Files
vpx/vp10/encoder/bitstream.c
Jingning Han 93748c3e4f Enable dynamic motion vector referencing for newmv mode
This commit enables the dynamic motion vector predictor for NEWMV
mode. It allows the codec to select the best motion vector predictor
in a rate-distortion optimization framework for motion vector
residual coding. The compression performance is improved:
lowres  0.14%
midres  0.27%
hdres   0.24%

Change-Id: I6a601c74eb6cb0b71a613336d40363359f2edecd
2016-03-18 09:51:37 -07:00

2691 lines
93 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#include "vpx_dsp/bitwriter_buffer.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem_ops.h"
#include "vpx_ports/system_state.h"
#include "vp10/common/entropy.h"
#include "vp10/common/entropymode.h"
#include "vp10/common/entropymv.h"
#include "vp10/common/mvref_common.h"
#include "vp10/common/pred_common.h"
#include "vp10/common/reconinter.h"
#include "vp10/common/seg_common.h"
#include "vp10/common/tile_common.h"
#include "vp10/encoder/cost.h"
#include "vp10/encoder/bitstream.h"
#include "vp10/encoder/encodemv.h"
#include "vp10/encoder/mcomp.h"
#include "vp10/encoder/segmentation.h"
#include "vp10/encoder/subexp.h"
#include "vp10/encoder/tokenize.h"
static const struct vp10_token intra_mode_encodings[INTRA_MODES] = {
{0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7},
{62, 6}, {2, 2}};
#if CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 4
static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
{{0, 1}, {4, 3}, {3, 2}, {5, 3}};
#elif CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 5
static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
{{0, 1}, {4, 3}, {6, 3}, {5, 3}, {7, 3}};
#else
static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
{{0, 1}, {2, 2}, {3, 2}};
#endif // CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 4
static const struct vp10_token partition_encodings[PARTITION_TYPES] =
{{0, 1}, {2, 2}, {6, 3}, {7, 3}};
#if !CONFIG_REF_MV
static const struct vp10_token inter_mode_encodings[INTER_MODES] =
#if CONFIG_EXT_INTER
{{2, 2}, {6, 3}, {0, 1}, {14, 4}, {15, 4}};
#else
{{2, 2}, {6, 3}, {0, 1}, {7, 3}};
#endif // CONFIG_EXT_INTER
#endif
#if CONFIG_EXT_INTER
static const struct vp10_token inter_compound_mode_encodings
[INTER_COMPOUND_MODES] = {
{2, 2}, {24, 5}, {25, 5}, {52, 6}, {53, 6},
{54, 6}, {55, 6}, {0, 1}, {7, 3}
};
#endif // CONFIG_EXT_INTER
static const struct vp10_token palette_size_encodings[] = {
{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6},
};
static const struct vp10_token
palette_color_encodings[PALETTE_MAX_SIZE - 1][PALETTE_MAX_SIZE] = {
{{0, 1}, {1, 1}}, // 2 colors
{{0, 1}, {2, 2}, {3, 2}}, // 3 colors
{{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // 4 colors
{{0, 1}, {2, 2}, {6, 3}, {14, 4}, {15, 4}}, // 5 colors
{{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {31, 5}}, // 6 colors
{{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6}}, // 7 colors
{{0, 1}, {2, 2}, {6, 3}, {14, 4},
{30, 5}, {62, 6}, {126, 7}, {127, 7}}, // 8 colors
};
static const struct vp10_token
tx_size_encodings[TX_SIZES - 1][TX_SIZES] = {
{{0, 1}, {1, 1}}, // Max tx_size is 8X8
{{0, 1}, {2, 2}, {3, 2}}, // Max tx_size is 16X16
{{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // Max tx_size is 32X32
};
static INLINE void write_uniform(vpx_writer *w, int n, int v) {
int l = get_unsigned_bits(n);
int m = (1 << l) - n;
if (l == 0)
return;
if (v < m) {
vpx_write_literal(w, v, l - 1);
} else {
vpx_write_literal(w, m + ((v - m) >> 1), l - 1);
vpx_write_literal(w, (v - m) & 1, 1);
}
}
#if CONFIG_EXT_TX
static struct vp10_token ext_tx_inter_encodings[EXT_TX_SETS_INTER][TX_TYPES];
static struct vp10_token ext_tx_intra_encodings[EXT_TX_SETS_INTRA][TX_TYPES];
#else
static struct vp10_token ext_tx_encodings[TX_TYPES];
#endif // CONFIG_EXT_TX
#if CONFIG_EXT_INTRA
static struct vp10_token intra_filter_encodings[INTRA_FILTERS];
#endif // CONFIG_EXT_INTRA
void vp10_encode_token_init() {
#if CONFIG_EXT_TX
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
vp10_tokens_from_tree(ext_tx_inter_encodings[s], vp10_ext_tx_inter_tree[s]);
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
vp10_tokens_from_tree(ext_tx_intra_encodings[s], vp10_ext_tx_intra_tree[s]);
}
#else
vp10_tokens_from_tree(ext_tx_encodings, vp10_ext_tx_tree);
#endif // CONFIG_EXT_TX
#if CONFIG_EXT_INTRA
vp10_tokens_from_tree(intra_filter_encodings, vp10_intra_filter_tree);
#endif // CONFIG_EXT_INTRA
}
static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
const vpx_prob *probs) {
vp10_write_token(w, vp10_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
static void write_inter_mode(VP10_COMMON *cm,
vpx_writer *w, PREDICTION_MODE mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
const int16_t mode_ctx) {
#if CONFIG_REF_MV
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
const vpx_prob newmv_prob = cm->fc->newmv_prob[newmv_ctx];
#if CONFIG_EXT_INTER
vpx_write(w, mode != NEWMV && mode != NEWFROMNEARMV, newmv_prob);
if (!is_compound && (mode == NEWMV || mode == NEWFROMNEARMV))
vpx_write(w, mode == NEWFROMNEARMV, cm->fc->new2mv_prob);
if (mode != NEWMV && mode != NEWFROMNEARMV) {
#else
vpx_write(w, mode != NEWMV, newmv_prob);
if (mode != NEWMV) {
#endif // CONFIG_EXT_INTER
const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
const vpx_prob zeromv_prob = cm->fc->zeromv_prob[zeromv_ctx];
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
assert(mode == ZEROMV);
return;
}
vpx_write(w, mode != ZEROMV, zeromv_prob);
if (mode != ZEROMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
vpx_prob refmv_prob;
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET))
refmv_ctx = 6;
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET))
refmv_ctx = 7;
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET))
refmv_ctx = 8;
refmv_prob = cm->fc->refmv_prob[refmv_ctx];
vpx_write(w, mode != NEARESTMV, refmv_prob);
}
}
#else
const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
assert(is_inter_mode(mode));
vp10_write_token(w, vp10_inter_mode_tree, inter_probs,
&inter_mode_encodings[INTER_OFFSET(mode)]);
#endif
}
#if CONFIG_REF_MV
static void write_drl_idx(const VP10_COMMON *cm,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
vpx_writer *w) {
uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame);
assert(mbmi->ref_mv_idx < 3);
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1 && mbmi->mode == NEWMV) {
