)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp8_block2above_8x8[b],
tl + vp8_block2left_8x8[b], TX_8X8);
return cost;
}
static int64_t rd_inter16x16_uv_8x8(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
*rate = rd_cost_mbuv_8x8(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int64_t rd_inter4x4_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
vp8_build_inter4x4_predictors_mbuv(&x->e_mbd);
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void rd_pick_intra_mbuv_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected);
#endif
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
#endif
int rate;
int distortion;
int64_t this_rd;
mbmi->uv_mode = mode;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = mode2;
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv)
(&x->e_mbd);
#if CONFIG_COMP_INTRA_PRED
} else {
continue;
RECON_INVOKE(&cpi->rtcd.common->recon, build_comp_intra_predictors_mbuv)
(&x->e_mbd);
}
#endif
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor,
x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
rate_to = rd_cost_mbuv(x);
rate = rate_to
+ x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
#if CONFIG_COMP_INTRA_PRED
mode2_selected = mode2;
}
#endif
}
}
*rate = r;
*distortion = d;
mbmi->uv_mode = mode_selected;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = mode2_selected;
#endif
}
static void rd_pick_intra_mbuv_mode_8x8(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int rate;
int distortion;
int64_t this_rd;
mbmi->uv_mode = mode;
RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv)
(&x->e_mbd);
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor,
x->src.uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
rate_to = rd_cost_mbuv_8x8(x);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
mbmi->uv_mode = mode_selected;
}
int vp8_cost_mv_ref(VP8_COMP *cpi,
MB_PREDICTION_MODE m,
const int near_mv_ref_ct[4]) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// If the mode coding is done entirely at the segment level
// we should not account for it at the per mb level in rd code.
// Note that if the segment level coding is expanded from single mode
// to multiple mode masks as per reference frame coding we will need
// to do something different here.
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
VP8_COMMON *pc = &cpi->common;
vp8_prob p [VP8_MVREFS - 1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp8_mv_ref_probs(pc, p, near_mv_ref_ct);
return vp8_cost_token(vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
}
void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static int labels2mode(MACROBLOCK *x, int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv seg_mvs[MAX_REF_FRAMES - 1], int_mv *best_ref_mv,
int_mv *second_best_ref_mv, int *mvcost[2]) {
MACROBLOCKD *const xd = & x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
const int mis = xd->mode_info_stride;
int i, cost = 0, thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
for (i = 0; i < 16; ++i) {
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i - 1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i - 4])
m = ABOVE4X4;
else {
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEW4X4 :
if (mbmi->second_ref_frame) {
this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int;
this_second_mv->as_int =
seg_mvs[mbmi->second_ref_frame - 1].as_int;
}
thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame) {
thismvcost += vp8_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case LEFT4X4:
this_mv->as_int = col ? d[-1].bmi.as_mv.first.as_int : left_block_mv(mic, i);
if (mbmi->second_ref_frame)
this_second_mv->as_int = col ? d[-1].bmi.as_mv.second.as_int : left_block_second_mv(mic, i);
break;
case ABOVE4X4:
this_mv->as_int = row ? d[-4].bmi.as_mv.first.as_int : above_block_mv(mic, i, mis);
if (mbmi->second_ref_frame)
this_second_mv->as_int = row ? d[-4].bmi.as_mv.second.as_int : above_block_second_mv(mic, i, mis);
break;
case ZERO4X4:
this_mv->as_int = 0;
if (mbmi->second_ref_frame)
this_second_mv->as_int = 0;
break;
default:
break;
}
if (m == ABOVE4X4) { // replace above with left if same
int_mv left_mv, left_second_mv;
left_second_mv.as_int = 0;
left_mv.as_int = col ? d[-1].bmi.as_mv.first.as_int :
left_block_mv(mic, i);
if (mbmi->second_ref_frame)
left_second_mv.as_int = col ? d[-1].bmi.as_mv.second.as_int :
left_block_second_mv(mic, i);
if (left_mv.as_int == this_mv->as_int &&
(!mbmi->second_ref_frame ||
left_second_mv.as_int == this_second_mv->as_int))
m = LEFT4X4;
}
cost = x->inter_bmode_costs[ m];
}
d->bmi.as_mv.first.as_int = this_mv->as_int;
if (mbmi->second_ref_frame)
d->bmi.as_mv.second.as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->second_ref_frame)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
}
cost += thismvcost;
return cost;
}
static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels,
int which_label, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int b, cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
for (b = 0; b < 16; b++)
if (labels[ b] == which_label)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_WITH_DC,
ta + vp8_block2above[b],
tl + vp8_block2left[b], TX_4X4);
return cost;
}
static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x,
int const *labels,
int which_label,
const VP8_ENCODER_RTCD *rtcd) {
int i;
unsigned int distortion = 0;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 16; i++) {
if (labels[i] == which_label) {
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
int thisdistortion;
vp8_build_inter_predictors_b(bd, 16, xd->subpixel_predict);
if (xd->mode_info_context->mbmi.second_ref_frame)
vp8_build_2nd_inter_predictors_b(bd, 16, xd->subpixel_predict_avg);
ENCODEMB_INVOKE(&rtcd->encodemb, subb)(be, bd, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
// set to 0 no way to account for 2nd order DC so discount
// be->coeff[0] = 0;
x->quantize_b(be, bd);
thisdistortion = ENCODEMB_INVOKE(&rtcd->encodemb, berr)(
be->coeff, bd->dqcoeff, 16) / 4;
distortion += thisdistortion;
}
}
return distortion;
}
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
int segment_num;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
int_mv mvs[16], second_mvs[16];
unsigned char eobs[16];
int mvthresh;
int *mdcounts;
int_mv sv_mvp[4]; // save 4 mvp from 8x8
int sv_istep[2]; // save 2 initial step_param for 16x8/8x16
} BEST_SEG_INFO;
static __inline
int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static void rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi, unsigned int segmentation,
int_mv seg_mvs[16 /* n_blocks */][MAX_REF_FRAMES - 1]) {
int i;
int const *labels;
int br = 0, bd = 0;
B_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int label_count;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int rate = 0;
int sbr = 0, sbd = 0;
int segmentyrate = 0;
vp8_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b, *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp8_mbsplits[segmentation];
label_count = vp8_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation);
rate += vp8_cost_mv_ref(cpi, SPLITMV, bsi->mdcounts);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
for (i = 0; i < label_count; i++) {
int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT];
int64_t best_label_rd = INT64_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) {
int64_t this_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
// motion search for newmv (single predictor case only)
if (!mbmi->second_ref_frame && this_mode == NEW4X4) {
int sseshift, n;
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
BLOCK *c;
BLOCKD *e;
// Is the best so far sufficiently good that we cant justify doing and new motion search.
