vpx/vp9/encoder/vp9_encodeframe.c
Paul Wilkins 4f660cc018 Modified mode skip functionality.
A previous speed feature skipped modes not used in earlier
partitions but this not longer worked as intended following
changes to the partition coding order and in conjunction
with some other speed features (Especially speed 2 and above).

This modified mode skip feature sets a mask after the first X
modes have been tested in each partition depending on the
reference frame of the current best case.

This patch also makes some changes to the order modes are
tested to fit better with this skip functionality.

Initial testing suggests speed and rd hit count improvements
of up to 20% at speed 1. Quality results. (derf -1.9%, std hd  +0.23%).

Change-Id: Idd8efa656cbc0c28f06d09690984c1f18b1115e1
2013-09-10 13:30:10 +01:00

2742 lines
93 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#define DBG_PRNT_SEGMAP 0
// #define ENC_DEBUG
#ifdef ENC_DEBUG
int enc_debug = 0;
#endif
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp9_activity_masking().
*/
#define ACTIVITY_AVG_MIN (64)
/* Motion vector component magnitude threshold for defining fast motion. */
#define FAST_MOTION_MV_THRESH (24)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bs) {
unsigned int var, sse;
var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >>
num_pels_log2_lookup[bs];
}
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
act <<= 4;
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12)
act = act < 5 << 12 ? act : 5 << 12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
return vp9_encode_intra(x, use_dc_pred);
}
DECLARE_ALIGNED(16, static const uint8_t, vp9_64x64_zeros[64*64]) = {0};
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(x);
}
if (mb_activity < ACTIVITY_AVG_MIN)
mb_activity = ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
#endif // ACT_MEDIAN
if (cpi->activity_avg < ACTIVITY_AVG_MIN)
cpi->activity_avg = ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate an activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif // USE_ACT_INDEX
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON * const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
#if ALT_ACT_MEASURE
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
// measure activity
mb_activity = mb_activity_measure(x, mb_row, mb_col);
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->plane[0].src.buf += 16;
}
// adjust to the next row of mbs
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
#endif
}
// Macroblock activity masking
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int mb_mode_index = ctx->best_mode_index;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
assert(mi->mbmi.mode < MB_MODE_COUNT);
assert(mb_mode_index < MAX_MODES);
assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES);
assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES);
assert(mi->mbmi.sb_type == bsize);
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y)
xd->mode_info_context[x_idx + y * mis] = *mi;
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
// (i.e. after the output_enabled)
if (bsize < BLOCK_32X32) {
if (bsize < BLOCK_16X16)
ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
}
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
*x->partition_info = ctx->partition_info;
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
if (!output_enabled)
return;
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < TX_MODES; i++)
cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
}
if (cm->frame_type == KEY_FRAME) {
// Restore the coding modes to that held in the coding context
// if (mb_mode == I4X4_PRED)
// for (i = 0; i < 16; i++)
// {
// xd->block[i].bmi.as_mode =
// xd->mode_info_context->bmi[i].as_mode;
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
// }
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
THR_B_PRED /*I4X4_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++;
#endif
} else {
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (is_inter_block(mbmi)
&& (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) {
int_mv best_mv, best_second_mv;
const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
best_mv.as_int = ctx->best_ref_mv.as_int;
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
if (mbmi->mode == NEWMV) {
best_mv.as_int = mbmi->ref_mvs[rf1][0].as_int;
best_second_mv.as_int = mbmi->ref_mvs[rf2][0].as_int;
}
mbmi->best_mv.as_int = best_mv.as_int;
mbmi->best_second_mv.as_int = best_second_mv.as_int;
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
}
if (bsize > BLOCK_8X8 && mbmi->mode == NEWMV) {
int i, j;
for (j = 0; j < mi_height; ++j)
for (i = 0; i < mi_width; ++i)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > i
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > j)
xd->mode_info_context[mis * j + i].mbmi = *mbmi;
}
if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
}
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
for (i = 0; i <= SWITCHABLE_FILTERS; i++)
cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
}
}
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mb_row, int mb_col) {
uint8_t *buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src
->alpha_buffer};
int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src
->alpha_stride};
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mb_row, mb_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
}
static void set_offsets(VP9_COMP *cpi, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int dst_fb_idx = cm->new_fb_idx;
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const int mb_row = mi_row >> 1;
const int mb_col = mi_col >> 1;
const int idx_map = mb_row * cm->mb_cols + mb_col;
const struct segmentation *const seg = &cm->seg;
set_skip_context(cm, xd, mi_row, mi_col);
set_partition_seg_context(cm, xd, mi_row, mi_col);
// Activity map pointer
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
x->active_ptr = cpi->active_map + idx_map;
/* pointers to mode info contexts */
x->partition_info = x->pi + idx_str;
xd->mode_info_context = cm->mi + idx_str;
mbmi = &xd->mode_info_context->mbmi;
// Special case: if prev_mi is NULL, the previous mode info context
// cannot be used.