uint8_t drl_ctx =
vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], 0);
vpx_prob drl_prob = cm->fc->drl_prob0[drl_ctx];
vpx_write(w, mbmi->ref_mv_idx != 0, drl_prob);
if (mbmi->ref_mv_idx == 0)
return;
if (mbmi_ext->ref_mv_count[ref_frame_type] > 2) {
drl_ctx = vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], 1);
drl_prob = cm->fc->drl_prob0[drl_ctx];
vpx_write(w, mbmi->ref_mv_idx != 1, drl_prob);
}
if (mbmi->ref_mv_idx == 1)
return;
assert(mbmi->ref_mv_idx == 2);
return;
}
if (mbmi_ext->ref_mv_count[ref_frame_type] > 2 && mbmi->mode == NEARMV) {
uint8_t drl0_ctx =
vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], 1);
vpx_prob drl0_prob = cm->fc->drl_prob0[drl0_ctx];
vpx_write(w, mbmi->ref_mv_idx != 0, drl0_prob);
if (mbmi_ext->ref_mv_count[ref_frame_type] > 3 &&
mbmi->ref_mv_idx > 0) {
uint8_t drl1_ctx =
vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], 2);
vpx_prob drl1_prob = cm->fc->drl_prob1[drl1_ctx];
vpx_write(w, mbmi->ref_mv_idx != 1, drl1_prob);
}
}
}
#endif
#if CONFIG_EXT_INTER
static void write_inter_compound_mode(VP10_COMMON *cm, vpx_writer *w,
PREDICTION_MODE mode,
const int16_t mode_ctx) {
const vpx_prob *const inter_compound_probs =
cm->fc->inter_compound_mode_probs[mode_ctx];
assert(is_inter_compound_mode(mode));
vp10_write_token(w, vp10_inter_compound_mode_tree, inter_compound_probs,
&inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]);
}
#endif // CONFIG_EXT_INTER
static void encode_unsigned_max(struct vpx_write_bit_buffer *wb,
int data, int max) {
vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const vpx_tree_index *tree,
vpx_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n, vpx_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
vp10_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
vp10_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
}
static int prob_diff_update_savings(const vpx_tree_index *tree,
vpx_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n) {
int i;
unsigned int branch_ct[32][2];
int savings = 0;
// Assuming max number of probabilities <= 32
assert(n <= 32);
vp10_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i) {
savings += vp10_cond_prob_diff_update_savings(&probs[i],
branch_ct[i]);
}
return savings;
}
#if CONFIG_VAR_TX
static void write_tx_size_inter(const VP10_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int blk_row, int blk_col,
vpx_writer *w) {
const int tx_idx = (blk_row >> 1) * 8 + (blk_col >> 1);
int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
int ctx = txfm_partition_context(xd->above_txfm_context + (blk_col >> 1),
xd->left_txfm_context + (blk_row >> 1),
tx_size);
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> 5;
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> 5;
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)
return;
if (tx_size == mbmi->inter_tx_size[tx_idx]) {
vpx_write(w, 0, cm->fc->txfm_partition_prob[ctx]);
txfm_partition_update(xd->above_txfm_context + (blk_col >> 1),
xd->left_txfm_context + (blk_row >> 1), tx_size);
} else {
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int bsl = b_width_log2_lookup[bsize];
int i;
vpx_write(w, 1, cm->fc->txfm_partition_prob[ctx]);
if (tx_size == TX_8X8) {
txfm_partition_update(xd->above_txfm_context + (blk_col >> 1),
xd->left_txfm_context + (blk_row >> 1), TX_4X4);
return;
}
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
int offsetr = blk_row + ((i >> 1) << bsl);
int offsetc = blk_col + ((i & 0x01) << bsl);
write_tx_size_inter(cm, xd, mbmi, tx_size - 1, offsetr, offsetc, w);
}
}
}
static void update_txfm_partition_probs(VP10_COMMON *cm, vpx_writer *w,
FRAME_COUNTS *counts) {
int k;
for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
vp10_cond_prob_diff_update(w, &cm->fc->txfm_partition_prob[k],
counts->txfm_partition[k]);
}
#endif
static void write_selected_tx_size(const VP10_COMMON *cm,
const MACROBLOCKD *xd, vpx_writer *w) {
TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
if (max_tx_size > TX_4X4) {
vp10_write_token(w, vp10_tx_size_tree[max_tx_size - TX_8X8],
cm->fc->tx_size_probs[max_tx_size - TX_8X8]
[get_tx_size_context(xd)],
&tx_size_encodings[max_tx_size - TX_8X8][tx_size]);
}
}
#if CONFIG_REF_MV
static void update_inter_mode_probs(VP10_COMMON *cm, vpx_writer *w,
FRAME_COUNTS *counts) {
int i;
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
vp10_cond_prob_diff_update(w, &cm->fc->newmv_prob[i],
counts->newmv_mode[i]);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
vp10_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i],
counts->zeromv_mode[i]);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
vp10_cond_prob_diff_update(w, &cm->fc->refmv_prob[i],
counts->refmv_mode[i]);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
vp10_cond_prob_diff_update(w, &cm->fc->drl_prob0[i],
counts->drl_mode0[i]);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
vp10_cond_prob_diff_update(w, &cm->fc->drl_prob1[i],
counts->drl_mode1[i]);
#if CONFIG_EXT_INTER
vp10_cond_prob_diff_update(w, &cm->fc->new2mv_prob, counts->new2mv_mode);
#endif // CONFIG_EXT_INTER
}
#endif
#if CONFIG_EXT_INTER
static void update_inter_compound_mode_probs(VP10_COMMON *cm, vpx_writer *w) {
const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp10_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i;
int savings = 0;
int do_update = 0;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
savings += prob_diff_update_savings(vp10_inter_compound_mode_tree,
cm->fc->inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i],
INTER_COMPOUND_MODES);
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
prob_diff_update(vp10_inter_compound_mode_tree,
cm->fc->inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i],
INTER_COMPOUND_MODES, w);
}
}
}
#endif // CONFIG_EXT_INTER
static int write_skip(const VP10_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MODE_INFO *mi, vpx_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->mbmi.skip;
vpx_write(w, skip, vp10_get_skip_prob(cm, xd));
return skip;
}
}
static void update_skip_probs(VP10_COMMON *cm, vpx_writer *w,
FRAME_COUNTS *counts) {
int k;
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp10_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
}
static void update_switchable_interp_probs(VP10_COMMON *cm, vpx_writer *w,
FRAME_COUNTS *counts) {
int j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
prob_diff_update(vp10_switchable_interp_tree,
