vpx/vp9/decoder/vp9_decodemv.c
Dmitry Kovalev 398ddafb62 New way of updating last frame segmentation map.
Implementing more natural (and faster) way of updating last frame
segmentation map.

Change-Id: I9fefa8f78e77bd7948133b04173da45edc15a17e
2013-09-26 18:44:48 -07:00

668 lines
22 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/decoder/vp9_dsubexp.h"
#include "vp9/decoder/vp9_treereader.h"
static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_intra_mode_tree, p);
}
static MB_PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r,
uint8_t context) {
MB_PREDICTION_MODE mode = treed_read(r, vp9_inter_mode_tree,
cm->fc.inter_mode_probs[context]);
++cm->counts.inter_mode[context][inter_mode_offset(mode)];
return mode;
}
static int read_segment_id(vp9_reader *r, const struct segmentation *seg) {
return treed_read(r, vp9_segment_tree, seg->tree_probs);
}
static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize, vp9_reader *r) {
const uint8_t context = vp9_get_pred_context_tx_size(xd);
const vp9_prob *tx_probs = get_tx_probs(bsize, context, &cm->fc.tx_probs);
TX_SIZE tx_size = vp9_read(r, tx_probs[0]);
if (tx_size != TX_4X4 && bsize >= BLOCK_16X16) {
tx_size += vp9_read(r, tx_probs[1]);
if (tx_size != TX_8X8 && bsize >= BLOCK_32X32)
tx_size += vp9_read(r, tx_probs[2]);
}
update_tx_counts(bsize, context, tx_size, &cm->counts.tx);
return tx_size;
}
static TX_SIZE read_tx_size(VP9D_COMP *pbi, TX_MODE tx_mode,
BLOCK_SIZE bsize, int allow_select,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8)
return read_selected_tx_size(cm, xd, bsize, r);
else if (tx_mode >= ALLOW_32X32 && bsize >= BLOCK_32X32)
return TX_32X32;
else if (tx_mode >= ALLOW_16X16 && bsize >= BLOCK_16X16)
return TX_16X16;
else if (tx_mode >= ALLOW_8X8 && bsize >= BLOCK_8X8)
return TX_8X8;
else
return TX_4X4;
}
static int read_intra_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r) {
struct segmentation *const seg = &pbi->common.seg;
if (!seg->enabled)
return 0; // Default for disabled segmentation
if (!seg->update_map)
return 0;
return read_segment_id(r, seg);
}
static int read_inter_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct segmentation *const seg = &cm->seg;
const BLOCK_SIZE bsize = xd->this_mi->mbmi.sb_type;
int pred_segment_id;;
if (!seg->enabled)
return 0; // Default for disabled segmentation
pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
bsize, mi_row, mi_col);
if (!seg->update_map)
return pred_segment_id;
if (seg->temporal_update) {
const vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
const int pred_flag = vp9_read(r, pred_prob);
vp9_set_pred_flag_seg_id(xd, pred_flag);
return pred_flag ? pred_segment_id : read_segment_id(r, seg);
} else {
return read_segment_id(r, seg);
}
}
static uint8_t read_skip_coeff(VP9D_COMP *pbi, int segment_id, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int skip_coeff = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
if (!skip_coeff) {
const int ctx = vp9_get_pred_context_mbskip(xd);
skip_coeff = vp9_read(r, vp9_get_pred_prob_mbskip(cm, xd));
cm->counts.mbskip[ctx][skip_coeff]++;
}
return skip_coeff;
}
static void read_intra_frame_mode_info(VP9D_COMP *pbi, MODE_INFO *m,
int mi_row, int mi_col, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &m->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const MODE_INFO *above_mi = xd->mi_8x8[-cm->mode_info_stride];
const MODE_INFO *left_mi = xd->mi_8x8[-1];
mbmi->segment_id = read_intra_segment_id(pbi, mi_row, mi_col, r);
mbmi->skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(pbi, cm->tx_mode, bsize, 1, r);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
const MB_PREDICTION_MODE L = xd->left_available ?