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8) {
bsi->mvp.as_int = bsi->sv_mvp[i].as_int;
if (i == 1 && segmentation == BLOCK_16X8)
bsi->mvp.as_int = bsi->sv_mvp[2].as_int;
step_param = bsi->sv_istep[i];
}
// use previous block's result as next block's MV predictor.
if (segmentation == BLOCK_4X4 && i > 0) {
bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.as_mv.first.as_int;
if (i == 4 || i == 8 || i == 12)
bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.as_mv.first.as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
{
int sadpb = x->sadperbit4;
int_mv mvp_full;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// find first label
n = vp8_mbsplit_offset[segmentation][i];
c = &x->block[n];
e = &x->e_mbd.block[n];
bestsme = vp8_full_pixel_diamond(cpi, x, c, e, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEW4X4]);
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) {
/* Check if mvp_full is within the range. */
vp8_clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, c, e, &mvp_full,
sadpb, 16, v_fn_ptr,
XMVCOST, bsi->ref_mv);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEW4X4].as_int = e->bmi.as_mv.first.as_int;
} else {
// The full search result is actually worse so re-instate the previous best vector
e->bmi.as_mv.first.as_int = mode_mv[NEW4X4].as_int;
}
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr, XMVCOST,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int;
}
} /* NEW4X4 */
else if (mbmi->second_ref_frame && this_mode == NEW4X4) {
// motion search not completed? Then skip newmv for this block with comppred
if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) {
continue;
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, XMVCOST);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->second_ref_frame &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
distortion = vp8_encode_inter_mb_segment(
x, labels, i,
IF_RTCD(&cpi->rtcd));
labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s);
rate += labelyrate;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
}
} /*for each 4x4 mode*/
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, XMVCOST);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
if (this_segment_rd >= bsi->segment_rd) {
break;
}
} /* for each label */
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->second_ref_frame)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = bd->eob;
}
}
}
static __inline
void vp8_cal_step_param(int sr, int *sp) {
int step = 0;
if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP;
else if (sr < 1) sr = 1;
while (sr >>= 1)
step++;
*sp = MAX_MVSEARCH_STEPS - 1 - step;
}
static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd,
int *mdcounts, int *returntotrate,
int *returnyrate, int *returndistortion,
int mvthresh,
int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1]) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
for (i = 0; i < 16; i++)
bsi.modes[i] = ZERO4X4;
if (cpi->compressor_speed == 0) {
/* for now, we will keep the original segmentation order
when in best quality mode */
rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]);
rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]);
} else {
int sr;
rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]);
if (bsi.segment_rd < best_rd) {
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp8_clamp_mv_min_max(x, best_ref_mv);
/* Get 8x8 result */
bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int;
bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int;
bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int;
bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int;
/* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range according to the closeness of 2 MV. */
/* block 8X16 */
{
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]);
}
/* block 16X8 */
{
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]);
}
/* If 8x8 is better than 16x8/8x16, then do 4x4 search */
/* Not skip 4x4 if speed=0 (good quality) */
if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) { /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */
bsi.mvp.as_int = bsi.sv_mvp[0].as_int;
rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]);
}
/* restore UMV window */
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
}
}
/* set it to the best */
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.as_mv.first.as_int = bsi.mvs[i].as_int;
if (mbmi->second_ref_frame)
bd->bmi.as_mv.second.as_int = bsi.second_mvs[i].as_int;
bd->eob = bsi.eobs[i];
}
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
/* save partitions */
mbmi->partitioning = bsi.segment_num;
x->partition_info->count = vp8_mbsplit_count[bsi.segment_num];
for (i = 0; i < x->partition_info->count; i++) {
int j;
j = vp8_mbsplit_offset[bsi.segment_num][i];
x->partition_info->bmi[i].mode = bsi.modes[j];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv;
if (mbmi->second_ref_frame)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[j].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int;
if (mbmi->second_ref_frame)
x->partition_info->bmi[15].second_mv.as_int = bsi.second_mvs[15].as_int;
return bsi.segment_rd;
}
/* Order arr in increasing order, original position stored in idx */
static void insertsortmv(int arr[], int len) {
int i, j, k;
for (i = 1; i <= len - 1; i++) {
for (j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
int temp;
temp = arr[i];
for (k = i; k > j; k--)
arr[k] = arr[k - 1];
arr[j] = temp;
}
}
}
}
static void insertsortsad(int arr[], int idx[], int len) {
int i, j, k;
for (i = 1; i <= len - 1; i++) {
for (j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
int temp, tempi;
temp = arr[i];
tempi = idx[i];
for (k = i; k > j; k--) {
arr[k] = arr[k - 1];
idx[k] = idx[k - 1];
}
arr[j] = temp;
idx[j] = tempi;
}
}
}
}
// The improved MV prediction
void vp8_mv_pred(VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here,
int_mv *mvp, int refframe, int *ref_frame_sign_bias,
int *sr, int near_sadidx[]) {
const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1;
int_mv near_mvs[8];
int near_ref[8];
int_mv mv;
int vcnt = 0;
int find = 0;
int mb_offset;
int mvx[8];
int mvy[8];
int i;
mv.as_int = 0;
if (here->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = near_mvs[7].as_int = 0;
near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = near_ref[7] = 0;
// read in 3 nearby block's MVs from current frame as prediction candidates.