xd->prev_mode_info_context = cm->prev_mi ? cm->prev_mi + idx_str : NULL;
// Set up destination pointers
setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
// Set up limit values for MV components
// mv beyond the range do not produce new/different prediction block
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(cm, xd, mi_row, mi_height, mi_col, mi_width);
/* set up source buffers */
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
/* R/D setup */
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* segment ID */
if (seg->enabled) {
uint8_t *map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
vp9_mb_init_quantizer(cpi, x);
if (seg->enabled && cpi->seg0_cnt > 0
&& !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME)
&& vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
const int y = mb_row & ~3;
const int x = mb_col & ~3;
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
const int tile_progress = cm->cur_tile_mi_col_start * cm->mb_rows >> 1;
const int mb_cols = (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start)
>> 1;
cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
<< 16) / cm->MBs;
}
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
} else {
mbmi->segment_id = 0;
x->encode_breakout = cpi->oxcf.encode_breakout;
}
}
static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
int *totalrate, int64_t *totaldist,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*totalrate = 0;
*totaldist = 0;
return;
}
}
set_offsets(cpi, mi_row, mi_col, bsize);
xd->mode_info_context->mbmi.sb_type = bsize;
// Set to zero to make sure we do not use the previous encoded frame stats
xd->mode_info_context->mbmi.skip_coeff = 0;
x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (cm->frame_type == KEY_FRAME)
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
best_rd);
else
vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist,
bsize, ctx, best_rd);
}
static void update_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (cm->frame_type != KEY_FRAME) {
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active)
cpi->intra_inter_count[vp9_get_pred_context_intra_inter(xd)]
[is_inter_block(mbmi)]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi) && !seg_ref_active) {
if (cm->comp_pred_mode == HYBRID_PREDICTION)
cpi->comp_inter_count[vp9_get_pred_context_comp_inter_inter(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)]
[mbmi->ref_frame[0] == GOLDEN_FRAME]++;
} else {
cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0]
[mbmi->ref_frame[0] != LAST_FRAME]++;
if (mbmi->ref_frame[0] != LAST_FRAME)
cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1]
[mbmi->ref_frame[0] != GOLDEN_FRAME]++;
}
}
// Count of last ref frame 0,0 usage
if (mbmi->mode == ZEROMV && mbmi->ref_frame[0] == LAST_FRAME)
cpi->inter_zz_count++;
}
}
// TODO(jingning): the variables used here are little complicated. need further
// refactoring on organizing the temporary buffers, when recursive
// partition down to 4x4 block size is enabled.
static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
switch (bsize) {
case BLOCK_64X64:
return &x->sb64_context;
case BLOCK_64X32:
return &x->sb64x32_context[xd->sb_index];
case BLOCK_32X64:
return &x->sb32x64_context[xd->sb_index];
case BLOCK_32X32:
return &x->sb32_context[xd->sb_index];
case BLOCK_32X16:
return &x->sb32x16_context[xd->sb_index][xd->mb_index];
case BLOCK_16X32:
return &x->sb16x32_context[xd->sb_index][xd->mb_index];
case BLOCK_16X16:
return &x->mb_context[xd->sb_index][xd->mb_index];
case BLOCK_16X8:
return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X16:
return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X8:
return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X4:
return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_4X8:
return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_4X4:
return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index];
default:
assert(0);
return NULL ;
}
}
static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
switch (bsize) {
case BLOCK_64X64:
return &x->sb64_partitioning;
case BLOCK_32X32:
return &x->sb_partitioning[xd->sb_index];
case BLOCK_16X16:
return &x->mb_partitioning[xd->sb_index][xd->mb_index];
case BLOCK_8X8:
return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index];
default:
assert(0);
return NULL ;
}
}
static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(
cm->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
cm->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(cm->above_seg_context + mi_col, sa,
sizeof(PARTITION_CONTEXT) * mi_width);
vpx_memcpy(cm->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(PARTITION_CONTEXT) * mi_height);
}
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
vpx_memcpy(
a + num_4x4_blocks_wide * p,
cm->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
l + num_4x4_blocks_high * p,
cm->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(sa, cm->above_seg_context + mi_col,
sizeof(PARTITION_CONTEXT) * mi_width);
vpx_memcpy(sl, cm->left_seg_context + (mi_row & MI_MASK),
sizeof(PARTITION_CONTEXT) * mi_height);