left_block_mode(m, left_mi, 0) : DC_PRED;
mbmi->mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]);
} else {
// Only 4x4, 4x8, 8x4 blocks
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int ib = idy * 2 + idx;
const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, ib);
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(m, left_mi, ib) : DC_PRED;
const MB_PREDICTION_MODE b_mode = read_intra_mode(r,
vp9_kf_y_mode_prob[A][L]);
m->bmi[ib].as_mode = b_mode;
if (num_4x4_h == 2)
m->bmi[ib + 2].as_mode = b_mode;
if (num_4x4_w == 2)
m->bmi[ib + 1].as_mode = b_mode;
}
}
mbmi->mode = m->bmi[3].as_mode;
}
mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]);
}
static int read_mv_component(vp9_reader *r,
const nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = vp9_read(r, mvcomp->sign);
const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vp9_read(r, mvcomp->bits[i]) << i;
}
// Fractional part
fr = treed_read(r, vp9_mv_fp_tree,
class0 ? mvcomp->class0_fp[d] : mvcomp->fp);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? vp9_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp)
: 1;
// Result
mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *ctx,
nmv_context_counts *counts, int allow_hp) {
const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
const int use_hp = allow_hp && vp9_use_mv_hp(ref);
MV diff = {0, 0};
if (mv_joint_vertical(j))
diff.row = read_mv_component(r, &ctx->comps[0], use_hp);
if (mv_joint_horizontal(j))
diff.col = read_mv_component(r, &ctx->comps[1], use_hp);
vp9_inc_mv(&diff, counts);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static void update_mv(vp9_reader *r, vp9_prob *p) {
if (vp9_read(r, NMV_UPDATE_PROB))
*p = (vp9_read_literal(r, 7) << 1) | 1;
}
static void read_mv_probs(vp9_reader *r, nmv_context *mvc, int allow_hp) {
int i, j, k;
for (j = 0; j < MV_JOINTS - 1; ++j)
update_mv(r, &mvc->joints[j]);
for (i = 0; i < 2; ++i) {
nmv_component *const comp = &mvc->comps[i];
update_mv(r, &comp->sign);
for (j = 0; j < MV_CLASSES - 1; ++j)
update_mv(r, &comp->classes[j]);
for (j = 0; j < CLASS0_SIZE - 1; ++j)
update_mv(r, &comp->class0[j]);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_mv(r, &comp->bits[j]);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp = &mvc->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
for (k = 0; k < 3; ++k)
update_mv(r, &comp->class0_fp[j][k]);
for (j = 0; j < 3; ++j)
update_mv(r, &comp->fp[j]);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
update_mv(r, &mvc->comps[i].class0_hp);
update_mv(r, &mvc->comps[i].hp);
}
}
}
// Read the referncence frame
static void read_ref_frames(VP9D_COMP *pbi, vp9_reader *r,
int segment_id, MV_REFERENCE_FRAME ref_frame[2]) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
FRAME_CONTEXT *const fc = &cm->fc;
FRAME_COUNTS *const counts = &cm->counts;
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
ref_frame[1] = NONE;
} else {
const int comp_ctx = vp9_get_pred_context_comp_inter_inter(cm, xd);
int is_comp;
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
is_comp = vp9_read(r, fc->comp_inter_prob[comp_ctx]);
counts->comp_inter[comp_ctx][is_comp]++;
} else {
is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (is_comp) {
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int ref_ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
const int b = vp9_read(r, fc->comp_ref_prob[ref_ctx]);
counts->comp_ref[ref_ctx][b]++;
ref_frame[fix_ref_idx] = cm->comp_fixed_ref;
ref_frame[!fix_ref_idx] = cm->comp_var_ref[b];
} else {
const int ctx0 = vp9_get_pred_context_single_ref_p1(xd);
const int bit0 = vp9_read(r, fc->single_ref_prob[ctx0][0]);
++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = vp9_get_pred_context_single_ref_p2(xd);
const int bit1 = vp9_read(r, fc->single_ref_prob[ctx1][1]);
ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME;
++counts->single_ref[ctx1][1][bit1];
} else {
ref_frame[0] = LAST_FRAME;
}
ref_frame[1] = NONE;
}
}
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTERS + 1; ++j)
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
}
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
}
static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
COMPPREDMODE_TYPE mode = vp9_read_bit(r);
if (mode)
mode += vp9_read_bit(r);
return mode;
}
static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type(
VP9D_COMP *pbi, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int ctx = vp9_get_pred_context_switchable_interp(xd);
const int type = treed_read(r, vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[ctx]);
++cm->counts.switchable_interp[ctx][type];
return type;
}
static void read_intra_block_mode_info(VP9D_COMP *pbi, MODE_INFO *mi,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
const int size_group = size_group_lookup[bsize];
mbmi->mode = read_intra_mode(r, cm->fc.y_mode_prob[size_group]);
cm->counts.y_mode[size_group][mbmi->mode]++;
