0b17ea6f68
The commit replaces run-time initialization of cosine constants with static constant values, which provides ~30% relief on slow speed. The real solution, however will be to implement integer versions of those functions that current use float/double. Change-Id: Ie3ff1793509653d78dd1aeaf88cc6737da1bc55f
358 lines
9.9 KiB
C++
358 lines
9.9 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "third_party/googletest/src/include/gtest/gtest.h"
|
|
|
|
extern "C" {
|
|
#include "vp8/common/entropy.h"
|
|
#include "vp8/common/idct.h"
|
|
#include "vp8/encoder/dct.h"
|
|
}
|
|
|
|
#include "acm_random.h"
|
|
#include "vpx/vpx_integer.h"
|
|
|
|
using libvpx_test::ACMRandom;
|
|
|
|
namespace {
|
|
|
|
const double PI = 3.1415926535898;
|
|
void reference2_16x16_idct_2d(double *input, double *output) {
|
|
double x;
|
|
for (int l = 0; l < 16; ++l) {
|
|
for (int k = 0; k < 16; ++k) {
|
|
double s = 0;
|
|
for (int i = 0; i < 16; ++i) {
|
|
for (int j = 0; j < 16; ++j) {
|
|
x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/256;
|
|
if (i != 0)
|
|
x *= sqrt(2.0);
|
|
if (j != 0)
|
|
x *= sqrt(2.0);
|
|
s += x;
|
|
}
|
|
}
|
|
output[k*16+l] = s;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static const double C1 = 0.995184726672197;
|
|
static const double C2 = 0.98078528040323;
|
|
static const double C3 = 0.956940335732209;
|
|
static const double C4 = 0.923879532511287;
|
|
static const double C5 = 0.881921264348355;
|
|
static const double C6 = 0.831469612302545;
|
|
static const double C7 = 0.773010453362737;
|
|
static const double C8 = 0.707106781186548;
|
|
static const double C9 = 0.634393284163646;
|
|
static const double C10 = 0.555570233019602;
|
|
static const double C11 = 0.471396736825998;
|
|
static const double C12 = 0.38268343236509;
|
|
static const double C13 = 0.290284677254462;
|
|
static const double C14 = 0.195090322016128;
|
|
static const double C15 = 0.098017140329561;
|
|
|
|
static void butterfly_16x16_dct_1d(double input[16], double output[16]) {
|
|
double step[16];
|
|
double intermediate[16];
|
|
double temp1, temp2;
|
|
|
|
// step 1
|
|
step[ 0] = input[0] + input[15];
|
|
step[ 1] = input[1] + input[14];
|
|
step[ 2] = input[2] + input[13];
|
|
step[ 3] = input[3] + input[12];
|
|
step[ 4] = input[4] + input[11];
|
|
step[ 5] = input[5] + input[10];
|
|
step[ 6] = input[6] + input[ 9];
|
|
step[ 7] = input[7] + input[ 8];
|
|
step[ 8] = input[7] - input[ 8];
|
|
step[ 9] = input[6] - input[ 9];
|
|
step[10] = input[5] - input[10];
|
|
step[11] = input[4] - input[11];
|
|
step[12] = input[3] - input[12];
|
|
step[13] = input[2] - input[13];
|
|
step[14] = input[1] - input[14];
|
|
step[15] = input[0] - input[15];
|
|
|
|
// step 2
|
|
output[0] = step[0] + step[7];
|
|
output[1] = step[1] + step[6];
|
|
output[2] = step[2] + step[5];
|
|
output[3] = step[3] + step[4];
|
|
output[4] = step[3] - step[4];
|
|
output[5] = step[2] - step[5];
|
|
output[6] = step[1] - step[6];
|
|
output[7] = step[0] - step[7];
|
|
|
|
temp1 = step[ 8]*C7;
|
|
temp2 = step[15]*C9;
|
|
output[ 8] = temp1 + temp2;
|
|
|
|
temp1 = step[ 9]*C11;
|
|
temp2 = step[14]*C5;
|
|
output[ 9] = temp1 - temp2;
|
|
|
|
temp1 = step[10]*C3;
|
|
temp2 = step[13]*C13;
|
|
output[10] = temp1 + temp2;
|
|
|
|
temp1 = step[11]*C15;
|
|
temp2 = step[12]*C1;
|
|
output[11] = temp1 - temp2;
|
|
|
|
temp1 = step[11]*C1;
|
|
temp2 = step[12]*C15;
|
|
output[12] = temp2 + temp1;
|
|
|
|
temp1 = step[10]*C13;
|
|
temp2 = step[13]*C3;
|
|
output[13] = temp2 - temp1;
|
|
|
|
temp1 = step[ 9]*C5;
|
|
temp2 = step[14]*C11;
|
|
output[14] = temp2 + temp1;
|
|
|
|
temp1 = step[ 8]*C9;
|
|
temp2 = step[15]*C7;
|
|
output[15] = temp2 - temp1;
|
|
|
|
// step 3
|
|
step[ 0] = output[0] + output[3];
|
|
step[ 1] = output[1] + output[2];
|
|