}
static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize, int sub_index) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (sub_index != -1)
*get_sb_index(xd, bsize) = sub_index;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index > 0)
return;
}
set_offsets(cpi, mi_row, mi_col, bsize);
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
if (output_enabled) {
update_stats(cpi);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
BLOCK_SIZE c1 = BLOCK_8X8;
const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4;
int UNINITIALIZED_IS_SAFE(pl);
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
int i;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
c1 = BLOCK_4X4;
if (bsize >= BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
c1 = *(get_sb_partitioning(x, bsize));
}
partition = partition_lookup[bsl][c1];
switch (partition) {
case PARTITION_NONE:
if (output_enabled && bsize >= BLOCK_8X8)
cpi->partition_count[pl][PARTITION_NONE]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1);
break;
case PARTITION_VERT:
if (output_enabled)
cpi->partition_count[pl][PARTITION_VERT]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
break;
case PARTITION_HORZ:
if (output_enabled)
cpi->partition_count[pl][PARTITION_HORZ]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (output_enabled)
cpi->partition_count[pl][PARTITION_SPLIT]++;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
*get_sb_index(xd, subsize) = i;
encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
output_enabled, subsize);
}
break;
default:
assert(0);
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
update_partition_context(xd, c1, bsize);
}
}
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if ((rows_left <= 0) || (cols_left <= 0)) {
return MIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; --bsize) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_partitioning(VP9_COMP *cpi, MODE_INFO *m,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
const int mis = cm->mode_info_stride;
int row8x8_remaining = cm->cur_tile_mi_row_end - mi_row;
int col8x8_remaining = cm->cur_tile_mi_col_end - mi_col;
int block_row, block_col;
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; ++block_row) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; ++block_col) {
m[block_row * mis + block_col].mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
int sub_block_row;
int sub_block_col;
int row_index;
int col_index;
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
// Find a partition size that fits
bsize = find_partition_size(cpi->sf.always_this_block_size,
(row8x8_remaining - block_row),
(col8x8_remaining - block_col), &bh, &bw);
// Set the mi entries for all 8x8 blocks within the selected size
for (sub_block_row = 0; sub_block_row < bh; ++sub_block_row) {
for (sub_block_col = 0; sub_block_col < bw; ++sub_block_col) {
row_index = block_row + sub_block_row;
col_index = block_col + sub_block_col;
m[row_index * mis + col_index].mbmi.sb_type = bsize;
}
}
}
}
}
}
static void copy_partitioning(VP9_COMP *cpi, MODE_INFO *m, MODE_INFO *p) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
m[block_row * mis + block_col].mbmi.sb_type =
p[block_row * mis + block_col].mbmi.sb_type;
}
}
}
static void set_block_size(VP9_COMMON * const cm, MODE_INFO *mi,
BLOCK_SIZE bsize, int mis, int mi_row,
int mi_col) {
int r, c;
const int bs = MAX(num_8x8_blocks_wide_lookup[bsize],
num_8x8_blocks_high_lookup[bsize]);
MODE_INFO *const mi2 = &mi[mi_row * mis + mi_col];
for (r = 0; r < bs; r++)
for (c = 0; c < bs; c++)
if (mi_row + r < cm->mi_rows && mi_col + c < cm->mi_cols)
mi2[r * mis + c].mbmi.sb_type = bsize;
}
typedef struct {
int64_t sum_square_error;
int64_t sum_error;
int count;
int variance;
} var;
typedef struct {
var none;
var horz[2];
var vert[2];
} partition_variance;
#define VT(TYPE, BLOCKSIZE) \
typedef struct { \
partition_variance vt; \
BLOCKSIZE split[4]; } TYPE;
VT(v8x8, var)
VT(v16x16, v8x8)
VT(v32x32, v16x16)
VT(v64x64, v32x32)
typedef struct {
partition_variance *vt;
var *split[4];
} vt_node;
typedef enum {
V16X16,
V32X32,
V64X64,
} TREE_LEVEL;
static void tree_to_node(void *data, BLOCK_SIZE bsize, vt_node *node) {
int i;
switch (bsize) {
case BLOCK_64X64: {
v64x64 *vt = (v64x64 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_32X32: {
v32x32 *vt = (v32x32 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_16X16: {
v16x16 *vt = (v16x16 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_8X8: {
v8x8 *vt = (v8x8 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i];
break;
}
default:
node->vt = 0;
for (i = 0; i < 4; i++)
node->split[i] = 0;
assert(-1);
}
}
// Set variance values given sum square error, sum error, count.
static void fill_variance(var *v, int64_t s2, int64_t s, int c) {
v->sum_square_error = s2;
v->sum_error = s;
v->count = c;
if (c > 0)
v->variance = 256
* (v->sum_square_error - v->sum_error * v->sum_error / v->count)
/ v->count;
else
v->variance = 0;
}
// Combine 2 variance structures by summing the sum_error, sum_square_error,
// and counts and then calculating the new variance.