cm->fc->switchable_interp_prob[j],
counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
}
#if CONFIG_EXT_TX
static void update_ext_tx_probs(VP10_COMMON *cm, vpx_writer *w) {
const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp10_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
savings += prob_diff_update_savings(
vp10_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i],
cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s]);
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
prob_diff_update(vp10_ext_tx_inter_tree[s],
cm->fc->inter_ext_tx_prob[s][i],
cm->counts.inter_ext_tx[s][i],
num_ext_tx_set_inter[s], w);
}
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
savings += prob_diff_update_savings(
vp10_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j],
cm->counts.intra_ext_tx[s][i][j], num_ext_tx_set_intra[s]);
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
prob_diff_update(vp10_ext_tx_intra_tree[s],
cm->fc->intra_ext_tx_prob[s][i][j],
cm->counts.intra_ext_tx[s][i][j],
num_ext_tx_set_intra[s], w);
}
}
}
}
#else
static void update_ext_tx_probs(VP10_COMMON *cm, vpx_writer *w) {
const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp10_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
savings += prob_diff_update_savings(
vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j], TX_TYPES);
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
prob_diff_update(vp10_ext_tx_tree,
cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j],
TX_TYPES, w);
}
}
savings = 0;
do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
savings += prob_diff_update_savings(
vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i], TX_TYPES);
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
prob_diff_update(vp10_ext_tx_tree,
cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i],
TX_TYPES, w);
}
}
}
#endif // CONFIG_EXT_TX
static void pack_palette_tokens(vpx_writer *w, TOKENEXTRA **tp,
int n, int num) {
int i;
TOKENEXTRA *p = *tp;
for (i = 0; i < num; ++i) {
vp10_write_token(w, vp10_palette_color_tree[n - 2], p->context_tree,
&palette_color_encodings[n - 2][p->token]);
++p;
}
*tp = p;
}
#if CONFIG_SUPERTX
static void update_supertx_probs(VP10_COMMON *cm, vpx_writer *w) {
const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp10_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
savings += vp10_cond_prob_diff_update_savings(&cm->fc->supertx_prob[i][j],
cm->counts.supertx[i][j]);
}
}
do_update = savings > savings_thresh;
vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
vp10_cond_prob_diff_update(w, &cm->fc->supertx_prob[i][j],
cm->counts.supertx[i][j]);
}
}
}
}
#endif // CONFIG_SUPERTX
#if !CONFIG_ANS
static void pack_mb_tokens(vpx_writer *w,
TOKENEXTRA **tp, const TOKENEXTRA *const stop,
vpx_bit_depth_t bit_depth, const TX_SIZE tx) {
TOKENEXTRA *p = *tp;
#if CONFIG_VAR_TX
int count = 0;
const int seg_eob = 16 << (tx << 1);
#endif
while (p < stop && p->token != EOSB_TOKEN) {
const int t = p->token;
const struct vp10_token *const a = &vp10_coef_encodings[t];
int v = a->value;
int n = a->len;
#if CONFIG_VP9_HIGHBITDEPTH
const vp10_extra_bit *b;
if (bit_depth == VPX_BITS_12)
b = &vp10_extra_bits_high12[t];
else if (bit_depth == VPX_BITS_10)
b = &vp10_extra_bits_high10[t];
else
b = &vp10_extra_bits[t];
#else
const vp10_extra_bit *const b = &vp10_extra_bits[t];
(void) bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
/* skip one or two nodes */
if (p->skip_eob_node)
n -= p->skip_eob_node;
else
vpx_write(w, t != EOB_TOKEN, p->context_tree[0]);
if (t != EOB_TOKEN) {
vpx_write(w, t != ZERO_TOKEN, p->context_tree[1]);
if (t != ZERO_TOKEN) {
vpx_write(w, t != ONE_TOKEN, p->context_tree[2]);
if (t != ONE_TOKEN) {
int len = UNCONSTRAINED_NODES - p->skip_eob_node;
vp10_write_tree(w, vp10_coef_con_tree,
vp10_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
v, n - len, 0);
}
}
}
if (b->base_val) {
const int e = p->extra, l = b->len;
int skip_bits =
(b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0;
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
if (skip_bits) {
skip_bits--;
assert(!bb);
} else {
vpx_write(w, bb, pb[i >> 1]);
}
i = b->tree[i + bb];
} while (n);
}
vpx_write_bit(w, e & 1);
}
++p;
#if CONFIG_VAR_TX
++count;
if (t == EOB_TOKEN || count == seg_eob)
break;
#endif
}
*tp = p;
}
#else
// This function serializes the tokens backwards both in token order and
// bit order in each token.
static void pack_mb_tokens_ans(struct AnsCoder *const ans,
rans_dec_lut token_tab[COEFF_PROB_MODELS],
const TOKENEXTRA *const start,
const TOKENEXTRA *const stop,
vpx_bit_depth_t bit_depth) {
const TOKENEXTRA *p;
TX_SIZE tx_size = TX_SIZES;
for (p = stop - 1; p >= start; --p) {
const int t = p->token;
if (t == EOSB_TOKEN) {
tx_size = (TX_SIZE)p->extra;
} else {
#if CONFIG_VP9_HIGHBITDEPTH
const vp10_extra_bit *const b =
(bit_depth == VPX_BITS_12) ? &vp10_extra_bits_high12[t] :
(bit_depth == VPX_BITS_10) ? &vp10_extra_bits_high10[t] :
&vp10_extra_bits[t];
#else
const vp10_extra_bit *const b = &vp10_extra_bits[t];
(void) bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
if (t != EOB_TOKEN && t != ZERO_TOKEN) {
// Write extra bits first
const int e = p->extra;
const int l = b->len;
const int skip_bits = (t == CATEGORY6_TOKEN) ? TX_SIZES - 1 - tx_size : 0;
assert(tx_size < TX_SIZES);
uabs_write(ans, e & 1, 128);
if (l) {
const int v = e >> 1;
int n;
for (n = 0; n < l - skip_bits; ++n) {
const int bb = (v >> n) & 1;
uabs_write(ans, bb, b->prob[l - 1 - n]);
}
for (; n < l; ++n) {
assert(((v >> n) & 1) == 0);
}
}
{
struct rans_sym s;
const rans_dec_lut *token_cdf =
&token_tab[p->context_tree[PIVOT_NODE] - 1];
s.cum_prob = (*token_cdf)[t - ONE_TOKEN];
s.prob = (*token_cdf)[t - ONE_TOKEN + 1] - s.cum_prob;
rans_write(ans, &s);
}
}
if (t != EOB_TOKEN)
uabs_write(ans, t != ZERO_TOKEN, p->context_tree[1]);
if (!p->skip_eob_node)
uabs_write(ans, t != EOB_TOKEN, p->context_tree[0]);
}
}
}
#endif // !CONFIG_ANS
#if CONFIG_VAR_TX
static void pack_txb_tokens(vpx_writer *w,
TOKENEXTRA **tp, const TOKENEXTRA *const tok_end,
MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane,
BLOCK_SIZE plane_bsize,
vpx_bit_depth_t bit_depth,
int block,
int blk_row, int blk_col, TX_SIZE tx_size) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int tx_idx = (blk_row >> (1 - pd->subsampling_y)) * 8 +
(blk_col >> (1 - pd->subsampling_x));
TX_SIZE plane_tx_size = plane ?