if (above->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = above->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = above->mbmi.ref_frame;
}
vcnt++;
if (left->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = left->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = left->mbmi.ref_frame;
}
vcnt++;
if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = aboveleft->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = aboveleft->mbmi.ref_frame;
}
vcnt++;
// read in 5 nearby block's MVs from last frame.
if (cpi->common.last_frame_type != KEY_FRAME) {
mb_offset = (-xd->mb_to_top_edge / 128 + 1) * (xd->mode_info_stride + 1) + (-xd->mb_to_left_edge / 128 + 1);
// current in last frame
if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset];
}
vcnt++;
// above in last frame
if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride - 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1];
}
vcnt++;
// left in last frame
if (cpi->lf_ref_frame[mb_offset - 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1];
}
vcnt++;
// right in last frame
if (cpi->lf_ref_frame[mb_offset + 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + 1];
}
vcnt++;
// below in last frame
if (cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + xd->mode_info_stride + 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + xd->mode_info_stride + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1];
}
vcnt++;
}
for (i = 0; i < vcnt; i++) {
if (near_ref[near_sadidx[i]] != INTRA_FRAME) {
if (here->mbmi.ref_frame == near_ref[near_sadidx[i]]) {
mv.as_int = near_mvs[near_sadidx[i]].as_int;
find = 1;
if (i < 3)
*sr = 3;
else
*sr = 2;
break;
}
}
}
if (!find) {
for (i = 0; i < vcnt; i++) {
mvx[i] = near_mvs[i].as_mv.row;
mvy[i] = near_mvs[i].as_mv.col;
}
insertsortmv(mvx, vcnt);
insertsortmv(mvy, vcnt);
mv.as_mv.row = mvx[vcnt / 2];
mv.as_mv.col = mvy[vcnt / 2];
find = 1;
// sr is set to 0 to allow calling function to decide the search range.
*sr = 0;
}
}
/* Set up return values */
mvp->as_int = mv.as_int;
vp8_clamp_mv2(mvp, xd);
}
void vp8_cal_sad(VP8_COMP *cpi, MACROBLOCKD *xd, MACROBLOCK *x, int recon_yoffset, int near_sadidx[]) {
int near_sad[8] = {0}; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf right, 7-lf below
BLOCK *b = &x->block[0];
unsigned char *src_y_ptr = *(b->base_src);
// calculate sad for current frame 3 nearby MBs.
if (xd->mb_to_top_edge == 0 && xd->mb_to_left_edge == 0) {
near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX;
} else if (xd->mb_to_top_edge == 0) {
// only has left MB for sad calculation.
near_sad[0] = near_sad[2] = INT_MAX;
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff);
} else if (xd->mb_to_left_edge == 0) {
// only has left MB for sad calculation.
near_sad[1] = near_sad[2] = INT_MAX;
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff);
} else {
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff);
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff);
near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16 - 16, xd->dst.y_stride, 0x7fffffff);
}
if (cpi->common.last_frame_type != KEY_FRAME) {
// calculate sad for last frame 5 nearby MBs.
unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset;
int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride;
if (xd->mb_to_top_edge == 0) near_sad[4] = INT_MAX;
if (xd->mb_to_left_edge == 0) near_sad[5] = INT_MAX;
if (xd->mb_to_right_edge == 0) near_sad[6] = INT_MAX;
if (xd->mb_to_bottom_edge == 0) near_sad[7] = INT_MAX;
if (near_sad[4] != INT_MAX)
near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - pre_y_stride * 16, pre_y_stride, 0x7fffffff);
if (near_sad[5] != INT_MAX)
near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff);
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
if (near_sad[6] != INT_MAX)
near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + 16, pre_y_stride, 0x7fffffff);
if (near_sad[7] != INT_MAX)
near_sad[7] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + pre_y_stride * 16, pre_y_stride, 0x7fffffff);
}
if (cpi->common.last_frame_type != KEY_FRAME) {
insertsortsad(near_sad, near_sadidx, 8);
} else {
insertsortsad(near_sad, near_sadidx, 3);
}
}
void rd_update_mvcount(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv, int_mv *second_best_ref_mv) {
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
if (mbmi->mode == SPLITMV) {
int i;
for (i = 0; i < x->partition_info->count; i++) {
if (x->partition_info->bmi[i].mode == NEW4X4) {
if (x->e_mbd.allow_high_precision_mv) {
cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col)]++;
}
} else
{
cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col) >> 1)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col) >> 1)]++;
}
}
}
}
} else if (mbmi->mode == NEWMV) {
if (x->e_mbd.allow_high_precision_mv) {
cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[0].as_mv.row
- best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[0].as_mv.col
- best_ref_mv->as_mv.col)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[1].as_mv.row
- second_best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[1].as_mv.col
- second_best_ref_mv->as_mv.col)]++;
}
} else
{
cpi->MVcount[0][mv_max + ((mbmi->mv[0].as_mv.row
- best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((mbmi->mv[0].as_mv.col
- best_ref_mv->as_mv.col) >> 1)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount[0][mv_max + ((mbmi->mv[1].as_mv.row
- second_best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((mbmi->mv[1].as_mv.col
- second_best_ref_mv->as_mv.col) >> 1)]++;
}
}
}
}
static void set_i8x8_block_modes(MACROBLOCK *x, int modes[2][4]) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
xd->mode_info_context->bmi[ib + 0].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 1].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 4].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 5].as_mode.first = modes[0][i];
