vpx/vp9/encoder/vp9_encodemb.c
James Zern 8d1bda93f4 cosmetics,vp9/encoder: s/txm/txfm/
txfm is more commonly used as an abbreviation through the codebase

Change-Id: I86fd90ef132468f9da270091c05daa1f5a49ece2
2017-06-29 15:08:47 -07:00

1266 lines
48 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/quantize.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_scan.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_tokenize.h"
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
};
void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 10, 6 }, { 8, 5 },
};
#define USE_GREEDY_OPTIMIZE_B 1
#if USE_GREEDY_OPTIMIZE_B
typedef struct {
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} vp9_token_state;
// 'num' can be negative, but 'shift' must be non-negative.
#define RIGHT_SHIFT_POSSIBLY_NEGATIVE(num, shift) \
((num) >= 0) ? (num) >> (shift) : -((-(num)) >> (shift))
int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(xd->mi[0]);
vp9_token_state tokens[1025][2];
uint8_t token_cache[1024];
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = get_plane_type(plane);
const int default_eob = 16 << (tx_size << 1);
const int shift = (tx_size == TX_32X32);
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
const scan_order *const so = get_scan(xd, tx_size, plane_type, block);
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
const int64_t rdmult =
((int64_t)mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int64_t rate0, rate1;
int16_t t0, t1;
int i, final_eob;
#if CONFIG_VP9_HIGHBITDEPTH
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
#else
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8);
#endif
unsigned int(*const token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[tx_size][plane_type][ref];
unsigned int(*token_costs_cur)[2][COEFF_CONTEXTS][ENTROPY_TOKENS];
int64_t eob_cost0, eob_cost1;
const int ctx0 = ctx;
int64_t accu_rate = 0;
// Initialized to the worst possible error for the largest transform size.
// This ensures that it never goes negative.
int64_t accu_error = ((int64_t)1) << 50;
int64_t best_block_rd_cost = INT64_MAX;
int x_prev = 1;
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
for (i = 0; i < eob; i++) {
const int rc = scan[i];
int x = qcoeff[rc];
t0 = vp9_get_token(x);
tokens[i][0].qc = x;
tokens[i][0].token = t0;
tokens[i][0].dqc = dqcoeff[rc];
token_cache[rc] = vp9_pt_energy_class[t0];
}
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][0].dqc = 0;
tokens[eob][1] = tokens[eob][0];
final_eob = 0;
// Initial RD cost.
token_costs_cur = token_costs + band_translate[0];
rate0 = (*token_costs_cur)[0][ctx0][EOB_TOKEN];
best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error);
// For each token, pick one of two choices greedily:
// (i) First candidate: Keep current quantized value, OR
// (ii) Second candidate: Reduce quantized value by 1.
for (i = 0; i < eob; i++) {
const int rc = scan[i];
const int x = qcoeff[rc];
const int band_cur = band_translate[i];
const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
const int token_tree_sel_cur = (x_prev == 0);
token_costs_cur = token_costs + band_cur;
if (x == 0) { // No need to search
rate0 =
(*token_costs_cur)[token_tree_sel_cur][ctx_cur][tokens[i][0].token];
accu_rate += rate0;
x_prev = 0;
// Note: accu_error does not change.
} else {
const int dqv = dequant_ptr[rc != 0];
// Compute the distortion for quantizing to 0.
const int diff_for_zero_raw = (0 - coeff[rc]) * (1 << shift);
const int diff_for_zero =
#if CONFIG_VP9_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff_for_zero_raw, xd->bd - 8)
:
#endif
diff_for_zero_raw;
const int64_t distortion_for_zero =
(int64_t)diff_for_zero * diff_for_zero;
// Compute the distortion for the first candidate
const int diff0_raw = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
const int diff0 =
#if CONFIG_VP9_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff0_raw, xd->bd - 8)
:
#endif // CONFIG_VP9_HIGHBITDEPTH
diff0_raw;
const int64_t distortion0 = (int64_t)diff0 * diff0;
// Compute the distortion for the second candidate
const int sign = -(x < 0); // -1 if x is negative and 0 otherwise.
const int x1 = x - 2 * sign - 1; // abs(x1) = abs(x) - 1.