get_uv_tx_size_impl(mbmi->inter_tx_size[tx_idx], bsize, 0, 0) :
mbmi->inter_tx_size[tx_idx];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)
return;
if (tx_size == plane_tx_size) {
pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size);
} else {
int bsl = b_width_log2_lookup[bsize];
int i;
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) << bsl);
const int offsetc = blk_col + ((i & 0x01) << bsl);
int step = 1 << (2 * (tx_size - 1));
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide)
continue;
pack_txb_tokens(w, tp, tok_end, xd, mbmi, plane,
plane_bsize, bit_depth, block + i * step,
offsetr, offsetc, tx_size - 1);
}
}
}
#endif
static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
const struct segmentation_probs *segp,
int segment_id) {
if (seg->enabled && seg->update_map)
vp10_write_tree(w, vp10_segment_tree, segp->tree_probs, segment_id, 3, 0);
}
// This function encodes the reference frame
static void write_ref_frames(const VP10_COMMON *cm, const MACROBLOCKD *xd,
vpx_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
vpx_write(w, is_compound, vp10_get_reference_mode_prob(cm, xd));
} else {
assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
#if CONFIG_EXT_REFS
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == LAST4_FRAME);
#else
const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME;
#endif // CONFIG_EXT_REFS
vpx_write(w, bit, vp10_get_pred_prob_comp_ref_p(cm, xd));
#if CONFIG_EXT_REFS
if (!bit) {
const int bit1 = mbmi->ref_frame[0] == LAST_FRAME;
vpx_write(w, bit1, vp10_get_pred_prob_comp_ref_p1(cm, xd));
} else {
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
vpx_write(w, bit2, vp10_get_pred_prob_comp_ref_p2(cm, xd));
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] == LAST3_FRAME;
vpx_write(w, bit3, vp10_get_pred_prob_comp_ref_p3(cm, xd));
}
}
#endif // CONFIG_EXT_REFS
} else {
#if CONFIG_EXT_REFS
const int bit0 = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == ALTREF_FRAME);
vpx_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
vpx_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd));
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == LAST4_FRAME);
vpx_write(w, bit2, vp10_get_pred_prob_single_ref_p3(cm, xd));
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
vpx_write(w, bit3, vp10_get_pred_prob_single_ref_p4(cm, xd));
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
vpx_write(w, bit4, vp10_get_pred_prob_single_ref_p5(cm, xd));
}
}
#else
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
vpx_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
vpx_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd));
}
#endif // CONFIG_EXT_REFS
}
}
}
#if CONFIG_EXT_INTRA
static void write_ext_intra_mode_info(const VP10_COMMON *const cm,
const MB_MODE_INFO *const mbmi,
vpx_writer *w) {
#if !ALLOW_FILTER_INTRA_MODES
return;
#endif
if (mbmi->mode == DC_PRED &&
mbmi->palette_mode_info.palette_size[0] == 0) {
vpx_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[0],
cm->fc->ext_intra_probs[0]);
if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) {
EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[0];
write_uniform(w, FILTER_INTRA_MODES, mode);
}
}
if (mbmi->uv_mode == DC_PRED &&
mbmi->palette_mode_info.palette_size[1] == 0) {
vpx_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[1],
cm->fc->ext_intra_probs[1]);
if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) {
EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[1];
write_uniform(w, FILTER_INTRA_MODES, mode);
}
}
}
#endif // CONFIG_EXT_INTRA
static void write_switchable_interp_filter(VP10_COMP *cpi,
const MACROBLOCKD *xd,
vpx_writer *w) {
VP10_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp10_get_pred_context_switchable_interp(xd);
#if CONFIG_EXT_INTERP
if (!vp10_is_interp_needed(xd)) {
assert(mbmi->interp_filter == EIGHTTAP_REGULAR);
return;
}
#endif
vp10_write_token(w, vp10_switchable_interp_tree,
cm->fc->switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter]);
++cpi->interp_filter_selected[0][mbmi->interp_filter];
}
}
static void write_palette_mode_info(const VP10_COMMON *cm,
const MACROBLOCKD *xd,
const MODE_INFO *const mi,
vpx_writer *w) {
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
int palette_ctx = 0;
int n, i;
if (mbmi->mode == DC_PRED) {
n = pmi->palette_size[0];
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
vpx_write(w, n > 0,
vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx]);
if (n > 0) {
vp10_write_token(w, vp10_palette_size_tree,
vp10_default_palette_y_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
for (i = 0; i < n; ++i)
vpx_write_literal(w, pmi->palette_colors[i], cm->bit_depth);
write_uniform(w, n, pmi->palette_first_color_idx[0]);
}
}
if (mbmi->uv_mode == DC_PRED) {
n = pmi->palette_size[1];
vpx_write(w, n > 0,
vp10_default_palette_uv_mode_prob[pmi->palette_size[0] > 0]);
if (n > 0) {
vp10_write_token(w, vp10_palette_size_tree,
vp10_default_palette_uv_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
for (i = 0; i < n; ++i) {
vpx_write_literal(w, pmi->palette_colors[PALETTE_MAX_SIZE + i],
cm->bit_depth);
vpx_write_literal(w, pmi->palette_colors[2 * PALETTE_MAX_SIZE + i],
cm->bit_depth);
}
write_uniform(w, n, pmi->palette_first_color_idx[1]);
}
}
}
static void pack_inter_mode_mvs(VP10_COMP *cpi, const MODE_INFO *mi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
vpx_writer *w) {
VP10_COMMON *const cm = &cpi->common;
#if !CONFIG_REF_MV
const nmv_context *nmvc = &cm->fc->nmvc;
#endif
const MACROBLOCK *x = &cpi->td.mb;
const MACROBLOCKD *xd = &x->e_mbd;
const struct segmentation *const seg = &cm->seg;
const struct segmentation_probs *const segp = &cm->fc->seg;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
vpx_prob pred_prob = vp10_get_pred_prob_seg_id(segp, xd);
vpx_write(w, pred_flag, pred_prob);
if (!pred_flag)
write_segment_id(w, seg, segp, segment_id);
} else {
write_segment_id(w, seg, segp, segment_id);
}
}
#if CONFIG_SUPERTX
if (supertx_enabled)
skip = mbmi->skip;
else
skip = write_skip(cm, xd, segment_id, mi, w);
#else
skip = write_skip(cm, xd, segment_id, mi, w);
#endif // CONFIG_SUPERTX
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vpx_write(w, is_inter, vp10_get_intra_inter_prob(cm, xd));
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!(is_inter && skip) && !xd->lossless[segment_id]) {
#if CONFIG_VAR_TX
if (is_inter) { // This implies skip flag is 0.
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const int txb_size = txsize_to_bsize[max_tx_size];
const int bs = num_4x4_blocks_wide_lookup[txb_size];
const int width = num_4x4_blocks_wide_lookup[bsize];
const int height = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < height; idy += bs)
for (idx = 0; idx < width; idx += bs)
write_tx_size_inter(cm, xd, mbmi, max_tx_size, idy, idx, w);
} else {
set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h);
set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w);
write_selected_tx_size(cm, xd, w);
}
} else {
set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h);
set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w);
#else
write_selected_tx_size(cm, xd, w);
#endif
}
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_EXT_INTRA
if (mode != DC_PRED && mode != TM_PRED) {
int p_angle;
const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd);
write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS + mbmi->angle_delta[0]);
p_angle = mode_to_angle_map[mode] + mbmi->angle_delta[0] * ANGLE_STEP;
if (pick_intra_filter(p_angle)) {
vp10_write_token(w, vp10_intra_filter_tree,
cm->fc->intra_filter_probs[intra_filter_ctx],
&intra_filter_encodings[mbmi->intra_filter]);
}
}
#endif // CONFIG_EXT_INTRA
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
#if CONFIG_EXT_INTRA
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED &&
bsize >= BLOCK_8X8)
write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS + mbmi->angle_delta[1]);
#endif // CONFIG_EXT_INTRA
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
write_palette_mode_info(cm, xd, mi, w);
#if CONFIG_EXT_INTRA
if (bsize >= BLOCK_8X8)
write_ext_intra_mode_info(cm, mbmi, w);
#endif // CONFIG_EXT_INTRA
} else {
int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
write_ref_frames(cm, xd, w);
#if CONFIG_OBMC
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
if (is_obmc_allowed(mbmi))
vpx_write(w, mbmi->obmc, cm->fc->obmc_prob[bsize]);
#endif // CONFIG_OBMC
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_compound)
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
#endif
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(mode))
write_inter_compound_mode(cm, w, mode, mode_ctx);
else if (is_inter_singleref_mode(mode))
#endif // CONFIG_EXT_INTER
write_inter_mode(cm, w, mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
mode_ctx);
#if CONFIG_REF_MV
if (mode == NEARMV || mode == NEWMV)
write_drl_idx(cm, mbmi, mbmi_ext, w);