step[ 2] = output[1] - output[2];
|
|
step[ 3] = output[0] - output[3];
|
|
|
|
temp1 = output[4]*C14;
|
|
temp2 = output[7]*C2;
|
|
step[ 4] = temp1 + temp2;
|
|
|
|
temp1 = output[5]*C10;
|
|
temp2 = output[6]*C6;
|
|
step[ 5] = temp1 + temp2;
|
|
|
|
temp1 = output[5]*C6;
|
|
temp2 = output[6]*C10;
|
|
step[ 6] = temp2 - temp1;
|
|
|
|
temp1 = output[4]*C2;
|
|
temp2 = output[7]*C14;
|
|
step[ 7] = temp2 - temp1;
|
|
|
|
step[ 8] = output[ 8] + output[11];
|
|
step[ 9] = output[ 9] + output[10];
|
|
step[10] = output[ 9] - output[10];
|
|
step[11] = output[ 8] - output[11];
|
|
|
|
step[12] = output[12] + output[15];
|
|
step[13] = output[13] + output[14];
|
|
step[14] = output[13] - output[14];
|
|
step[15] = output[12] - output[15];
|
|
|
|
// step 4
|
|
output[ 0] = (step[ 0] + step[ 1]);
|
|
output[ 8] = (step[ 0] - step[ 1]);
|
|
|
|
temp1 = step[2]*C12;
|
|
temp2 = step[3]*C4;
|
|
temp1 = temp1 + temp2;
|
|
output[ 4] = 2*(temp1*C8);
|
|
|
|
temp1 = step[2]*C4;
|
|
temp2 = step[3]*C12;
|
|
temp1 = temp2 - temp1;
|
|
output[12] = 2*(temp1*C8);
|
|
|
|
output[ 2] = 2*((step[4] + step[ 5])*C8);
|
|
output[14] = 2*((step[7] - step[ 6])*C8);
|
|
|
|
temp1 = step[4] - step[5];
|
|
temp2 = step[6] + step[7];
|
|
output[ 6] = (temp1 + temp2);
|
|
output[10] = (temp1 - temp2);
|
|
|
|
intermediate[8] = step[8] + step[14];
|
|
intermediate[9] = step[9] + step[15];
|
|
|
|
temp1 = intermediate[8]*C12;
|
|
temp2 = intermediate[9]*C4;
|
|
temp1 = temp1 - temp2;
|
|
output[3] = 2*(temp1*C8);
|
|
|
|
temp1 = intermediate[8]*C4;
|
|
temp2 = intermediate[9]*C12;
|
|
temp1 = temp2 + temp1;
|
|
output[13] = 2*(temp1*C8);
|
|
|
|
output[ 9] = 2*((step[10] + step[11])*C8);
|
|
|
|
intermediate[11] = step[10] - step[11];
|
|
intermediate[12] = step[12] + step[13];
|
|
intermediate[13] = step[12] - step[13];
|
|
intermediate[14] = step[ 8] - step[14];
|
|
intermediate[15] = step[ 9] - step[15];
|
|
|
|
output[15] = (intermediate[11] + intermediate[12]);
|
|
output[ 1] = -(intermediate[11] - intermediate[12]);
|
|
|
|
output[ 7] = 2*(intermediate[13]*C8);
|
|
|
|
temp1 = intermediate[14]*C12;
|
|
temp2 = intermediate[15]*C4;
|
|
temp1 = temp1 - temp2;
|
|
output[11] = -2*(temp1*C8);
|
|
|
|
temp1 = intermediate[14]*C4;
|
|
temp2 = intermediate[15]*C12;
|
|
temp1 = temp2 + temp1;
|
|
output[ 5] = 2*(temp1*C8);
|
|
}
|
|
|
|
static void reference_16x16_dct_1d(double in[16], double out[16]) {
|
|
const double kPi = 3.141592653589793238462643383279502884;
|
|
const double kInvSqrt2 = 0.707106781186547524400844362104;
|
|
for (int k = 0; k < 16; k++) {
|
|
out[k] = 0.0;
|
|
for (int n = 0; n < 16; n++)
|
|
out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0);
|
|
if (k == 0)
|
|
out[k] = out[k]*kInvSqrt2;
|
|
}
|
|
}
|
|
|
|
void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) {
|
|
// First transform columns
|
|
for (int i = 0; i < 16; ++i) {
|
|
double temp_in[16], temp_out[16];
|
|
for (int j = 0; j < 16; ++j)
|
|
temp_in[j] = input[j*16 + i];
|
|
butterfly_16x16_dct_1d(temp_in, temp_out);
|
|
for (int j = 0; j < 16; ++j)
|
|
output[j*16 + i] = temp_out[j];
|
|
}
|
|
// Then transform rows
|
|
for (int i = 0; i < 16; ++i) {
|
|
double temp_in[16], temp_out[16];
|
|
for (int j = 0; j < 16; ++j)
|
|
temp_in[j] = output[j + i*16];
|
|
butterfly_16x16_dct_1d(temp_in, temp_out);
|
|
// Scale by some magic number
|
|
for (int j = 0; j < 16; ++j)
|
|
output[j + i*16] = temp_out[j]/2;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(VP8Idct16x16Test, AccuracyCheck) {
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
const int count_test_block = 1000;
|
|
for (int i = 0; i < count_test_block; ++i) {
|
|
int16_t in[256], coeff[256];
|
|
int16_t out_c[256];
|
|
double out_r[256];
|
|
|
|
// Initialize a test block with input range [-255, 255].