int64_t distortion1;
if (x1 != 0) {
const int dqv_step =
#if CONFIG_VP9_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? dqv >> (xd->bd - 8)
:
#endif // CONFIG_VP9_HIGHBITDEPTH
dqv;
const int diff_step = (dqv_step + sign) ^ sign;
const int diff1 = diff0 - diff_step;
assert(dqv > 0); // We aren't right shifting a negative number above.
distortion1 = (int64_t)diff1 * diff1;
} else {
distortion1 = distortion_for_zero;
}
{
// Calculate RDCost for current coeff for the two candidates.
const int64_t base_bits0 = vp9_get_token_cost(x, &t0, cat6_high_cost);
const int64_t base_bits1 = vp9_get_token_cost(x1, &t1, cat6_high_cost);
rate0 =
base_bits0 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t0];
rate1 =
base_bits1 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t1];
}
{
int rdcost_better_for_x1, eob_rdcost_better_for_x1;
int dqc0, dqc1;
int64_t best_eob_cost_cur;
// Calculate RD Cost effect on the next coeff for the two candidates.
int64_t next_bits0 = 0;
int64_t next_bits1 = 0;
int64_t next_eob_bits0 = 0;
int64_t next_eob_bits1 = 0;
if (i < default_eob - 1) {
int ctx_next, token_tree_sel_next;
const int band_next = band_translate[i + 1];
unsigned int(
*const token_costs_next)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
token_costs + band_next;
token_cache[rc] = vp9_pt_energy_class[t0];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x == 0);
next_bits0 = (*token_costs_next)[token_tree_sel_next][ctx_next]
[tokens[i + 1][0].token];
next_eob_bits0 =
(*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN];
token_cache[rc] = vp9_pt_energy_class[t1];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x1 == 0);
next_bits1 = (*token_costs_next)[token_tree_sel_next][ctx_next]
[tokens[i + 1][0].token];
if (x1 != 0) {
next_eob_bits1 =
(*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN];
}
}
// Compare the total RD costs for two candidates.
rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), distortion0);
rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), distortion1);
rdcost_better_for_x1 = (rd_cost1 < rd_cost0);
eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0),
(accu_error + distortion0 - distortion_for_zero));
eob_cost1 = eob_cost0;
if (x1 != 0) {
eob_cost1 =
RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1),
(accu_error + distortion1 - distortion_for_zero));
eob_rdcost_better_for_x1 = (eob_cost1 < eob_cost0);
} else {
eob_rdcost_better_for_x1 = 0;
}
// Calculate the two candidate de-quantized values.
dqc0 = dqcoeff[rc];
dqc1 = 0;
if (rdcost_better_for_x1 + eob_rdcost_better_for_x1) {
if (x1 != 0) {
dqc1 = RIGHT_SHIFT_POSSIBLY_NEGATIVE(x1 * dqv, shift);
} else {
dqc1 = 0;
}
}
// Pick and record the better quantized and de-quantized values.
if (rdcost_better_for_x1) {
qcoeff[rc] = x1;
dqcoeff[rc] = dqc1;
accu_rate += rate1;
accu_error += distortion1 - distortion_for_zero;
assert(distortion1 <= distortion_for_zero);
token_cache[rc] = vp9_pt_energy_class[t1];
} else {
accu_rate += rate0;
accu_error += distortion0 - distortion_for_zero;
assert(distortion0 <= distortion_for_zero);
token_cache[rc] = vp9_pt_energy_class[t0];
}
assert(accu_error >= 0);
x_prev = qcoeff[rc]; // Update based on selected quantized value.