#endif
}
}
#if !CONFIG_EXT_INTERP
write_switchable_interp_filter(cpi, xd, w);
#endif // !CONFIG_EXT_INTERP
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (!is_compound)
#endif // CONFIG_EXT_INTER
mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, j);
#endif
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(b_mode))
write_inter_compound_mode(cm, w, b_mode, mode_ctx);
else if (is_inter_singleref_mode(b_mode))
#endif // CONFIG_EXT_INTER
write_inter_mode(cm, w, b_mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
has_second_ref(mbmi),
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
mode_ctx);
#if CONFIG_EXT_INTER
if (b_mode == NEWMV || b_mode == NEWFROMNEARMV ||
b_mode == NEW_NEWMV) {
#else
if (b_mode == NEWMV) {
#endif // CONFIG_EXT_INTER
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
#if CONFIG_EXT_INTER
&mi->bmi[j].ref_mv[ref].as_mv,
#else
&mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
#endif // CONFIG_EXT_INTER
nmvc, allow_hp);
}
}
#if CONFIG_EXT_INTER
else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv,
&mi->bmi[j].ref_mv[1].as_mv, nmvc, allow_hp);
} else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv,
&mi->bmi[j].ref_mv[0].as_mv, nmvc, allow_hp);
}
#endif // CONFIG_EXT_INTER
}
}
} else {
#if CONFIG_EXT_INTER
if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) {
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
int_mv ref_mv;
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0];
#if CONFIG_EXT_INTER
if (mode == NEWFROMNEARMV)
vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][1].as_mv,
nmvc, allow_hp);
else
#endif // CONFIG_EXT_INTER
vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&ref_mv.as_mv, nmvc,
allow_hp);
}
#if CONFIG_EXT_INTER
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
vp10_encode_mv(cpi, w, &mbmi->mv[1].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc,
allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
#if CONFIG_REF_MV
int nmv_ctx =
vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]],
mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
vp10_encode_mv(cpi, w, &mbmi->mv[0].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc,
allow_hp);
#endif // CONFIG_EXT_INTER
}
}
#if CONFIG_EXT_INTER
if (cpi->common.reference_mode != COMPOUND_REFERENCE &&
#if CONFIG_OBMC
!(is_obmc_allowed(mbmi) && mbmi->obmc) &&
#endif // CONFIG_OBMC
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
vpx_write(w, interintra, cm->fc->interintra_prob[bsize]);
if (interintra) {
write_intra_mode(w, mbmi->interintra_mode,
cm->fc->y_mode_prob[size_group_lookup[bsize]]);
assert(mbmi->interintra_mode == mbmi->interintra_uv_mode);
if (get_wedge_bits(bsize)) {
vpx_write(w, mbmi->use_wedge_interintra,
cm->fc->wedge_interintra_prob[bsize]);
if (mbmi->use_wedge_interintra) {
vpx_write_literal(w, mbmi->interintra_wedge_index,
get_wedge_bits(bsize));
}
}
}
}
if (cpi->common.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
#if CONFIG_OBMC
!(is_obmc_allowed(mbmi) && mbmi->obmc) &&
#endif // CONFIG_OBMC
get_wedge_bits(bsize)) {
vpx_write(w, mbmi->use_wedge_interinter,
cm->fc->wedge_interinter_prob[bsize]);
if (mbmi->use_wedge_interinter)
vpx_write_literal(w, mbmi->interinter_wedge_index,
get_wedge_bits(bsize));
}
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTERP
write_switchable_interp_filter(cpi, xd, w);
#endif // CONFIG_EXT_INTERP
}
if (!FIXED_TX_TYPE) {
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bsize, is_inter) > 1 &&
cm->base_qindex > 0 && !mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int eset = get_ext_tx_set(mbmi->tx_size, bsize, is_inter);
if (is_inter) {
if (eset > 0)
vp10_write_token(w, vp10_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][mbmi->tx_size],
&ext_tx_inter_encodings[eset][mbmi->tx_type]);
} else if (ALLOW_INTRA_EXT_TX) {
if (eset > 0)
vp10_write_token(
w, vp10_ext_tx_intra_tree[eset],
cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode],
&ext_tx_intra_encodings[eset][mbmi->tx_type]);
}
}
#else
if (mbmi->tx_size < TX_32X32 &&
cm->base_qindex > 0 && !mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
if (is_inter) {
vp10_write_token(
w, vp10_ext_tx_tree,
cm->fc->inter_ext_tx_prob[mbmi->tx_size],
&ext_tx_encodings[mbmi->tx_type]);
} else {
vp10_write_token(
w, vp10_ext_tx_tree,
cm->fc->intra_ext_tx_prob[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
&ext_tx_encodings[mbmi->tx_type]);
}
} else {
if (!mbmi->skip) {
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
assert(mbmi->tx_type == DCT_DCT);
}
}
#endif // CONFIG_EXT_TX
}
}
static void write_mb_modes_kf(const VP10_COMMON *cm, const MACROBLOCKD *xd,
MODE_INFO **mi_8x8, vpx_writer *w) {
const struct segmentation *const seg = &cm->seg;
const struct segmentation_probs *const segp = &cm->fc->seg;
const MODE_INFO *const mi = mi_8x8[0];
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (seg->update_map)
write_segment_id(w, seg, segp, mbmi->segment_id);
write_skip(cm, xd, mbmi->segment_id, mi, w);
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id])
write_selected_tx_size(cm, xd, w);
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mbmi->mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#if CONFIG_EXT_INTRA
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) {
int p_angle;
const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd);
write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS + mbmi->angle_delta[0]);
p_angle =
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
if (pick_intra_filter(p_angle)) {
vp10_write_token(w, vp10_intra_filter_tree,
cm->fc->intra_filter_probs[intra_filter_ctx],
&intra_filter_encodings[mbmi->intra_filter]);
}
}
#endif // CONFIG_EXT_INTRA
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, block));
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]);
#if CONFIG_EXT_INTRA
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED &&
bsize >= BLOCK_8X8)
write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS + mbmi->angle_delta[1]);
#endif // CONFIG_EXT_INTRA
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
write_palette_mode_info(cm, xd, mi, w);
if (!FIXED_TX_TYPE) {
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bsize, 0) > 1 &&
cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) &&
ALLOW_INTRA_EXT_TX) {
int eset = get_ext_tx_set(mbmi->tx_size, bsize, 0);
if (eset > 0)
vp10_write_token(
w, vp10_ext_tx_intra_tree[eset],
cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode],
&ext_tx_intra_encodings[eset][mbmi->tx_type]);
}
#else
if (mbmi->tx_size < TX_32X32 &&
cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
vp10_write_token(
w, vp10_ext_tx_tree,
cm->fc->intra_ext_tx_prob[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
&ext_tx_encodings[mbmi->tx_type]);
}
#endif // CONFIG_EXT_TX
}
#if CONFIG_EXT_INTRA
if (bsize >= BLOCK_8X8)
write_ext_intra_mode_info(cm, mbmi, w);
#endif // CONFIG_EXT_INTRA
}
static void write_modes_b(VP10_COMP *cpi, const TileInfo *const tile,
vpx_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col) {
const VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MODE_INFO *m;
int plane;
#if CONFIG_ANS
(void) tok;
(void) tok_end;
(void) plane;
#endif // !CONFIG_ANS
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
m = xd->mi[0];
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
cm->mi_rows, cm->mi_cols);
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cm, xd, xd->mi, w);
} else {
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MI_MASK);
#endif
pack_inter_mode_mvs(cpi, m,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
w);
}
for (plane = 0; plane <= 1; ++plane) {
if (m->mbmi.palette_mode_info.palette_size[plane] > 0) {
const int rows = (4 * num_4x4_blocks_high_lookup[m->mbmi.sb_type]) >>
(xd->plane[plane].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[m->mbmi.sb_type]) >>
(xd->plane[plane].subsampling_x);
assert(*tok < tok_end);
pack_palette_tokens(w, tok, m->mbmi.palette_mode_info.palette_size[plane],
rows * cols - 1);
assert(*tok < tok_end);
}
}
#if CONFIG_SUPERTX
if (supertx_enabled) return;
#endif // CONFIG_SUPERTX
#if !CONFIG_ANS
if (!m->mbmi.skip) {
assert(*tok < tok_end);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_VAR_TX
const struct macroblockd_plane *const pd = &xd->plane[plane];
MB_MODE_INFO *mbmi = &m->mbmi;
BLOCK_SIZE bsize = mbmi->sb_type;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
int row, col;
if (is_inter_block(mbmi)) {
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
int bw = num_4x4_blocks_wide_lookup[txb_size];
int block = 0;
const int step = 1 << (max_tx_size << 1);
for (row = 0; row < num_4x4_h; row += bw) {
for (col = 0; col < num_4x4_w; col += bw) {
pack_txb_tokens(w, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->bit_depth, block, row, col, max_tx_size);
block += step;
}
}
} else {
TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane])