#if CONFIG_COMP_INTRA_PRED
xd->mode_info_context->bmi[ib + 0].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 1].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 4].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 5].as_mode.second = modes[1][i];
#endif
// printf("%d,%d,%d,%d %d,%d,%d,%d\n",
// modes[0][0], modes[0][1], modes[0][2], modes[0][3],
// modes[1][0], modes[1][1], modes[1][2], modes[1][3]);
}
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
extern void calc_ref_probs(int *count, vp8_prob *probs);
static void estimate_curframe_refprobs(VP8_COMP *cpi, vp8_prob mod_refprobs[3], int pred_ref) {
int norm_cnt[MAX_REF_FRAMES];
const int *const rfct = cpi->count_mb_ref_frame_usage;
int intra_count = rfct[INTRA_FRAME];
int last_count = rfct[LAST_FRAME];
int gf_count = rfct[GOLDEN_FRAME];
int arf_count = rfct[ALTREF_FRAME];
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
if (pred_ref == INTRA_FRAME) {
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[0] = 0; // This branch implicit
} else if (pred_ref == LAST_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[1] = 0; // This branch implicit
} else if (pred_ref == GOLDEN_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
} else {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
}
}
static __inline unsigned weighted_cost(vp8_prob *tab0, vp8_prob *tab1, int idx, int val, int weight) {
unsigned cost0 = tab0[idx] ? vp8_cost_bit(tab0[idx], val) : 0;
unsigned cost1 = tab1[idx] ? vp8_cost_bit(tab1[idx], val) : 0;
// weight is 16-bit fixed point, so this basically calculates:
// 0.5 + weight * cost1 + (1.0 - weight) * cost0
return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16;
}
static void vp8_estimate_ref_frame_costs(VP8_COMP *cpi, int segment_id, unsigned int *ref_costs) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
vp8_prob *mod_refprobs;
unsigned int cost;
int pred_ref;
int pred_flag;
int pred_ctx;
int i;
int tot_count;
vp8_prob pred_prob, new_pred_prob;
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
check_segref(xd, segment_id, LAST_FRAME) +
check_segref(xd, segment_id, GOLDEN_FRAME) +
check_segref(xd, segment_id, ALTREF_FRAME);
}
// Get the predicted reference for this mb
pred_ref = get_pred_ref(cm, xd);
// Get the context probability for the prediction flag (based on last frame)
pred_prob = get_pred_prob(cm, xd, PRED_REF);
// Predict probability for current frame based on stats so far
pred_ctx = get_pred_context(cm, xd, PRED_REF);
tot_count = cpi->ref_pred_count[pred_ctx][0] + cpi->ref_pred_count[pred_ctx][1];
if (tot_count) {
new_pred_prob =
(cpi->ref_pred_count[pred_ctx][0] * 255 + (tot_count >> 1)) / tot_count;
new_pred_prob += !new_pred_prob;
} else
new_pred_prob = 128;
// Get the set of probabilities to use if prediction fails
mod_refprobs = cm->mod_refprobs[pred_ref];
// For each possible selected reference frame work out a cost.
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (seg_ref_active && seg_ref_count == 1) {
cost = 0;
} else {
pred_flag = (i == pred_ref);
// Get the prediction for the current mb
cost = weighted_cost(&pred_prob, &new_pred_prob, 0,
pred_flag, cpi->seg0_progress);
if (cost > 1024) cost = 768; // i.e. account for 4 bits max.
// for incorrectly predicted cases
if (! pred_flag) {
vp8_prob curframe_mod_refprobs[3];
if (cpi->seg0_progress) {
estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref);
} else {
vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs));
}
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0,
(i != INTRA_FRAME), cpi->seg0_progress);
if (i != INTRA_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1,
(i != LAST_FRAME), cpi->seg0_progress);
if (i != LAST_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2,
(i != GOLDEN_FRAME), cpi->seg0_progress);
}
}
}
}
ref_costs[i] = cost;
}
}
static void store_coding_context(MACROBLOCK *x, int mb_index,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv) {
MACROBLOCKD *xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
x->mb_context[mb_index].best_mode_index = mode_index;
vpx_memcpy(&x->mb_context[mb_index].mic, xd->mode_info_context,
sizeof(MODE_INFO));
vpx_memcpy(&x->mb_context[mb_index].partition_info, partition,
sizeof(PARTITION_INFO));
x->mb_context[mb_index].best_ref_mv.as_int = ref_mv->as_int;
x->mb_context[mb_index].second_best_ref_mv.as_int = second_ref_mv->as_int;
// x->mb_context[mb_index].rddiv = x->rddiv;
// x->mb_context[mb_index].rdmult = x->rdmult;
}
static void inter_mode_cost(VP8_COMP *cpi, MACROBLOCK *x, int this_mode,
int *rate2, int *distortion2, int *rate_y,
int *distortion, int* rate_uv, int *distortion_uv) {
// Y cost and distortion
#if CONFIG_TX16X16
if (this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV ||
this_mode == NEWMV)
macro_block_yrd_16x16(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
else {
#endif
if (cpi->common.txfm_mode == ALLOW_8X8)
macro_block_yrd_8x8(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
else
macro_block_yrd(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
#if CONFIG_TX16X16
}
#endif
*rate2 += *rate_y;
*distortion2 += *distortion;
// UV cost and distortion
if (cpi->common.txfm_mode == ALLOW_8X8
#if CONFIG_TX16X16
|| this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV ||
this_mode == NEWMV
#endif
)
rd_inter16x16_uv_8x8(cpi, x, rate_uv, distortion_uv,
cpi->common.full_pixel);
else
rd_inter16x16_uv(cpi, x, rate_uv, distortion_uv, cpi->common.full_pixel);
*rate2 += *rate_uv;
*distortion2 += *distortion_uv;
}
#define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y))
void setup_buffer_inter(VP8_COMP *cpi, MACROBLOCK *x, int idx, int frame_type,
int recon_yoffset, int recon_uvoffset,
int_mv frame_nearest_mv[4], int_mv frame_near_mv[4],
int_mv frame_best_ref_mv[4],
#if CONFIG_NEWBESTREFMV
int_mv ref_mv[MAX_REF_FRAMES],
#endif
int frame_mdcounts[4][4],