void sum_2_variances(var *r, var *a, var*b) {
fill_variance(r, a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->count + b->count);
}
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
vt_node node;
tree_to_node(data, bsize, &node);
sum_2_variances(&node.vt->horz[0], node.split[0], node.split[1]);
sum_2_variances(&node.vt->horz[1], node.split[2], node.split[3]);
sum_2_variances(&node.vt->vert[0], node.split[0], node.split[2]);
sum_2_variances(&node.vt->vert[1], node.split[1], node.split[3]);
sum_2_variances(&node.vt->none, &node.vt->vert[0], &node.vt->vert[1]);
}
#if PERFORM_RANDOM_PARTITIONING
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m,
BLOCK_SIZE block_size, int mi_row,
int mi_col, int mi_size) {
VP9_COMMON * const cm = &cpi->common;
vt_node vt;
const int mis = cm->mode_info_stride;
int64_t threshold = 4 * cpi->common.base_qindex * cpi->common.base_qindex;
tree_to_node(data, block_size, &vt);
// split none is available only if we have more than half a block size
// in width and height inside the visible image
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows &&
(rand() & 3) < 1) {
set_block_size(cm, m, block_size, mis, mi_row, mi_col);
return 1;
}
// vertical split is available on all but the bottom border
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
&& (rand() & 3) < 1) {
set_block_size(cm, m, get_subsize(block_size, PARTITION_VERT), mis, mi_row,
mi_col);
return 1;
}
// horizontal split is available on all but the right border
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
&& (rand() & 3) < 1) {
set_block_size(cm, m, get_subsize(block_size, PARTITION_HORZ), mis, mi_row,
mi_col);
return 1;
}
return 0;
}
#else // !PERFORM_RANDOM_PARTITIONING
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m,
BLOCK_SIZE bsize, int mi_row,
int mi_col, int mi_size) {
VP9_COMMON * const cm = &cpi->common;
vt_node vt;
const int mis = cm->mode_info_stride;
int64_t threshold = 50 * cpi->common.base_qindex;
tree_to_node(data, bsize, &vt);
// split none is available only if we have more than half a block size
// in width and height inside the visible image
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows
&& vt.vt->none.variance < threshold) {
set_block_size(cm, m, bsize, mis, mi_row, mi_col);
return 1;
}
// vertical split is available on all but the bottom border
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
&& vt.vt->vert[1].variance < threshold) {
set_block_size(cm, m, get_subsize(bsize, PARTITION_VERT), mis, mi_row,
mi_col);
return 1;
}
// horizontal split is available on all but the right border
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
&& vt.vt->horz[1].variance < threshold) {
set_block_size(cm, m, get_subsize(bsize, PARTITION_HORZ), mis, mi_row,
mi_col);
return 1;
}
return 0;
}
#endif // PERFORM_RANDOM_PARTITIONING
static void choose_partitioning(VP9_COMP *cpi, MODE_INFO *m, int mi_row,
int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
// TODO(JBB): More experimentation or testing of this threshold;
int64_t threshold = 4;
int i, j, k;
v64x64 vt;
unsigned char * s;
int sp;
const unsigned char * d;
int dp;
int pixels_wide = 64, pixels_high = 64;
vp9_zero(vt);
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
if (xd->mb_to_right_edge < 0)
pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0)
pixels_high += (xd->mb_to_bottom_edge >> 3);
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
// TODO(JBB): Clearly the higher the quantizer the fewer partitions we want
// but this needs more experimentation.
threshold = threshold * cpi->common.base_qindex * cpi->common.base_qindex;
d = vp9_64x64_zeros;
dp = 64;
if (cm->frame_type != KEY_FRAME) {
int_mv nearest_mv, near_mv;
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, LAST_FRAME)];
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
&xd->scale_factor[0]);
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
&xd->scale_factor[1]);
xd->mode_info_context->mbmi.ref_frame[0] = LAST_FRAME;
xd->mode_info_context->mbmi.sb_type = BLOCK_64X64;
vp9_find_best_ref_mvs(xd, m->mbmi.ref_mvs[m->mbmi.ref_frame[0]],
&nearest_mv, &near_mv);
xd->mode_info_context->mbmi.mv[0] = nearest_mv;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
d = xd->plane[0].dst.buf;
dp = xd->plane[0].dst.stride;
}
// Fill in the entire tree of 8x8 variances for splits.
for (i = 0; i < 4; i++) {
const int x32_idx = ((i & 1) << 5);
const int y32_idx = ((i >> 1) << 5);
for (j = 0; j < 4; j++) {
const int x16_idx = x32_idx + ((j & 1) << 4);
const int y16_idx = y32_idx + ((j >> 1) << 4);
v16x16 *vst = &vt.split[i].split[j];
for (k = 0; k < 4; k++) {
int x_idx = x16_idx + ((k & 1) << 3);
int y_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x_idx < pixels_wide && y_idx < pixels_high)
vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp,
d + y_idx * dp + x_idx, dp, &sse, &sum);
fill_variance(&vst->split[k].vt.none, sse, sum, 64);
}
}
}
// Fill the rest of the variance tree by summing the split partition
// values.
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
}
fill_variance_tree(&vt.split[i], BLOCK_32X32);
}
fill_variance_tree(&vt, BLOCK_64X64);
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold, or we
// hit 8x8.