best_eob_cost_cur = eob_cost0;
tokens[i][1].token = t0;
tokens[i][1].qc = x;
tokens[i][1].dqc = dqc0;
if ((x1 != 0) && eob_rdcost_better_for_x1) {
best_eob_cost_cur = eob_cost1;
tokens[i][1].token = t1;
tokens[i][1].qc = x1;
tokens[i][1].dqc = dqc1;
}
// Determine whether to move the eob position to i+1
if (best_eob_cost_cur < best_block_rd_cost) {
best_block_rd_cost = best_eob_cost_cur;
final_eob = i + 1;
}
}
}
}
assert(final_eob <= eob);
if (final_eob > 0) {
int rc;
assert(tokens[final_eob - 1][1].qc != 0);
i = final_eob - 1;
rc = scan[i];
qcoeff[rc] = tokens[i][1].qc;
dqcoeff[rc] = tokens[i][1].dqc;
}
for (i = final_eob; i < eob; i++) {
int rc = scan[i];
qcoeff[rc] = 0;
dqcoeff[rc] = 0;
}
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
#undef RIGHT_SHIFT_POSSIBLY_NEGATIVE
#else
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb,
int idx, int token, uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = vp9_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static const int16_t band_count_table[TX_SIZES][8] = {
{ 1, 2, 3, 4, 3, 16 - 13, 0 },
{ 1, 2, 3, 4, 11, 64 - 21, 0 },
{ 1, 2, 3, 4, 11, 256 - 21, 0 },
{ 1, 2, 3, 4, 11, 1024 - 21, 0 },
};
static const int16_t band_cum_count_table[TX_SIZES][8] = {
{ 0, 1, 3, 6, 10, 13, 16, 0 },
{ 0, 1, 3, 6, 10, 21, 64, 0 },
{ 0, 1, 3, 6, 10, 21, 256, 0 },
{ 0, 1, 3, 6, 10, 21, 1024, 0 },
};
typedef struct vp9_token_state {
int64_t error;
int rate;
int16_t next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
uint8_t best_index;
} vp9_token_state;
int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(xd->mi[0]);
vp9_token_state tokens[1025][2];
uint8_t token_cache[1024];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = get_plane_type(plane);
const int default_eob = 16 << (tx_size << 1);
const int shift = (tx_size == TX_32X32);
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
const scan_order *const so = get_scan(xd, tx_size, type, block);
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
int next = eob, sz = 0;
const int64_t rdmult = ((int64_t)mb->rdmult * plane_rd_mult[ref][type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
int best, band = (eob < default_eob) ? band_translate[eob]
: band_translate[eob - 1];
int pt, i, final_eob;
#if CONFIG_VP9_HIGHBITDEPTH
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
#else
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8);
#endif
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[tx_size][type][ref];
const int16_t *band_counts = &band_count_table[tx_size][band];
int16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
token_costs += band;
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
token_cache[rc] = vp9_pt_energy_class[vp9_get_token(qcoeff[rc])];
}
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
const int rc = scan[i];
int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
base_bits = vp9_get_token_cost(x, &t0, cat6_high_cost);
/* Consider both possible successor states. */
if (next < default_eob) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += (*token_costs)[0][pt][tokens[next][0].token];
rate1 += (*token_costs)[0][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
tokens[i][0].best_index = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] <
(abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
next = i;
if (!(--band_left)) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
base_bits = 0;
} else {
base_bits = vp9_get_token_cost(x, &t0, cat6_high_cost);
t1 = t0;
}
if (next < default_eob) {
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += (*token_costs)[!x][pt][tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += (*token_costs)[!x][pt][tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
}
#else
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
tran_low_t offset = dq_step[rc != 0];
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.