unsigned char *y_buffer[4], unsigned char *u_buffer[4],
unsigned char *v_buffer[4]) {
YV12_BUFFER_CONFIG *yv12 = &cpi->common.yv12_fb[idx];
vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context,
x->e_mbd.prev_mode_info_context,
&frame_nearest_mv[frame_type], &frame_near_mv[frame_type],
&frame_best_ref_mv[frame_type], frame_mdcounts[frame_type],
frame_type, cpi->common.ref_frame_sign_bias);
y_buffer[frame_type] = yv12->y_buffer + recon_yoffset;
u_buffer[frame_type] = yv12->u_buffer + recon_uvoffset;
v_buffer[frame_type] = yv12->v_buffer + recon_uvoffset;
#if CONFIG_NEWBESTREFMV
vp8_find_best_ref_mvs(&x->e_mbd, y_buffer[frame_type],
yv12->y_stride,
&frame_best_ref_mv[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
ref_mv[frame_type].as_int = frame_best_ref_mv[frame_type].as_int;
#endif
}
void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset,
int *returnrate, int *returndistortion, int64_t *returnintra) {
VP8_COMMON *cm = &cpi->common;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MACROBLOCKD *xd = &x->e_mbd;
union b_mode_info best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
int_mv best_ref_mv, second_best_ref_mv;
MB_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int i, best_mode_index = 0;
int mode8x8[2][4];
unsigned char segment_id = mbmi->segment_id;
int mode_index;
int mdcounts[4];
int rate, distortion;
int rate2, distortion2;
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
int64_t best_rd = INT64_MAX, best_intra_rd = INT64_MAX;
#if CONFIG_PRED_FILTER
int64_t best_overall_rd = INT64_MAX;
#endif
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int uv_intra_skippable = 0;
int uv_intra_rate_8x8 = 0, uv_intra_distortion_8x8 = 0, uv_intra_rate_tokenonly_8x8 = 0;
int uv_intra_skippable_8x8 = 0;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
int distortion_uv;
int64_t best_yrd = INT64_MAX;
#if CONFIG_PRED_FILTER
int best_filter_state;
#endif
#if CONFIG_NEWBESTREFMV
int_mv ref_mv[MAX_REF_FRAMES] = {0};
#endif
#if CONFIG_SWITCHABLE_INTERP
int switchable_filter_index = 0;
#endif
MB_PREDICTION_MODE uv_intra_mode;
MB_PREDICTION_MODE uv_intra_mode_8x8 = 0;
int_mv mvp;
int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int saddone = 0;
int sr = 0; // search range got from mv_pred(). It uses step_param levels. (0-7)
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int_mv frame_best_ref_mv[4];
int frame_mdcounts[4][4];
unsigned char *y_buffer[4], *u_buffer[4], *v_buffer[4];
unsigned int ref_costs[MAX_REF_FRAMES];
int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1];
vpx_memset(mode8x8, 0, sizeof(mode8x8));
vpx_memset(&frame_mv, 0, sizeof(frame_mv));
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&best_bmodes, 0, sizeof(best_bmodes));
vpx_memset(&x->mb_context[xd->mb_index], 0, sizeof(PICK_MODE_CONTEXT));
for (i = 0; i < MAX_REF_FRAMES; i++)
frame_mv[NEWMV][i].as_int = INVALID_MV;
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < BLOCK_MAX_SEGMENTS - 1; i++) {
int j, k;
for (j = 0; j < 16; j++)
for (k = 0; k < MAX_REF_FRAMES - 1; k++)
seg_mvs[i][j][k].as_int = INVALID_MV;
}
if (cpi->ref_frame_flags & VP8_LAST_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.lst_fb_idx, LAST_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.gld_fb_idx, GOLDEN_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.alt_fb_idx, ALTREF_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
*returnintra = INT64_MAX;
x->skip = 0;
mbmi->ref_frame = INTRA_FRAME;
/* Initialize zbin mode boost for uv costing */
cpi->zbin_mode_boost = 0;
vp8_update_zbin_extra(cpi, x);
rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate,
&uv_intra_rate_tokenonly, &uv_intra_distortion);
uv_intra_mode = mbmi->uv_mode;
uv_intra_skippable = mbuv_is_skippable(&x->e_mbd);
/* rough estimate for now */
if (cpi->common.txfm_mode == ALLOW_8X8) {
rd_pick_intra_mbuv_mode_8x8(cpi, x, &uv_intra_rate_8x8,
&uv_intra_rate_tokenonly_8x8,
&uv_intra_distortion_8x8);
uv_intra_mode_8x8 = mbmi->uv_mode;
uv_intra_skippable_8x8 = mbuv_is_skippable_8x8(&x->e_mbd);
}
// Get estimates of reference frame costs for each reference frame
// that depend on the current prediction etc.
vp8_estimate_ref_frame_costs(cpi, segment_id, ref_costs);
#if CONFIG_SWITCHABLE_INTERP
for (mode_index = 0; mode_index < MAX_MODES;
mode_index += (!switchable_filter_index)) {
#else
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
#endif
int64_t this_rd = INT64_MAX;
int is_comp_pred;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int mode_excluded = 0;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
rate_y = 0;
rate_uv = 0;
this_mode = vp8_mode_order[mode_index].mode;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = vp8_mode_order[mode_index].ref_frame;
mbmi->second_ref_frame = vp8_mode_order[mode_index].second_ref_frame;
is_comp_pred = x->e_mbd.mode_info_context->mbmi.second_ref_frame != 0;
#if CONFIG_NEWBESTREFMV
mbmi->ref_mv = ref_mv[mbmi->ref_frame];
mbmi->second_ref_mv = ref_mv[mbmi->second_ref_frame];
#endif
#if CONFIG_PRED_FILTER
mbmi->pred_filter_enabled = 0;
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
this_mode >= NEARESTMV && this_mode <= SPLITMV) {
mbmi->interp_filter =
vp8_switchable_interp[switchable_filter_index++];
if (switchable_filter_index == VP8_SWITCHABLE_FILTERS)
switchable_filter_index = 0;
//printf("Searching %d (%d)\n", this_mode, switchable_filter_index);
} else {
mbmi->interp_filter = cpi->common.mcomp_filter_type;
}
vp8_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
#endif
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// current coding mode under rate-distortion optimization test loop
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = this_mode;
#endif
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!check_segref(xd, segment_id, mbmi->ref_frame)) {
continue;
}
// If the segment mode feature is enabled....