if (!set_vt_partitioning(cpi, &vt, m, BLOCK_64X64, mi_row, mi_col,
4)) {
for (i = 0; i < 4; ++i) {
const int x32_idx = ((i & 1) << 2);
const int y32_idx = ((i >> 1) << 2);
if (!set_vt_partitioning(cpi, &vt.split[i], m, BLOCK_32X32,
(mi_row + y32_idx), (mi_col + x32_idx), 2)) {
for (j = 0; j < 4; ++j) {
const int x16_idx = ((j & 1) << 1);
const int y16_idx = ((j >> 1) << 1);
if (!set_vt_partitioning(cpi, &vt.split[i].split[j], m,
BLOCK_16X16,
(mi_row + y32_idx + y16_idx),
(mi_col + x32_idx + x16_idx), 1)) {
for (k = 0; k < 4; ++k) {
const int x8_idx = (k & 1);
const int y8_idx = (k >> 1);
set_block_size(cm, m, BLOCK_8X8, mis,
(mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx));
}
}
}
}
}
}
}
static void rd_use_partition(VP9_COMP *cpi, MODE_INFO *m, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rate, int64_t *dist, int do_recon) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bsl = b_width_log2(bsize);
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int ms = num_4x4_blocks_wide / 2;
int mh = num_4x4_blocks_high / 2;
int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int last_part_rate = INT_MAX;
int64_t last_part_dist = INT_MAX;
int split_rate = INT_MAX;
int64_t split_dist = INT_MAX;
int none_rate = INT_MAX;
int64_t none_dist = INT_MAX;
int chosen_rate = INT_MAX;
int64_t chosen_dist = INT_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = m->mbmi.sb_type;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
} else {
*(get_sb_partitioning(x, bsize)) = subsize;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
x->fast_ms = 0;
x->pred_mv.as_int = 0;
x->subblock_ref = 0;
if (cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
if (m[jj * bss * mis + ii * bss].mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (ms >> 1) < cm->mi_rows &&
mi_col + (ms >> 1) < cm->mi_cols) {
*(get_sb_partitioning(x, bsize)) = bsize;
pick_sb_modes(cpi, mi_row, mi_col, &none_rate, &none_dist, bsize,
get_block_context(x, bsize), INT64_MAX);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
none_rate += x->partition_cost[pl][PARTITION_NONE];
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
m->mbmi.sb_type = bs_type;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
bsize, get_block_context(x, bsize), INT64_MAX);
break;
case PARTITION_HORZ:
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_VERT:
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_SPLIT:
// Split partition.
last_part_rate = 0;
last_part_dist = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (ms >> 1);
int y_idx = (i >> 1) * (ms >> 1);
int jj = i >> 1, ii = i & 0x01;
int rt;
int64_t dt;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(xd, subsize) = i;
rd_use_partition(cpi, m + jj * bss * mis + ii * bss, tp, mi_row + y_idx,
mi_col + x_idx, subsize, &rt, &dt, i != 3);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
default:
assert(0);
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (last_part_rate < INT_MAX)
last_part_rate += x->partition_cost[pl][partition];
if (cpi->sf.adjust_partitioning_from_last_frame
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
&& (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
split_rate = 0;
split_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows)
|| (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(xd, split_subsize) = i;
*get_sb_partitioning(x, bsize) = split_subsize;
*get_sb_partitioning(x, split_subsize) = split_subsize;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
split_subsize, get_block_context(x, split_subsize),
INT64_MAX);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (rt == INT_MAX || dt == INT_MAX) {
split_rate = INT_MAX;
split_dist = INT_MAX;
break;
}
if (i != 3)
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize);
split_rate += rt;
split_dist += dt;
set_partition_seg_context(cm, xd, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, bsize);
split_rate += x->partition_cost[pl][PARTITION_NONE];
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (split_rate < INT_MAX) {
split_rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rate = split_rate;
chosen_dist = split_dist;
}
}
// If last_part is better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
< RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
m->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = subsize;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
}
// If none was better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
> RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
if (do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
*rate = chosen_rate;
*dist = chosen_dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO * mi,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size ) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
*min_block_size = MIN(*min_block_size, mi[index + j].mbmi.sb_type);
*max_block_size = MAX(*max_block_size, mi[index + j].mbmi.sb_type);
}
index += xd->mode_info_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, int row, int col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *above_sb64_mi;
MODE_INFO *left_sb64_mi;
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->in_image;
const int above_in_image = xd->up_available && above_mbmi->in_image;
// Frequency check
if (cpi->sf.auto_min_max_partition_count <= 0) {
cpi->sf.auto_min_max_partition_count =
cpi->sf.auto_min_max_partition_interval;
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
--cpi->sf.auto_min_max_partition_count;
// Set default values if no left or above neighbour
if (!left_in_image && !above_in_image) {
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
VP9_COMMON *const cm = &cpi->common;
int row8x8_remaining = cm->cur_tile_mi_row_end - row;
int col8x8_remaining = cm->cur_tile_mi_col_end - col;
int bh, bw;
// Default "min to max" and "max to min"
*min_block_size = BLOCK_64X64;
*max_block_size = BLOCK_4X4;
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
left_sb64_mi = &mi[-MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, left_sb64_mi,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the above SB64 taking
// the values found for left as a starting point.
if (above_in_image) {
above_sb64_mi = &mi[-xd->mode_info_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, above_sb64_mi,
min_block_size, max_block_size);
}
// Give a bit of leaway either side of the observed min and max
*min_block_size = min_partition_size[*min_block_size];
*max_block_size = max_partition_size[*max_block_size];
// Check border cases where max and min from neighbours may not be legal.
*max_block_size = find_partition_size(*max_block_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
*min_block_size = MIN(*min_block_size, *max_block_size);
}
}
}
static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Only use 8x8 result for non HD videos.