: m->mbmi.tx_size;
BLOCK_SIZE txb_size = txsize_to_bsize[tx];
int bw = num_4x4_blocks_wide_lookup[txb_size];
for (row = 0; row < num_4x4_h; row += bw)
for (col = 0; col < num_4x4_w; col += bw)
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx);
}
#else
TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane])
: m->mbmi.tx_size;
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx);
#endif // CONFIG_VAR_TX
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
}
}
#endif
}
static void write_partition(const VP10_COMMON *const cm,
const MACROBLOCKD *const xd,
int hbs, int mi_row, int mi_col,
PARTITION_TYPE p, BLOCK_SIZE bsize, vpx_writer *w) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const vpx_prob *const probs = cm->fc->partition_prob[ctx];
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]);
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
vpx_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
vpx_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
assert(p == PARTITION_SPLIT);
}
}
static void write_modes_sb(VP10_COMP *cpi,
const TileInfo *const tile, vpx_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
MODE_INFO *m = NULL;
#if CONFIG_SUPERTX
const int pack_token = !supertx_enabled;
TX_SIZE supertx_size;
int plane;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
if (!supertx_enabled &&
!frame_is_intra_only(cm) &&
partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!xd->lossless[0]) {
vpx_prob prob;
supertx_size = max_txsize_lookup[bsize];
prob = cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
[supertx_size];
supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size);
vpx_write(w, supertx_enabled, prob);
if (supertx_enabled) {
vpx_write(w, xd->mi[0]->mbmi.skip, vp10_get_skip_prob(cm, xd));
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1) > 1 &&
!xd->mi[0]->mbmi.skip) {
int eset = get_ext_tx_set(supertx_size, bsize, 1);
if (eset > 0) {
vp10_write_token(
w, vp10_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][supertx_size],
&ext_tx_inter_encodings[eset][xd->mi[0]->mbmi.tx_type]);
}
}
#else
if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) {
vp10_write_token(
w, vp10_ext_tx_tree,
cm->fc->inter_ext_tx_prob[supertx_size],
&ext_tx_encodings[xd->mi[0]->mbmi.tx_type]);
}
#endif // CONFIG_EXT_TX
}
}
#endif // CONFIG_SUPERTX
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + bs, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + bs, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + bs, mi_col + bs, subsize);
break;
default:
assert(0);
}
}
#if CONFIG_SUPERTX
if (partition != PARTITION_NONE && supertx_enabled && pack_token &&
!m->mbmi.skip) {
assert(*tok < tok_end);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const int mbmi_txb_size = txsize_to_bsize[m->mbmi.tx_size];
const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi_txb_size];
const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi_txb_size];
int row, col;
TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane])
: m->mbmi.tx_size;
BLOCK_SIZE txb_size = txsize_to_bsize[tx];
int bw = num_4x4_blocks_wide_lookup[txb_size];
for (row = 0; row < num_4x4_h; row += bw)
for (col = 0; col < num_4x4_w; col += bw)
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
}
}
#endif // CONFIG_SUPERTX
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
static void write_modes(VP10_COMP *cpi,
const TileInfo *const tile, vpx_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp10_zero_left_context(xd);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col, BLOCK_64X64);
}
}
static void build_tree_distribution(VP10_COMP *cpi, TX_SIZE tx_size,
vp10_coeff_stats *coef_branch_ct,
vp10_coeff_probs_model *coef_probs) {
vp10_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vp10_tree_probs_from_distribution(vp10_coef_tree,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
coef_probs[i][j][k][l][m] = get_binary_prob(
coef_branch_ct[i][j][k][l][m][0],
coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
static void update_coef_probs_common(vpx_writer* const bc, VP10_COMP *cpi,
TX_SIZE tx_size,
vp10_coeff_stats *frame_branch_ct,
vp10_coeff_probs_model *new_coef_probs) {
vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
const vpx_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
int stepsize = cpi->sf.coeff_prob_appx_step;
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = {0, 0};
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
vpx_prob newp = new_coef_probs[i][j][k][l][t];
const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp10_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
else
s = vp10_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp10_cost_zero(upd));
else
savings -= (int)(vp10_cost_zero(upd));
update[u]++;
}
}
}
}
}
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vpx_write_bit(bc, 0);
return;
}
vpx_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vpx_prob newp = new_coef_probs[i][j][k][l][t];
vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
const vpx_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp10_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
else
s = vp10_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vpx_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp10_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
return;
}
case ONE_LOOP_REDUCED: {
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vpx_prob newp = new_coef_probs[i][j][k][l][t];
vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE) {
s = vp10_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
} else {
s = vp10_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
}
if (s > 0 && newp != *oldp)
u = 1;
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
vpx_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
vpx_write(bc, 0, upd);
}
vpx_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp10_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
if (updates == 0) {
vpx_write_bit(bc, 0); // no updates
}
return;
}
default:
assert(0);
}
}
static void update_coef_probs(VP10_COMP *cpi, vpx_writer* w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
vp10_coeff_stats frame_branch_ct[PLANE_TYPES];
vp10_coeff_probs_model frame_coef_probs[PLANE_TYPES];
if (cpi->td.counts->tx_size_totals[tx_size] <= 20 ||
(tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
vpx_write_bit(w, 0);
} else {
build_tree_distribution(cpi, tx_size, frame_branch_ct,
frame_coef_probs);
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
frame_coef_probs);
}
}
}
#if CONFIG_LOOP_RESTORATION
static void encode_restoration(VP10_COMMON *cm,
struct vpx_write_bit_buffer *wb) {
RestorationInfo *rst = &cm->rst_info;
vpx_wb_write_bit(wb, rst->restoration_type != RESTORE_NONE);
if (rst->restoration_type != RESTORE_NONE) {
if (rst->restoration_type == RESTORE_BILATERAL) {
vpx_wb_write_bit(wb, 1);
vpx_wb_write_literal(wb, rst->restoration_level,
vp10_restoration_level_bits(cm));
} else {
vpx_wb_write_bit(wb, 0);
vpx_wb_write_literal(
wb, rst->vfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS);
vpx_wb_write_literal(
wb, rst->vfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS);
vpx_wb_write_literal(
wb, rst->vfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS);
vpx_wb_write_literal(
wb, rst->hfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS);
vpx_wb_write_literal(
wb, rst->hfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS);
vpx_wb_write_literal(
wb, rst->hfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS);
}
}
}
#endif // CONFIG_LOOP_RESTORATION
static void encode_loopfilter(VP10_COMMON *cm,
struct vpx_write_bit_buffer *wb) {
int i;
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
vpx_wb_write_literal(wb, lf->filter_level, 6);
vpx_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < MAX_REF_FRAMES; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
vpx_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
vpx_wb_write_inv_signed_literal(wb, delta, 6);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
vpx_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
vpx_wb_write_inv_signed_literal(wb, delta, 6);
}
}
}
}
}
static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
vpx_wb_write_bit(wb, 1);
vpx_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
vpx_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const VP10_COMMON *const cm,
struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
}
static void encode_segmentation(VP10_COMMON *cm, MACROBLOCKD *xd,
struct vpx_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
vpx_wb_write_bit(wb, seg->enabled);
if (!seg->enabled)
return;
// Segmentation map
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
vpx_wb_write_bit(wb, seg->update_map);
} else {
assert(seg->update_map == 1);
}
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
vp10_choose_segmap_coding_method(cm, xd);
// Write out the chosen coding method.