// then do nothing if the current mode is not allowed..
else if (segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
(this_mode !=
get_segdata(xd, segment_id, SEG_LVL_MODE))) {
continue;
}
// Disable this drop out case if either the mode or ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that the we end up unable to pick any mode.
else if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV ||
mbmi->ref_frame != ALTREF_FRAME) {
continue;
}
}
}
/* everything but intra */
if (mbmi->ref_frame) {
int ref = mbmi->ref_frame;
x->e_mbd.pre.y_buffer = y_buffer[ref];
x->e_mbd.pre.u_buffer = u_buffer[ref];
x->e_mbd.pre.v_buffer = v_buffer[ref];
best_ref_mv = frame_best_ref_mv[ref];
vpx_memcpy(mdcounts, frame_mdcounts[ref], sizeof(mdcounts));
}
if (mbmi->second_ref_frame) {
int ref = mbmi->second_ref_frame;
x->e_mbd.second_pre.y_buffer = y_buffer[ref];
x->e_mbd.second_pre.u_buffer = u_buffer[ref];
x->e_mbd.second_pre.v_buffer = v_buffer[ref];
second_best_ref_mv = frame_best_ref_mv[ref];
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
if (cpi->zbin_mode_boost_enabled) {
if (vp8_mode_order[mode_index].ref_frame == INTRA_FRAME)
cpi->zbin_mode_boost = 0;
else {
if (vp8_mode_order[mode_index].mode == ZEROMV) {
if (vp8_mode_order[mode_index].ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (vp8_mode_order[mode_index].mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
vp8_update_zbin_extra(cpi, x);
}
// Intra
if (!mbmi->ref_frame) {
switch (this_mode) {
default:
case DC_PRED:
case V_PRED:
case H_PRED:
case TM_PRED:
case D45_PRED:
case D135_PRED:
case D117_PRED:
case D153_PRED:
case D27_PRED:
case D63_PRED:
mbmi->ref_frame = INTRA_FRAME;
// FIXME compound intra prediction
RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby)
(&x->e_mbd);
#if CONFIG_TX16X16
// FIXME: breaks lossless since 4x4 isn't allowed
macro_block_yrd_16x16(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
rate2 += uv_intra_rate_8x8;
rate_uv = uv_intra_rate_tokenonly_8x8;
distortion2 += uv_intra_distortion_8x8;
distortion_uv = uv_intra_distortion_8x8;
break;
#else
if (cpi->common.txfm_mode == ALLOW_8X8)
macro_block_yrd_8x8(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
else
macro_block_yrd(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
if (cpi->common.txfm_mode == ALLOW_8X8) {
rate2 += uv_intra_rate_8x8;
rate_uv = uv_intra_rate_tokenonly_8x8;
distortion2 += uv_intra_distortion_8x8;
distortion_uv = uv_intra_distortion_8x8;
} else {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
}
break;
#endif
case B_PRED: {
int64_t tmp_rd;
// Note the rate value returned here includes the cost of coding
// the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED];
tmp_rd = rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion, best_yrd,
#if CONFIG_COMP_INTRA_PRED
0,
#endif
0);
rate2 += rate;
distortion2 += distortion;
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
case I8X8_PRED: {
int64_t tmp_rd;
tmp_rd = rd_pick_intra8x8mby_modes(cpi, x, &rate, &rate_y,
&distortion, best_yrd);
rate2 += rate;
distortion2 += distortion;
mode8x8[0][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.first;
mode8x8[0][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.first;
mode8x8[0][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.first;
mode8x8[0][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
mode8x8[1][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.second;
mode8x8[1][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.second;
mode8x8[1][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.second;
mode8x8[1][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.second;
#endif
/* TODO: uv rate maybe over-estimated here since there is UV intra
mode coded in I8X8_PRED prediction */
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
}
}
// Split MV. The code is very different from the other inter modes so
// special case it.
else if (this_mode == SPLITMV) {
int64_t tmp_rd, this_rd_thresh;
int_mv *second_ref = is_comp_pred ? &second_best_ref_mv : NULL;
this_rd_thresh =
(mbmi->ref_frame == LAST_FRAME) ?
cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh =
(mbmi->ref_frame == GOLDEN_FRAME) ?
cpi->rd_threshes[THR_NEWG] : this_rd_thresh;
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
second_ref, best_yrd, mdcounts,
&rate, &rate_y, &distortion,
this_rd_thresh, seg_mvs);
rate2 += rate;
distortion2 += distortion;
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[mbmi->interp_filter]];
#endif
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
if (tmp_rd < best_yrd) {
rd_inter4x4_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel);
rate2 += rate_uv;
distortion2 += distortion_uv;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
compmode_cost =
vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), is_comp_pred);
mbmi->mode = this_mode;
}
else {
const int num_refs = is_comp_pred ? 2 : 1;
int flag;
int refs[2] = {x->e_mbd.mode_info_context->mbmi.ref_frame,
x->e_mbd.mode_info_context->mbmi.second_ref_frame};
int_mv cur_mv[2];
switch (this_mode) {
case NEWMV:
if (is_comp_pred) {
if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV ||
frame_mv[NEWMV][refs[1]].as_int == INVALID_MV)
continue;
rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[0]],
&frame_best_ref_mv[refs[0]],
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[1]],
&frame_best_ref_mv[refs[1]],
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
} else {
int bestsme = INT_MAX;
int further_steps, step_param = cpi->sf.first_step;
int sadpb = x->sadperbit16;
int_mv mvp_full, tmp_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp8_clamp_mv_min_max(x, &best_ref_mv);
if (!saddone) {
vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]);
saddone = 1;
}
vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp,
mbmi->ref_frame, cpi->common.ref_frame_sign_bias,
&sr, &near_sadidx[0]);
mvp_full.as_mv.col = mvp.as_mv.col >> 3;
mvp_full.as_mv.row = mvp.as_mv.row >> 3;
// adjust search range according to sr from mv prediction
step_param = MAX(step_param, sr);
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp8_full_pixel_diamond(cpi, x, b, d, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[BLOCK_16X16],
&best_ref_mv, &tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, b, d, &tmp_mv, &best_ref_mv,
x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16],
XMVCOST, &dis, &sse);
}
d->bmi.as_mv.first.as_int = tmp_mv.as_int;
frame_mv[NEWMV][refs[0]].as_int = d->bmi.as_mv.first.as_int;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&tmp_mv, &best_ref_mv,
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
}
break;
case NEARESTMV:
case NEARMV:
flag = 0;
// Do not bother proceeding if the vector (from newmv, nearest or
// near) is 0,0 as this should then be coded using the zeromv mode.