// int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0;
int use_8x8 = 1;
if (cm->frame_type && !cpi->is_src_frame_alt_ref &&
((use_8x8 && bsize == BLOCK_16X16) ||
bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0;
PICK_MODE_CONTEXT *block_context = NULL;
if (bsize == BLOCK_16X16) {
block_context = x->sb8x8_context[xd->sb_index][xd->mb_index];
} else if (bsize == BLOCK_32X32) {
block_context = x->mb_context[xd->sb_index];
} else if (bsize == BLOCK_64X64) {
block_context = x->sb32_context;
}
if (block_context) {
ref0 = block_context[0].mic.mbmi.ref_frame[0];
ref1 = block_context[1].mic.mbmi.ref_frame[0];
ref2 = block_context[2].mic.mbmi.ref_frame[0];
ref3 = block_context[3].mic.mbmi.ref_frame[0];
}
// Currently, only consider 4 inter reference frames.
if (ref0 && ref1 && ref2 && ref3) {
int d01, d23, d02, d13;
// Motion vectors for the four subblocks.
int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
// Adjust sign if ref is alt_ref.
if (cm->ref_frame_sign_bias[ref0]) {
mvr0 *= -1;
mvc0 *= -1;
}
if (cm->ref_frame_sign_bias[ref1]) {
mvr1 *= -1;
mvc1 *= -1;
}
if (cm->ref_frame_sign_bias[ref2]) {
mvr2 *= -1;
mvc2 *= -1;
}
if (cm->ref_frame_sign_bias[ref3]) {
mvr3 *= -1;
mvc3 *= -1;
}
// Calculate mv distances.
d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
// Set fast motion search level.
x->fast_ms = 1;
// Calculate prediction MV.
x->pred_mv.as_mv.row = (mvr0 + mvr1 + mvr2 + mvr3) >> 2;
x->pred_mv.as_mv.col = (mvc0 + mvc1 + mvc2 + mvc3) >> 2;
if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
// Set fast motion search level.
x->fast_ms = 2;
if (!d01 && !d23 && !d02 && !d13) {
x->fast_ms = 3;
x->subblock_ref = ref0;
}
}
}
}
}
}
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
int i, pl;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int64_t sum_rd = 0;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8;
int partition_split_done = 0;
(void) *tp_orig;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
}
assert(mi_height_log2(bsize) == mi_width_log2(bsize));
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
bsize >= cpi->sf.min_partition_size);
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_vert_split);
do_split &= bsize > cpi->sf.min_partition_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
do_split = 0;
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
do_rect = 0;
}
}
// PARTITION_NONE
if (partition_none_allowed) {
pick_sb_modes(cpi, mi_row, mi_col, &this_rate, &this_dist, bsize,
get_block_context(x, bsize), best_rd);
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
this_rate += x->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_SPLIT
sum_rd = 0;
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
*get_sb_index(xd, subsize) = i;
rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rate, &this_dist, i != 3, best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd && i == 4) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
}
partition_split_done = 1;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
x->fast_ms = 0;
x->pred_mv.as_int = 0;
x->subblock_ref = 0;
if (partition_split_done &&
cpi->sf.using_small_partition_info) {
compute_fast_motion_search_level(cpi, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row + ms, mi_col, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row, mi_col + ms, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_VERT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
*rate = best_rate;
*dist = best_dist;
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
assert(best_dist < INT_MAX);
} else {
assert(tp_orig == *tp);
}
}
// Examines 64x64 block and chooses a best reference frame
static void rd_pick_reference_frame(VP9_COMP *cpi, int mi_row, int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl;
int ms = bs / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int pl;
int r;
int64_t d;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
// Default is non mask (all reference frames allowed.
cpi->ref_frame_mask = 0;
// Do RD search for 64x64.
if ((mi_row + (ms >> 1) < cm->mi_rows) &&
(mi_col + (ms >> 1) < cm->mi_cols)) {
cpi->set_ref_frame_mask = 1;
pick_sb_modes(cpi, mi_row, mi_col, &r, &d, BLOCK_64X64,
get_block_context(x, BLOCK_64X64), INT64_MAX);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_64X64);
r += x->partition_cost[pl][PARTITION_NONE];
*(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64;
cpi->set_ref_frame_mask = 0;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
}
static void encode_sb_row(VP9_COMP *cpi, int mi_row, TOKENEXTRA **tp,
int *totalrate) {
VP9_COMMON * const cm = &cpi->common;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&cm->left_context, 0, sizeof(cm->left_context));
vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context));
// Code each SB in the row
for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate;
int64_t dummy_dist;
if (cpi->sf.reference_masking)
rd_pick_reference_frame(cpi, mi_row, mi_col);
if (cpi->sf.partition_by_variance || cpi->sf.use_lastframe_partitioning ||
cpi->sf.use_one_partition_size_always ) {
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
MODE_INFO *m = cm->mi + idx_str;
MODE_INFO *p = cm->prev_mi + idx_str;
cpi->mb.source_variance = UINT_MAX;
if (cpi->sf.use_one_partition_size_always) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
set_partitioning(cpi, m, mi_row, mi_col);
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
} else if (cpi->sf.partition_by_variance) {
choose_partitioning(cpi, cm->mi, mi_row, mi_col);
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
} else {
if ((cpi->common.current_video_frame
% cpi->sf.last_partitioning_redo_frequency) == 0
|| cm->prev_mi == 0
|| cpi->common.show_frame == 0
|| cpi->common.frame_type == KEY_FRAME
|| cpi->is_src_frame_alt_ref) {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
} else {
copy_partitioning(cpi, m, p);
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
}
}
} else {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
}
}
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
xd->mode_info_stride = cm->mode_info_stride;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
// TODO(jkoleszar): are these initializations required?
setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]],
0, 0, NULL);
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->y_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cm->counts.inter_mode)
vp9_zero(cpi->partition_count);
vp9_zero(cpi->intra_inter_count);
vp9_zero(cpi->comp_inter_count);
vp9_zero(cpi->single_ref_count);
vp9_zero(cpi->comp_ref_count);
vp9_zero(cm->counts.tx);
vp9_zero(cm->counts.mbskip);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context[0], 0,
sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * aligned_mi_cols);
vpx_memset(cm->above_seg_context, 0,
sizeof(PARTITION_CONTEXT) * aligned_mi_cols);
}
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
// printf("Switching to lossless\n");
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
cpi->mb.optimize = 0;
cpi->common.lf.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
cpi->common.tx_mode = ONLY_4X4;
} else {
// printf("Not lossless\n");
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
}
}
static void switch_tx_mode(VP9_COMP *cpi) {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
cpi->common.tx_mode >= ALLOW_32X32)
cpi->common.tx_mode = ALLOW_32X32;
}
static void encode_frame_internal(VP9_COMP *cpi) {
int mi_row;
MACROBLOCK * const x = &cpi->mb;
VP9_COMMON * const cm = &cpi->common;
MACROBLOCKD * const xd = &x->e_mbd;
int totalrate;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
vp9_zero(cm->counts.switchable_interp);
vp9_zero(cpi->txfm_stepdown_count);
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->NMVcount);
vp9_zero(cpi->coef_counts);
vp9_zero(cm->counts.eob_branch);
cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
&& cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
switch_tx_mode(cpi);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// Re-initialize encode frame context.
init_encode_frame_mb_context(cpi);
vp9_zero(cpi->rd_comp_pred_diff);
vp9_zero(cpi->rd_filter_diff);
vp9_zero(cpi->rd_tx_select_diff);
vp9_zero(cpi->rd_tx_select_threshes);
set_prev_mi(cm);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
// Take tiles into account and give start/end MB
int tile_col, tile_row;
TOKENEXTRA *tp = cpi->tok;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mi_row = cm->cur_tile_mi_row_start;
mi_row < cm->cur_tile_mi_row_end; mi_row += 8)
encode_sb_row(cpi, mi_row, &tp, &totalrate);
cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
}
}
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
if (cpi->sf.skip_encode_sb) {
int j;
unsigned int intra_count = 0, inter_count = 0;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += cpi->intra_inter_count[j][0];
inter_count += cpi->intra_inter_count[j][1];
}
cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count);
cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME);
cpi->sf.skip_encode_frame &= cm->show_frame;
} else {
cpi->sf.skip_encode_frame = 0;
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi[y * mis + x].mbmi.skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
TX_SIZE tx_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++)
mi[y * mis + x].mbmi.tx_size = tx_size;
}
}
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi, int mis,
TX_SIZE max_tx_size, int bw, int bh,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (mbmi->tx_size > max_tx_size) {
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
xd->mode_info_context = mi;
assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
get_skip_flag(mi, mis, ymbs, xmbs));
set_txfm_flag(mi, mis, ymbs, xmbs, max_tx_size);
}
}
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
TX_SIZE max_tx_size, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int bw, bh;
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
if (bw == bs && bh == bs) {
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, bs, bs, mi_row,
mi_col, bsize);
} else if (bw == bs && bh < bs) {
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, bs, hbs, mi_row, mi_col,
bsize);
reset_skip_txfm_size_b(cpi, mi + hbs * mis, mis, max_tx_size, bs, hbs,
mi_row + hbs, mi_col, bsize);
} else if (bw < bs && bh == bs) {
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, hbs, bs, mi_row, mi_col,
bsize);
reset_skip_txfm_size_b(cpi, mi + hbs, mis, max_tx_size, hbs, bs, mi_row,
mi_col + hbs, bsize);
} else {
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
int n;
assert(bw < bs && bh < bs);
for (n = 0; n < 4; n++) {
const int mi_dc = hbs * (n & 1);
const int mi_dr = hbs * (n >> 1);
reset_skip_txfm_size_sb(cpi, &mi[mi_dr * mis + mi_dc], max_tx_size,
mi_row + mi_dr, mi_col + mi_dc, subsize);
}
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON * const cm = &cpi->common;
int mi_row, mi_col;
const int mis = cm->mode_info_stride;
MODE_INFO *mi, *mi_ptr = cm->mi;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) {
mi = mi_ptr;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi += 8)
reset_skip_txfm_size_sb(cpi, mi, txfm_max, mi_row, mi_col, BLOCK_64X64);
}
}
static int get_frame_type(VP9_COMP *cpi) {
int frame_type;
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
frame_type = 3;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
frame_type = 1;
else
frame_type = 2;
return frame_type;
}
static void select_tx_mode(VP9_COMP *cpi) {
if (cpi->oxcf.lossless) {
cpi->common.tx_mode = ONLY_4X4;
} else if (cpi->common.current_video_frame == 0) {
cpi->common.tx_mode = TX_MODE_SELECT;
} else {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
cpi->common.tx_mode = ALLOW_32X32;
} else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
int frame_type = get_frame_type(cpi);
cpi->common.tx_mode =
cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
> cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
} else {
unsigned int total = 0;
int i;
for (i = 0; i < TX_SIZES; ++i)
total += cpi->txfm_stepdown_count[i];
if (total) {
double fraction = (double)cpi->txfm_stepdown_count[0] / total;
cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
// printf("fraction = %f\n", fraction);
} // else keep unchanged
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
VP9_COMMON * const cm = &cpi->common;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if ((cm->ref_frame_sign_bias[ALTREF_FRAME]
== cm->ref_frame_sign_bias[GOLDEN_FRAME])
|| (cm->ref_frame_sign_bias[ALTREF_FRAME]
== cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
if (cpi->sf.RD) {
int i, pred_type;
INTERPOLATIONFILTERTYPE filter_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
int frame_type = get_frame_type(cpi);
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3 || !cm->allow_comp_inter_inter)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1]
> cpi->rd_prediction_type_threshes[frame_type][0]
&& cpi->rd_prediction_type_threshes[frame_type][1]
> cpi->rd_prediction_type_threshes[frame_type][2]
&& check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0]
> cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* filter type selection */
// FIXME(rbultje) for some odd reason, we often select smooth_filter
// as default filter for ARF overlay frames. This is a REALLY BAD
// IDEA so we explicitly disable it here.