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
vpx_wb_write_bit(wb, seg->temporal_update);
} else {
assert(seg->temporal_update == 0);
}
}
// Segmentation data
vpx_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
vpx_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
vpx_wb_write_bit(wb, active);
if (active) {
const int data = get_segdata(seg, i, j);
const int data_max = vp10_seg_feature_data_max(j);
if (vp10_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
vpx_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
static void update_seg_probs(VP10_COMP *cpi, vpx_writer *w) {
VP10_COMMON *cm = &cpi->common;
if (!cpi->common.seg.enabled)
return;
if (cpi->common.seg.temporal_update) {
int i;
for (i = 0; i < PREDICTION_PROBS; i++)
vp10_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i],
cm->counts.seg.pred[i]);
prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_mispred, MAX_SEGMENTS, w);
} else {
prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_total, MAX_SEGMENTS, w);
}
}
static void write_txfm_mode(TX_MODE mode, struct vpx_write_bit_buffer *wb) {
vpx_wb_write_bit(wb, mode == TX_MODE_SELECT);
if (mode != TX_MODE_SELECT)
vpx_wb_write_literal(wb, mode, 2);
}
static void update_txfm_probs(VP10_COMMON *cm, vpx_writer *w,
FRAME_COUNTS *counts) {
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
for (i = 0; i < TX_SIZES - 1; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
prob_diff_update(vp10_tx_size_tree[i],
cm->fc->tx_size_probs[i][j],
counts->tx_size[i][j], i + 2, w);
}
}
static void write_interp_filter(INTERP_FILTER filter,
struct vpx_write_bit_buffer *wb) {
vpx_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
vpx_wb_write_literal(wb, filter, 2 + CONFIG_EXT_INTERP);
}
static void fix_interp_filter(VP10_COMMON *cm, FRAME_COUNTS *counts) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += counts->switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->interp_filter = i;
break;
}
}
}
}
}
static void write_tile_info(const VP10_COMMON *const cm,
struct vpx_write_bit_buffer *wb) {
int min_log2_tile_cols, max_log2_tile_cols, ones;
vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--)
vpx_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols)
vpx_wb_write_bit(wb, 0);
// rows
vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0)
vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
}
static int get_refresh_mask(VP10_COMP *cpi) {
int refresh_mask = 0;
#if CONFIG_EXT_REFS
int ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= LAST4_FRAME; ++ref_frame) {
refresh_mask |= (cpi->refresh_last_frames[ref_frame - LAST_FRAME] <<
cpi->lst_fb_idxes[ref_frame - LAST_FRAME]);
}
#else
refresh_mask = cpi->refresh_last_frame << cpi->lst_fb_idx;
#endif // CONFIG_EXT_REFS
if (vp10_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function vp10_encoder.c:vp10_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
return refresh_mask |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static size_t encode_tiles(VP10_COMP *cpi, uint8_t *data_ptr,
unsigned int *max_tile_sz) {
VP10_COMMON *const cm = &cpi->common;
vpx_writer mode_bc;
#if CONFIG_ANS
struct AnsCoder token_ans;
#endif
int tile_row, tile_col;
TOKENEXTRA *tok_end;
size_t total_size = 0;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
unsigned int max_tile = 0;
vp10_zero_above_context(cm, 0, mi_cols_aligned_to_sb(cm->mi_cols));
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_idx = tile_row * tile_cols + tile_col;
int put_tile_size = tile_col < tile_cols - 1 || tile_row < tile_rows - 1;
uint8_t *const mode_data_start =
data_ptr + total_size + (put_tile_size ? 4 : 0);
int token_section_size;
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
tok_end = cpi->tile_tok[tile_row][tile_col] +
cpi->tok_count[tile_row][tile_col];
vpx_start_encode(&mode_bc, mode_data_start);
#if !CONFIG_ANS
(void) token_section_size;
write_modes(cpi, &cpi->tile_data[tile_idx].tile_info,
&mode_bc, &tok, tok_end);
assert(tok == tok_end);
vpx_stop_encode(&mode_bc);
if (put_tile_size) {
unsigned int tile_sz;
// size of this tile
assert(mode_bc.pos > 0);
tile_sz = mode_bc.pos - 1;
mem_put_le32(data_ptr + total_size, tile_sz);
max_tile = max_tile > tile_sz ? max_tile : tile_sz;
total_size += 4;
}
total_size += mode_bc.pos;
#else
write_modes(cpi, &cpi->tile_data[tile_idx].tile_info, &mode_bc,
NULL, NULL);
vpx_stop_encode(&mode_bc);
ans_write_init(&token_ans, mode_data_start + mode_bc.pos);
pack_mb_tokens_ans(&token_ans, cm->token_tab, tok, tok_end,
cm->bit_depth);
token_section_size = ans_write_end(&token_ans);
if (put_tile_size) {
// size of this tile
mem_put_be32(data_ptr + total_size,
4 + mode_bc.pos + token_section_size);
total_size += 4;
}
total_size += mode_bc.pos + token_section_size;
#endif // !CONFIG_ANS
}
}
*max_tile_sz = max_tile;
return total_size;
}
static void write_render_size(const VP10_COMMON *cm,
struct vpx_write_bit_buffer *wb) {
const int scaling_active = cm->width != cm->render_width ||
cm->height != cm->render_height;
vpx_wb_write_bit(wb, scaling_active);
if (scaling_active) {
vpx_wb_write_literal(wb, cm->render_width - 1, 16);
vpx_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static void write_frame_size(const VP10_COMMON *cm,
struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, cm->width - 1, 16);
vpx_wb_write_literal(wb, cm->height - 1, 16);
write_render_size(cm, wb);
}
static void write_frame_size_with_refs(VP10_COMP *cpi,
struct vpx_write_bit_buffer *wb) {
VP10_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
if (cfg != NULL) {
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
}
vpx_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
vpx_wb_write_literal(wb, cm->width - 1, 16);
vpx_wb_write_literal(wb, cm->height - 1, 16);
write_render_size(cm, wb);
}
}
static void write_sync_code(struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, VP10_SYNC_CODE_0, 8);
vpx_wb_write_literal(wb, VP10_SYNC_CODE_1, 8);
vpx_wb_write_literal(wb, VP10_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct vpx_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0:
vpx_wb_write_literal(wb, 0, 2);
break;
case PROFILE_1:
vpx_wb_write_literal(wb, 2, 2);
break;
case PROFILE_2:
vpx_wb_write_literal(wb, 1, 2);
break;
case PROFILE_3:
vpx_wb_write_literal(wb, 6, 3);
break;
default:
assert(0);
}
}
static void write_bitdepth_colorspace_sampling(
VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > VPX_BITS_8);
vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
}
vpx_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != VPX_CS_SRGB) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
vpx_wb_write_bit(wb, cm->color_range);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
vpx_wb_write_bit(wb, cm->subsampling_x);
vpx_wb_write_bit(wb, cm->subsampling_y);
vpx_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
vpx_wb_write_bit(wb, 0); // unused
}
}
static void write_uncompressed_header(VP10_COMP *cpi,
struct vpx_write_bit_buffer *wb) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
vpx_wb_write_bit(wb, 0); // show_existing_frame
vpx_wb_write_bit(wb, cm->frame_type);