|
|
for (int j = 0; j < 256; ++j)
|
|
in[j] = rnd.Rand8() - rnd.Rand8();
|
|
|
|
reference_16x16_dct_2d(in, out_r);
|
|
for (int j = 0; j < 256; j++)
|
|
coeff[j] = round(out_r[j]);
|
|
vp8_short_idct16x16_c(coeff, out_c, 32);
|
|
for (int j = 0; j < 256; ++j) {
|
|
const int diff = out_c[j] - in[j];
|
|
const int error = diff * diff;
|
|
EXPECT_GE(1, error)
|
|
<< "Error: 16x16 IDCT has error " << error
|
|
<< " at index " << j;
|
|
}
|
|
|
|
vp8_short_fdct16x16_c(in, out_c, 32);
|
|
for (int j = 0; j < 256; ++j) {
|
|
const double diff = coeff[j] - out_c[j];
|
|
const double error = diff * diff;
|
|
EXPECT_GE(1.0, error)
|
|
<< "Error: 16x16 FDCT has error " << error
|
|
<< " at index " << j;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VP8Fdct16x16Test, AccuracyCheck) {
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
int max_error = 0;
|
|
double total_error = 0;
|
|
const int count_test_block = 1000;
|
|
for (int i = 0; i < count_test_block; ++i) {
|
|
int16_t test_input_block[256];
|
|
int16_t test_temp_block[256];
|
|
int16_t test_output_block[256];
|
|
|
|
// Initialize a test block with input range [-255, 255].
|
|
for (int j = 0; j < 256; ++j)
|
|
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
|
|
|
|
const int pitch = 32;
|
|
vp8_short_fdct16x16_c(test_input_block, test_temp_block, pitch);
|
|
vp8_short_idct16x16_c(test_temp_block, test_output_block, pitch);
|
|
|
|
for (int j = 0; j < 256; ++j) {
|
|
const int diff = test_input_block[j] - test_output_block[j];
|
|
const int error = diff * diff;
|
|
if (max_error < error)
|
|
max_error = error;
|
|
total_error += error;
|
|
}
|
|
}
|
|
|
|
EXPECT_GE(1, max_error)
|
|
<< "Error: 16x16 FDCT/IDCT has an individual roundtrip error > 1";
|
|
|
|
EXPECT_GE(count_test_block/10, total_error)
|
|
<< "Error: 16x16 FDCT/IDCT has average roundtrip error > 1/10 per block";
|
|
}
|
|
|
|
TEST(VP8Fdct16x16Test, CoeffSizeCheck) {
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
const int count_test_block = 1000;
|
|
for (int i = 0; i < count_test_block; ++i) {
|
|
int16_t input_block[256], input_extreme_block[256];
|
|
int16_t output_block[256], output_extreme_block[256];
|
|
|
|
// Initialize a test block with input range [-255, 255].
|
|
for (int j = 0; j < 256; ++j) {
|
|
input_block[j] = rnd.Rand8() - rnd.Rand8();
|
|
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
|
|
}
|
|
if (i == 0)
|
|
for (int j = 0; j < 256; ++j)
|
|
input_extreme_block[j] = 255;
|
|
|
|
const int pitch = 32;
|
|
vp8_short_fdct16x16_c(input_block, output_block, pitch);
|
|
vp8_short_fdct16x16_c(input_extreme_block, output_extreme_block, pitch);
|
|
|
|
// The minimum quant value is 4.
|
|
for (int j = 0; j < 256; ++j) {
|
|
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
|
|
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
|
|
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
|
|
<< "Error: 16x16 FDCT extreme has coefficient larger than 4*DCT_MAX_VALUE";
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|