if (shift & x) offset += (dequant_ptr[rc != 0] & 0x01);
if (sz == 0)
tokens[i][1].dqc = dqcoeff[rc] - offset;
else
tokens[i][1].dqc = dqcoeff[rc] + offset;
} else {
tokens[i][1].dqc = 0;
}
tokens[i][1].best_index = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
pt = get_coef_context(nb, token_cache, i + 1);
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate += (*token_costs)[1][pt][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate += (*token_costs)[1][pt][t1];
tokens[next][1].token = ZERO_TOKEN;
}
tokens[i][0].best_index = tokens[i][1].best_index = 0;
/* Don't update next, because we didn't add a new node. */
}
if (!(--band_left)) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
}
/* Now pick the best path through the whole trellis. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += (*token_costs)[0][ctx][t0];
rate1 += (*token_costs)[0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = tokens[i][best].best_index;
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
#endif // USE_GREEDY_OPTIMIZE_B
static INLINE void fdct32x32(int rd_transform, const int16_t *src,
tran_low_t *dst, int src_stride) {
if (rd_transform)
vpx_fdct32x32_rd(src, dst, src_stride);
else
vpx_fdct32x32(src, dst, src_stride);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src,
tran_low_t *dst, int src_stride) {
if (rd_transform)
vpx_highbd_fdct32x32_rd(src, dst, src_stride);
else
vpx_highbd_fdct32x32(src, dst, src_stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp,
p->quant_fp, qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan, scan_order->iscan);
break;
case TX_16X16:
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 256, x->skip_block, p->round_fp,
p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 64, x->skip_block, p->round_fp,
p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 16, x->skip_block, p->round_fp,
p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default: assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp,
p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_16X16:
vpx_fdct16x16(src_diff, coeff, diff_stride);
vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp,
qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_8X8:
vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block,
p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp,
qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
default: assert(0); break;
}
}
void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
vpx_highbd_fdct16x16_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
eob);
break;
case TX_8X8:
vpx_highbd_fdct8x8_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
eob);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
eob);
break;
default: assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
vpx_fdct32x32_1(src_diff, coeff, diff_stride);
vpx_quantize_dc_32x32(coeff, x->skip_block, p->round, p->quant_fp[0],
qcoeff, dqcoeff, pd->dequant[0], eob);
break;
case TX_16X16:
vpx_fdct16x16_1(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 256, x->skip_block, p->round, p->quant_fp[0],
qcoeff, dqcoeff, pd->dequant[0], eob);
break;
case TX_8X8:
vpx_fdct8x8_1(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 64, x->skip_block, p->round, p->quant_fp[0],
qcoeff, dqcoeff, pd->dequant[0], eob);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 16, x->skip_block, p->round, p->quant_fp[0],
qcoeff, dqcoeff, pd->dequant[0], eob);
break;
default: assert(0); break;
}
}
void vp9_xform_quant(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift, qcoeff,
dqcoeff, pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_8X8:
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
default: assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vpx_fdct16x16(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vpx_fdct8x8(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default: assert(0); break;
}
}
static void encode_block(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
a = &args->ta[col];
l = &args->tl[row];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
if (x->zcoeff_blk[tx_size][block] && plane == 0) {
p->eobs[block] = 0;
*a = *l = 0;
return;
}
if (!x->skip_recode) {
if (x->quant_fp) {
// Encoding process for rtc mode
if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
} else {
vp9_xform_quant_fp(x, plane, block, row, col, plane_bsize, tx_size);
}
} else {
if (max_txsize_lookup[plane_bsize] == tx_size) {
int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1));
if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) {
// full forward transform and quantization
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
} else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) {
// fast path forward transform and quantization
vp9_xform_quant_dc(x, plane, block, row, col, plane_bsize, tx_size);
} else {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
}
} else {
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
}
}
}
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const int ctx = combine_entropy_contexts(*a, *l);
*a = *l = vp9_optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
if (p->eobs[block]) *(args->skip) = 0;
if (x->skip_encode || p->eobs[block] == 0) return;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
switch (tx_size) {
case TX_32X32:
vp9_highbd_idct32x32_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block],
xd->bd);
break;
case TX_16X16:
vp9_highbd_idct16x16_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block],
xd->bd);
break;
case TX_8X8:
vp9_highbd_idct8x8_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block],