for (i = 0; i < num_refs; ++i)
if (frame_mv[this_mode][refs[i]].as_int == 0)
flag = 1;
if (flag)
continue;
case ZEROMV:
default:
break;
}
flag = 0;
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[this_mode][refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
vp8_clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
flag = 1;
mv_check_bounds(x, &cur_mv[i]);
x->e_mbd.mode_info_context->mbmi.mv[i].as_int = cur_mv[i].as_int;
}
if (flag)
continue;
#if CONFIG_PRED_FILTER
// Filtered prediction:
xd->mode_info_context->mbmi.pred_filter_enabled =
vp8_mode_order[mode_index].pred_filter_flag;
rate2 += vp8_cost_bit(cpi->common.prob_pred_filter_off,
xd->mode_info_context->mbmi.pred_filter_enabled);
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[
x->e_mbd.mode_info_context->mbmi.interp_filter]];
#endif
/* We don't include the cost of the second reference here, because there are only
* three options: Last/Golden, ARF/Last or Golden/ARF, or in other words if you
* present them in that order, the second one is always known if the first is known */
compmode_cost = vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP),
is_comp_pred);
rate2 += vp8_cost_mv_ref(cpi, this_mode, mdcounts);
vp8_build_1st_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor,
16);
if (is_comp_pred)
vp8_build_2nd_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor,
16);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int sse, var;
int threshold = (xd->block[0].dequant[1]
* xd->block[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)
(*(b->base_src), b->src_stride,
x->e_mbd.predictor, 16, &sse);
if (sse < threshold) {
unsigned int q2dc = xd->block[24].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc *q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance));
if (sse2 * 2 < threshold) {
x->skip = 1;
distortion2 = sse + sse2;
rate2 = 500;
/* for best_yrd calculation */
rate_uv = 0;
distortion_uv = sse2;
disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
break;
}
}
}
}
vp8_build_1st_inter16x16_predictors_mbuv(&x->e_mbd, &xd->predictor[256],
&xd->predictor[320], 8);
if (is_comp_pred)
vp8_build_2nd_inter16x16_predictors_mbuv(&x->e_mbd,
&xd->predictor[256],
&xd->predictor[320], 8);
inter_mode_cost(cpi, x, this_mode, &rate2, &distortion2,
&rate_y, &distortion, &rate_uv, &distortion_uv);
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION)
rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[mbmi->ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
if (cpi->common.mb_no_coeff_skip) {
int mb_skippable;
int mb_skip_allowed;
int has_y2 = (this_mode != SPLITMV
&& this_mode != B_PRED
&& this_mode != I8X8_PRED);
#if CONFIG_TX16X16
if (this_mode <= TM_PRED ||
this_mode == NEWMV ||
this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV)
mb_skippable = mb_is_skippable_16x16(&x->e_mbd);
else
#endif
if ((cpi->common.txfm_mode == ALLOW_8X8) && has_y2) {
if (mbmi->ref_frame != INTRA_FRAME)
mb_skippable = mb_is_skippable_8x8(&x->e_mbd);
else
mb_skippable = uv_intra_skippable_8x8
& mby_is_skippable_8x8(&x->e_mbd);
} else {
if (mbmi->ref_frame != INTRA_FRAME)
mb_skippable = mb_is_skippable(&x->e_mbd, has_y2);
else
mb_skippable = uv_intra_skippable
& mby_is_skippable(&x->e_mbd, has_y2);
}
// Is Mb level skip allowed for this mb.
mb_skip_allowed =
!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
get_segdata(xd, segment_id, SEG_LVL_EOB);
if (mb_skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp8_prob skip_prob =
get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp8_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
}
// Add in the cost of the no skip flag.
else if (mb_skip_allowed) {
int prob_skip_cost = vp8_cost_bit(
get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Keep record of best intra distortion
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
#if CONFIG_PRED_FILTER
// Keep track of the best mode irrespective of prediction filter state
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter_state = mbmi->pred_filter_enabled;
}
// Ignore modes where the prediction filter state doesn't
// match the state signaled at the frame level
if ((cm->pred_filter_mode == 2) ||
(cm->pred_filter_mode ==
mbmi->pred_filter_enabled)) {
#endif
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= B_PRED) {
if (cpi->common.txfm_mode == ALLOW_8X8
&& this_mode != B_PRED
&& this_mode != I8X8_PRED)
mbmi->uv_mode = uv_intra_mode_8x8;
else
mbmi->uv_mode = uv_intra_mode;
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[mbmi->ref_frame];
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost),
(distortion2 - distortion_uv));
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
if ((this_mode == B_PRED)
|| (this_mode == I8X8_PRED)
|| (this_mode == SPLITMV))
for (i = 0; i < 16; i++) {
best_bmodes[i] = x->e_mbd.block[i].bmi;
}
}
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7) *
cpi->rd_thresh_mult[mode_index];
}
// If the mode did not help improve the best error case then raise the
// threshold for testing that mode next time around.