vpx_wb_write_bit(wb, cm->show_frame);
vpx_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
if (frame_is_intra_only(cm))
vpx_wb_write_bit(wb, cm->allow_screen_content_tools);
} else {
if (!cm->show_frame)
vpx_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode) {
if (cm->intra_only) {
vpx_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
} else {
vpx_wb_write_bit(wb,
cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE);
if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE)
vpx_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
}
}
if (cm->intra_only) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm, cpi->td.counts);
write_interp_filter(cm->interp_filter, wb);
}
}
if (!cm->error_resilient_mode) {
vpx_wb_write_bit(wb,
cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF);
if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF)
vpx_wb_write_bit(wb, cm->refresh_frame_context !=
REFRESH_FRAME_CONTEXT_BACKWARD);
}
vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(cm, wb);
#if CONFIG_LOOP_RESTORATION
encode_restoration(cm, wb);
#endif // CONFIG_LOOP_RESTORATION
encode_quantization(cm, wb);
encode_segmentation(cm, xd, wb);
if (!cm->seg.enabled && xd->lossless[0])
cm->tx_mode = TX_4X4;
else
write_txfm_mode(cm->tx_mode, wb);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
vpx_wb_write_bit(wb, use_hybrid_pred);
if (!use_hybrid_pred)
vpx_wb_write_bit(wb, use_compound_pred);
}
write_tile_info(cm, wb);
}
static size_t write_compressed_header(VP10_COMP *cpi, uint8_t *data) {
VP10_COMMON *const cm = &cpi->common;
#if CONFIG_SUPERTX
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
#endif // CONFIG_SUPERTX
FRAME_CONTEXT *const fc = cm->fc;
FRAME_COUNTS *counts = cpi->td.counts;
vpx_writer header_bc;
int i, j;
vpx_start_encode(&header_bc, data);
update_txfm_probs(cm, &header_bc, counts);
update_coef_probs(cpi, &header_bc);
#if CONFIG_VAR_TX
update_txfm_partition_probs(cm, &header_bc, counts);
#endif
update_skip_probs(cm, &header_bc, counts);
update_seg_probs(cpi, &header_bc);
for (i = 0; i < INTRA_MODES; ++i)
prob_diff_update(vp10_intra_mode_tree, fc->uv_mode_prob[i],
counts->uv_mode[i], INTRA_MODES, &header_bc);
for (i = 0; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(vp10_partition_tree, fc->partition_prob[i],
counts->partition[i], PARTITION_TYPES, &header_bc);
#if CONFIG_EXT_INTRA
for (i = 0; i < INTRA_FILTERS + 1; ++i)
prob_diff_update(vp10_intra_filter_tree, fc->intra_filter_probs[i],
counts->intra_filter[i], INTRA_FILTERS, &header_bc);
#endif // CONFIG_EXT_INTRA
if (frame_is_intra_only(cm)) {
vp10_copy(cm->kf_y_prob, vp10_kf_y_mode_prob);
for (i = 0; i < INTRA_MODES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
prob_diff_update(vp10_intra_mode_tree, cm->kf_y_prob[i][j],
counts->kf_y_mode[i][j], INTRA_MODES, &header_bc);
} else {
#if CONFIG_REF_MV
update_inter_mode_probs(cm, &header_bc, counts);
#else
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
prob_diff_update(vp10_inter_mode_tree, cm->fc->inter_mode_probs[i],
counts->inter_mode[i], INTER_MODES, &header_bc);
#endif
#if CONFIG_EXT_INTER
update_inter_compound_mode_probs(cm, &header_bc);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed_bsize(i)) {
vp10_cond_prob_diff_update(&header_bc,
&fc->interintra_prob[i],
cm->counts.interintra[i]);
}
}
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed_bsize(i) && get_wedge_bits(i))
vp10_cond_prob_diff_update(&header_bc,
&fc->wedge_interintra_prob[i],
cm->counts.wedge_interintra[i]);
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++)
if (get_wedge_bits(i))
vp10_cond_prob_diff_update(&header_bc,
&fc->wedge_interinter_prob[i],
cm->counts.wedge_interinter[i]);
}
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC
for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i)
vp10_cond_prob_diff_update(&header_bc, &fc->obmc_prob[i],
counts->obmc[i]);
#endif // CONFIG_OBMC
if (cm->interp_filter == SWITCHABLE)
update_switchable_interp_probs(cm, &header_bc, counts);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp10_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
counts->intra_inter[i]);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp10_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
counts->comp_inter[i]);
}
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
for (j = 0; j < (SINGLE_REFS - 1); j ++) {
vp10_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][j],
counts->single_ref[i][j]);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
for (j = 0; j < (COMP_REFS - 1); j ++) {
vp10_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i][j],
counts->comp_ref[i][j]);
}
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
prob_diff_update(vp10_intra_mode_tree, cm->fc->y_mode_prob[i],
counts->y_mode[i], INTRA_MODES, &header_bc);
vp10_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
#if CONFIG_REF_MV
counts->mv);
#else
&counts->mv);
#endif
update_ext_tx_probs(cm, &header_bc);
#if CONFIG_SUPERTX
if (!xd->lossless[0])
update_supertx_probs(cm, &header_bc);
#endif // CONFIG_SUPERTX
}
vpx_stop_encode(&header_bc);
assert(header_bc.pos <= 0xffff);
return header_bc.pos;
}
static int remux_tiles(uint8_t *dest, const int sz,
const int n_tiles, const int mag) {
int rpos = 0, wpos = 0, n;
for (n = 0; n < n_tiles; n++) {
int tile_sz;
if (n == n_tiles - 1) {
tile_sz = sz - rpos;
} else {
tile_sz = mem_get_le32(&dest[rpos]) + 1;
rpos += 4;
switch (mag) {
case 0:
dest[wpos] = tile_sz - 1;
break;
case 1:
mem_put_le16(&dest[wpos], tile_sz - 1);
break;
case 2:
mem_put_le24(&dest[wpos], tile_sz - 1);
break;
case 3: // remuxing should only happen if mag < 3
default:
assert("Invalid value for tile size magnitude" && 0);
}
wpos += mag + 1;
}
memmove(&dest[wpos], &dest[rpos], tile_sz);
wpos += tile_sz;
rpos += tile_sz;
}
assert(rpos > wpos);
assert(rpos == sz);
return wpos;
}
void vp10_pack_bitstream(VP10_COMP *const cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
size_t first_part_size, uncompressed_hdr_size, data_sz;
struct vpx_write_bit_buffer wb = {data, 0};
struct vpx_write_bit_buffer saved_wb;
unsigned int max_tile;
VP10_COMMON *const cm = &cpi->common;
const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
const int have_tiles = n_log2_tiles > 0;
write_uncompressed_header(cpi, &wb);
saved_wb = wb;
// don't know in advance first part. size
vpx_wb_write_literal(&wb, 0, 16 + have_tiles * 2);
uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
data += uncompressed_hdr_size;
vpx_clear_system_state();
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
data_sz = encode_tiles(cpi, data, &max_tile);
if (max_tile > 0) {
int mag;
unsigned int mask;
// Choose the (tile size) magnitude
for (mag = 0, mask = 0xff; mag < 4; mag++) {
if (max_tile <= mask)
break;
mask <<= 8;
mask |= 0xff;
}
assert(n_log2_tiles > 0);
vpx_wb_write_literal(&saved_wb, mag, 2);
if (mag < 3)
data_sz = remux_tiles(data, (int)data_sz, 1 << n_log2_tiles, mag);
} else {
assert(n_log2_tiles == 0);
}
data += data_sz;
// TODO(jbb): Figure out what to do if first_part_size > 16 bits.
vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
*size = data - dest;
}