if (frame_type != 3 &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][0] &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][2] &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP_SMOOTH;
} else if (cpi->rd_filter_threshes[frame_type][2] >
cpi->rd_filter_threshes[frame_type][0] &&
cpi->rd_filter_threshes[frame_type][2] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP_SHARP;
} else if (cpi->rd_filter_threshes[frame_type][0] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP;
} else {
filter_type = SWITCHABLE;
}
cpi->mb.e_mbd.lossless = 0;
if (cpi->oxcf.lossless) {
cpi->mb.e_mbd.lossless = 1;
}
/* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */
select_tx_mode(cpi);
cpi->common.comp_pred_mode = pred_type;
cpi->common.mcomp_filter_type = filter_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i <= SWITCHABLE_FILTERS; i++) {
const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs;
cpi->rd_filter_threshes[frame_type][i] =
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
}
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZES - 1), 0);
diff = (int) (pd / cpi->common.MBs);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cpi->comp_inter_count[i][0];
comp_count_zero += cpi->comp_inter_count[i][1];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
vp9_zero(cpi->comp_inter_count);
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
vp9_zero(cpi->comp_inter_count);
}
}
if (cpi->common.tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0
&& count32x32 == 0) {
cpi->common.tx_mode = ALLOW_8X8;
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0
&& count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cpi->common.tx_mode = ONLY_4X4;
reset_skip_txfm_size(cpi, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.tx_mode = ALLOW_16X16;
reset_skip_txfm_size(cpi, TX_16X16);
}
}
} else {
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) {
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
++cpi->y_uv_mode_count[y_mode][uv_mode];
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high)
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide)
++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
++cpi->y_mode_count[size_group_lookup[bsize]][y_mode];
}
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
#endif
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
unsigned int segment_id = mbmi->segment_id;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
xd->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
if (mbmi->ref_frame[0] != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (mbmi->sb_type < BLOCK_8X8) {
cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
} else {
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
}
if (!is_inter_block(mbmi)) {
vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8));
vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8));
if (output_enabled)
sum_intra_stats(cpi, mi);
} else {
int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])];
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
if (mbmi->ref_frame[1] > 0) {
idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])];
second_ref_fb = &cm->yv12_fb[idx];
}
assert(cm->frame_type != KEY_FRAME);
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
&xd->scale_factor[0]);
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
&xd->scale_factor[1]);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
}
if (!is_inter_block(mbmi)) {
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else if (!x->skip) {
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
int mb_skip_context = xd->left_available ? (mi - 1)->mbmi.skip_coeff : 0;
mb_skip_context += (mi - mis)->mbmi.skip_coeff;
mbmi->skip_coeff = 1;
if (output_enabled)
cm->counts.mbskip[mb_skip_context][1]++;
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
}
// copy skip flag on all mb_mode_info contexts in this SB
// if this was a skip at this txfm size
vp9_set_pred_flag_mbskip(cm, bsize, mi_row, mi_col, mi->mbmi.skip_coeff);
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) &&
(mbmi->skip_coeff ||
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
const uint8_t context = vp9_get_pred_context_tx_size(xd);
update_tx_counts(bsize, context, mbmi->tx_size, &cm->counts.tx);
} else {
int x, y;
TX_SIZE sz = (cm->tx_mode == TX_MODE_SELECT) ? TX_32X32 : cm->tx_mode;
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
if (sz == TX_32X32 && bsize < BLOCK_32X32)
sz = TX_16X16;
if (sz == TX_16X16 && bsize < BLOCK_16X16)
sz = TX_8X8;
if (sz == TX_8X8 && bsize < BLOCK_8X8)
sz = TX_4X4;
} else if (bsize >= BLOCK_8X8) {
sz = mbmi->tx_size;
} else {
sz = TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi[mis * y + x].mbmi.tx_size = sz;
}
}
}