else {
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
/* keep record of best compound/single-only prediction */
if (!disable_skip &&
mbmi->ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd;
int single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame == INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame != INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
#if CONFIG_PRED_FILTER
}
#endif
if (x->skip)
break;
}
#if CONFIG_PRED_FILTER
// Update counts for prediction filter usage
if (best_filter_state != 0)
++cpi->pred_filter_on_count;
else
++cpi->pred_filter_off_count;
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
best_mbmode.mode >= NEARESTMV &&
best_mbmode.mode <= SPLITMV) {
++cpi->switchable_interp_count
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[best_mbmode.interp_filter]];
}
#endif
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >=
(MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) *
cpi->rd_thresh_mult[best_mode_index];
}
// This code force Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame or mode is enabled for this
// segment.
if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff =
(cpi->common.mb_no_coeff_skip) ? 1 : 0;
mbmi->partitioning = 0;
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
#if CONFIG_NEWBESTREFMV
mbmi->ref_mv = ref_mv[best_mbmode.ref_frame];
mbmi->second_ref_mv = ref_mv[best_mbmode.second_ref_frame];
#endif
if (best_mbmode.mode == B_PRED) {
for (i = 0; i < 16; i++) {
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
}
}
if (best_mbmode.mode == I8X8_PRED)
set_i8x8_block_modes(x, mode8x8);
if (best_mbmode.mode == SPLITMV) {
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.first.as_int = best_bmodes[i].as_mv.first.as_int;
if (mbmi->second_ref_frame)
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.second.as_int = best_bmodes[i].as_mv.second.as_int;
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
end:
// TODO Save these to add in only if MB coding mode is selected?
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
cpi->rd_comp_pred_diff[i] += best_pred_diff[i];
store_coding_context(x, xd->mb_index, best_mode_index, &best_partition,
&frame_best_ref_mv[mbmi->ref_frame],
&frame_best_ref_mv[mbmi->second_ref_frame]);
}
int vp8_rd_pick_intra_mode(VP8_COMP *cpi, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t error4x4, error16x16;
#if CONFIG_COMP_INTRA_PRED
int64_t error4x4d;
int rate4x4d, dist4x4d;
#endif
int rate4x4, rate16x16 = 0, rateuv;
int dist4x4, dist16x16, distuv;
int rate;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly = 0;
int64_t error8x8;
int rate8x8_tokenonly=0;
int rate8x8, dist8x8;
int mode16x16;
int mode8x8[2][4];
mbmi->ref_frame = INTRA_FRAME;
rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv);
rate = rateuv;
// current macroblock under rate-distortion optimization test loop
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = DC_PRED;
#endif
error16x16 = rd_pick_intra16x16mby_mode(cpi, x, &rate16x16,
&rate16x16_tokenonly, &dist16x16);
mode16x16 = mbmi->mode;
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = I8X8_PRED;
#endif
error8x8 = rd_pick_intra8x8mby_modes(cpi, x, &rate8x8, &rate8x8_tokenonly,
&dist8x8, error16x16);
mode8x8[0][0]= xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[0][1]= xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[0][2]= xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[0][3]= xd->mode_info_context->bmi[10].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
mode8x8[1][0] = xd->mode_info_context->bmi[0].as_mode.second;
mode8x8[1][1] = xd->mode_info_context->bmi[2].as_mode.second;
mode8x8[1][2] = xd->mode_info_context->bmi[8].as_mode.second;
mode8x8[1][3] = xd->mode_info_context->bmi[10].as_mode.second;
#endif
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = B_PRED;
#endif
error4x4 = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4, &rate4x4_tokenonly,
&dist4x4, error16x16,
#if CONFIG_COMP_INTRA_PRED
0,
#endif
0);
#if CONFIG_COMP_INTRA_PRED
error4x4d = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4d, &rate4x4_tokenonly,
&dist4x4d, error16x16, 1, 0);
#endif
if (error8x8 > error16x16) {
if (error4x4 < error16x16) {
#if CONFIG_COMP_INTRA_PRED
rate += (error4x4d < error4x4) ? rate4x4d : rate4x4;
if (error4x4d >= error4x4) // FIXME save original modes etc.
error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4,
&rate4x4_tokenonly,
&dist4x4, error16x16, 0,
cpi->update_context);
#else
rate += rate4x4;
#endif
mbmi->mode = B_PRED;
} else {
mbmi->mode = mode16x16;
rate += rate16x16;
}
} else {
if (error4x4 < error8x8) {
#if CONFIG_COMP_INTRA_PRED
rate += (error4x4d < error4x4) ? rate4x4d : rate4x4;
if (error4x4d >= error4x4) // FIXME save original modes etc.
error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4,
&rate4x4_tokenonly,
&dist4x4, error16x16, 0,
cpi->update_context);
#else
rate += rate4x4;
#endif
mbmi->mode = B_PRED;
} else {
mbmi->mode = I8X8_PRED;
set_i8x8_block_modes(x, mode8x8);
rate += rate8x8;
}
}
return rate;
}
int vp8cx_pick_mode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, distortion;
int64_t intra_error = 0;
unsigned char *segment_id = &mbmi->segment_id;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[*segment_id];
else
x->encode_breakout = cpi->oxcf.encode_breakout;
// if (cpi->sf.RD)
// For now this codebase is limited to a single rd encode path
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
if (mbmi->ref_frame) {
unsigned char pred_context;
pred_context = get_pred_context(cm, xd, PRED_COMP);
if (mbmi->second_ref_frame == INTRA_FRAME)
cpi->single_pred_count[pred_context]++;
else
cpi->comp_pred_count[pred_context]++;
}
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
}
// else
// The non rd encode path has been deleted from this code base
// to simplify development
// vp8_pick_inter_mode
// Store metrics so they can be added in to totals if this mode is picked
x->mb_context[xd->mb_index].distortion = distortion;
x->mb_context[xd->mb_index].intra_error = intra_error;
return rate;
}