vpx/vp9/common/vp9_convolve.c
Ivan Maltz 01b35c3c16 API extensions and sample app for spacial scalable encoder
Sample app: vp9_spatial_scalable_encoder
vpx_codec_control extensions:
  VP9E_SET_SVC
  VP9E_SET_WIDTH, VP9E_SET_HEIGHT, VP9E_SET_LAYER
  VP9E_SET_MIN_Q, VP9E_SET_MAX_Q
expanded buffer size for vp9_convolve

modified setting of initial width in vp9_onyx_if.c so that layer size
can be set prior to initial encode

Default number of layers set to 3 (VPX_SS_DEFAULT_LAYERS)
Number of layers set explicitly in vpx_codec_enc_cfg.ss_number_layers

Change-Id: I2c7a6fe6d665113671337032f7ad032430ac4197
2013-09-09 15:57:56 -07:00

306 lines
11 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_convolve.h"
#include <assert.h>
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_filter.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
static void convolve_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x0, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_x_base =
(const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source line */
src -= taps / 2 - 1;
for (y = 0; y < h; ++y) {
/* Initial phase offset */
int x_q4 = (filter_x0 - filter_x_base) / taps;
for (x = 0; x < w; ++x) {
/* Per-pixel src offset */
const int src_x = x_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_x = filter_x_base +
(x_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[src_x + k] * filter_x[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
/* Move to the next source pixel */
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x0, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_x_base =
(const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source line */
src -= taps / 2 - 1;
for (y = 0; y < h; ++y) {
/* Initial phase offset */
int x_q4 = (filter_x0 - filter_x_base) / taps;
for (x = 0; x < w; ++x) {
/* Per-pixel src offset */
const int src_x = x_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_x = filter_x_base +
(x_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[src_x + k] * filter_x[k];
dst[x] = ROUND_POWER_OF_TWO(dst[x] +
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1);
/* Move to the next source pixel */
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y0, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_y_base =
(const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source column */
src -= src_stride * (taps / 2 - 1);
for (x = 0; x < w; ++x) {
/* Initial phase offset */
int y_q4 = (filter_y0 - filter_y_base) / taps;
for (y = 0; y < h; ++y) {
/* Per-pixel src offset */
const int src_y = y_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_y = filter_y_base +
(y_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[(src_y + k) * src_stride] * filter_y[k];
dst[y * dst_stride] =
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
/* Move to the next source pixel */
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y0, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_y_base =
(const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source column */
src -= src_stride * (taps / 2 - 1);
for (x = 0; x < w; ++x) {
/* Initial phase offset */
int y_q4 = (filter_y0 - filter_y_base) / taps;
for (y = 0; y < h; ++y) {
/* Per-pixel src offset */
const int src_y = y_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_y = filter_y_base +
(y_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[(src_y + k) * src_stride] * filter_y[k];
dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] +
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1);
/* Move to the next source pixel */
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
/* Fixed size intermediate buffer places limits on parameters.
* Maximum intermediate_height is 324, for y_step_q4 == 80,
* h == 64, taps == 8.
* y_step_q4 of 80 allows for 1/10 scale for 5 layer svc
*/
uint8_t temp[64 * 324];
int intermediate_height = (((h - 1) * y_step_q4 + 15) >> 4) + taps;
assert(w <= 64);
assert(h <= 64);
assert(taps <= 8);
assert(y_step_q4 <= 80);
assert(x_step_q4 <= 80);
if (intermediate_height < h)
intermediate_height = h;
convolve_horiz_c(src - src_stride * (taps / 2 - 1), src_stride, temp, 64,
filter_x, x_step_q4, filter_y, y_step_q4, w,
intermediate_height, taps);
convolve_vert_c(temp + 64 * (taps / 2 - 1), 64, dst, dst_stride, filter_x,
x_step_q4, filter_y, y_step_q4, w, h, taps);
}
void vp9_convolve8_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_horiz_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_avg_horiz_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_vert_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_avg_vert_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
/* Fixed size intermediate buffer places limits on parameters. */
DECLARE_ALIGNED_ARRAY(16, uint8_t, temp, 64 * 64);
assert(w <= 64);
assert(h <= 64);
vp9_convolve8(src, src_stride, temp, 64,
filter_x, x_step_q4, filter_y, y_step_q4, w, h);
vp9_convolve_avg(temp, 64, dst, dst_stride, NULL, 0, NULL, 0, w, h);
}
void vp9_convolve_copy_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h) {
int r;
for (r = h; r > 0; --r) {
memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
}
void vp9_convolve_avg_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h) {
int x, y;
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1);
src += src_stride;
dst += dst_stride;
}
}