xd->bd);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->highbd_itxfm_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block],
xd->bd);
break;
default: assert(0 && "Invalid transform size");
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
default: assert(0 && "Invalid transform size"); break;
}
}
static void encode_block_pass1(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
if (p->eobs[block] > 0) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->highbd_itxfm_add(dqcoeff, CONVERT_TO_SHORTPTR(dst), pd->dst.stride,
p->eobs[block], xd->bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
x->itxfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp9_subtract_plane(x, bsize, 0);
vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, x);
}
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MODE_INFO *mi = xd->mi[0];
struct encode_b_args arg = { x, 1, NULL, NULL, &mi->skip };
int plane;
mi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
if (!x->skip_recode) vp9_subtract_plane(x, bsize, plane);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane],
ctx.tl[plane]);
arg.enable_coeff_opt = 1;
} else {
arg.enable_coeff_opt = 0;
}
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
void vp9_encode_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const scan_order *scan_order;
TX_TYPE tx_type = DCT_DCT;
PREDICTION_MODE mode;
const int bwl = b_width_log2_lookup[plane_bsize];
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
ENTROPY_CONTEXT *a = NULL;
ENTROPY_CONTEXT *l = NULL;
int entropy_ctx = 0;
dst = &pd->dst.buf[4 * (row * dst_stride + col)];
src = &p->src.buf[4 * (row * src_stride + col)];
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
if (args->enable_coeff_opt) {
a = &args->ta[col];
l = &args->tl[row];
entropy_ctx = combine_entropy_contexts(*a, *l);
}
if (tx_size == TX_4X4) {
tx_type = get_tx_type_4x4(get_plane_type(plane), xd, block);
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mi->uv_mode;
} else {
mode = plane == 0 ? mi->mode : mi->uv_mode;
if (tx_size == TX_32X32) {
scan_order = &vp9_default_scan_orders[TX_32X32];
} else {
tx_type = get_tx_type(get_plane_type(plane), xd);
scan_order = &vp9_scan_orders[tx_size][tx_type];
}
}
vp9_predict_intra_block(
xd, bwl, tx_size, mode, (x->skip_encode || x->fp_src_pred) ? src : dst,
(x->skip_encode || x->fp_src_pred) ? src_stride : dst_stride, dst,
dst_stride, col, row, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_highbd_subtract_block(32, 32, src_diff, diff_stride, src,
src_stride, dst, dst_stride, xd->bd);
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift,
qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
vp9_highbd_idct32x32_add(dqcoeff, dst16, dst_stride, *eob, xd->bd);
}
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_highbd_subtract_block(16, 16, src_diff, diff_stride, src,
src_stride, dst, dst_stride, xd->bd);
if (tx_type == DCT_DCT)
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
else
vp9_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, dst_stride, *eob,
xd->bd);
}
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_highbd_subtract_block(8, 8, src_diff, diff_stride, src,
src_stride, dst, dst_stride, xd->bd);
if (tx_type == DCT_DCT)
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
else
vp9_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, dst_stride, *eob,
xd->bd);
}
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_highbd_subtract_block(4, 4, src_diff, diff_stride, src,
src_stride, dst, dst_stride, xd->bd);
if (tx_type != DCT_DCT)
vp9_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT) {
// this is like vp9_short_idct4x4 but has a special case around
// eob<=1 which is significant (not just an optimization) for the
// lossless case.
x->highbd_itxfm_add(dqcoeff, dst16, dst_stride, *eob, xd->bd);
} else {
vp9_highbd_iht4x4_16_add(dqcoeff, dst16, dst_stride, tx_type,
xd->bd);
}
}
break;
default: assert(0); return;
}
if (*eob) *(args->skip) = 0;
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_subtract_block(32, 32, src_diff, diff_stride, src, src_stride, dst,
dst_stride);
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob);
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_subtract_block(16, 16, src_diff, diff_stride, src, src_stride, dst,
dst_stride);
vp9_fht16x16(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_subtract_block(8, 8, src_diff, diff_stride, src, src_stride, dst,
dst_stride);
vp9_fht8x8(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_subtract_block(4, 4, src_diff, diff_stride, src, src_stride, dst,
dst_stride);
if (tx_type != DCT_DCT)
vp9_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txfm4x4(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (args->enable_coeff_opt && !x->skip_recode) {
*a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT)
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxfm_add(dqcoeff, dst, dst_stride, *eob);
else
vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type);
}
break;
default: assert(0); break;
}
if (*eob) *(args->skip) = 0;
}
void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane,
int enable_optimize_b) {
const MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = { x, enable_optimize_b, ctx.ta[plane],
ctx.tl[plane], &xd->mi[0]->skip };
if (enable_optimize_b && x->optimize &&
(!x->skip_recode || !x->skip_optimize)) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? get_uv_tx_size(xd->mi[0], pd) : xd->mi[0]->tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
} else {
arg.enable_coeff_opt = 0;
}
vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
vp9_encode_block_intra, &arg);
}