} else {
// Only 4x4, 4x8, 8x4 blocks
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int ib = idy * 2 + idx;
const int b_mode = read_intra_mode(r, cm->fc.y_mode_prob[0]);
mi->bmi[ib].as_mode = b_mode;
cm->counts.y_mode[0][b_mode]++;
if (num_4x4_h == 2)
mi->bmi[ib + 2].as_mode = b_mode;
if (num_4x4_w == 2)
mi->bmi[ib + 1].as_mode = b_mode;
}
}
mbmi->mode = mi->bmi[3].as_mode;
}
mbmi->uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[mbmi->mode]);
cm->counts.uv_mode[mbmi->mode][mbmi->uv_mode]++;
}
static int read_is_inter_block(VP9D_COMP *pbi, int segment_id, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
return vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) !=
INTRA_FRAME;
} else {
const int ctx = vp9_get_pred_context_intra_inter(xd);
const int is_inter = vp9_read(r, vp9_get_pred_prob_intra_inter(cm, xd));
++cm->counts.intra_inter[ctx][is_inter];
return is_inter;
}
}
static void read_inter_block_mode_info(VP9D_COMP *pbi, MODE_INFO *mi,
int mi_row, int mi_col, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
nmv_context *const nmvc = &cm->fc.nmvc;
MB_MODE_INFO *const mbmi = &mi->mbmi;
int_mv *const mv0 = &mbmi->mv[0];
int_mv *const mv1 = &mbmi->mv[1];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = xd->allow_high_precision_mv;
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
uint8_t inter_mode_ctx;
MV_REFERENCE_FRAME ref0;
int is_compound;
mbmi->uv_mode = DC_PRED;
read_ref_frames(pbi, r, mbmi->segment_id, mbmi->ref_frame);
ref0 = mbmi->ref_frame[0];
is_compound = has_second_ref(mbmi);
vp9_find_mv_refs(cm, xd, mi, xd->last_mi, ref0, mbmi->ref_mvs[ref0],
mi_row, mi_col);
inter_mode_ctx = mbmi->mode_context[ref0];
if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
assert(bsize >= BLOCK_8X8);
} else {
if (bsize >= BLOCK_8X8)
mbmi->mode = read_inter_mode(cm, r, inter_mode_ctx);
}
// nearest, nearby
if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref0], &nearest, &nearby);
best_mv.as_int = mbmi->ref_mvs[ref0][0].as_int;
}
if (is_compound) {
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
vp9_find_mv_refs(cm, xd, mi, xd->last_mi,
ref1, mbmi->ref_mvs[ref1], mi_row, mi_col);
if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref1],
&nearest_second, &nearby_second);
best_mv_second.as_int = mbmi->ref_mvs[ref1][0].as_int;
}
}
mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE
? read_switchable_filter_type(pbi, r)
: cm->mcomp_filter_type;
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
int b_mode;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
int_mv blockmv, secondmv;
const int j = idy * 2 + idx;
b_mode = read_inter_mode(cm, r, inter_mode_ctx);
if (b_mode == NEARESTMV || b_mode == NEARMV) {
vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0,
mi_row, mi_col);
if (is_compound)
vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest_second,
&nearby_second, j, 1,
mi_row, mi_col);
}
switch (b_mode) {
case NEWMV:
read_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc,
&cm->counts.mv, allow_hp);
if (is_compound)
read_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
&cm->counts.mv, allow_hp);
break;
case NEARESTMV:
blockmv.as_int = nearest.as_int;
if (is_compound)
secondmv.as_int = nearest_second.as_int;
break;
case NEARMV:
blockmv.as_int = nearby.as_int;
if (is_compound)
secondmv.as_int = nearby_second.as_int;
break;
case ZEROMV:
blockmv.as_int = 0;
if (is_compound)
secondmv.as_int = 0;
break;
default:
assert(!"Invalid inter mode value");
}
mi->bmi[j].as_mv[0].as_int = blockmv.as_int;
if (is_compound)
mi->bmi[j].as_mv[1].as_int = secondmv.as_int;
if (num_4x4_h == 2)
mi->bmi[j + 2] = mi->bmi[j];
if (num_4x4_w == 2)
mi->bmi[j + 1] = mi->bmi[j];
}
}
mi->mbmi.mode = b_mode;
mv0->as_int = mi->bmi[3].as_mv[0].as_int;
mv1->as_int = mi->bmi[3].as_mv[1].as_int;
} else {
switch (mbmi->mode) {
case NEARMV:
mv0->as_int = nearby.as_int;
if (is_compound)
mv1->as_int = nearby_second.as_int;
break;
case NEARESTMV:
mv0->as_int = nearest.as_int;
if (is_compound)
mv1->as_int = nearest_second.as_int;
break;
case ZEROMV:
mv0->as_int = 0;
if (is_compound)
mv1->as_int = 0;
break;
case NEWMV:
read_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->counts.mv, allow_hp);
if (is_compound)
read_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc, &cm->counts.mv,
allow_hp);
break;
default:
assert(!"Invalid inter mode value");
}
}
}
static void read_inter_frame_mode_info(VP9D_COMP *pbi, MODE_INFO *mi,
int mi_row, int mi_col, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
int inter_block;
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
mbmi->segment_id = read_inter_segment_id(pbi, mi_row, mi_col, r);
mbmi->skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r);
inter_block = read_is_inter_block(pbi, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(pbi, cm->tx_mode, mbmi->sb_type,
!mbmi->skip_coeff || !inter_block, r);
if (inter_block)
read_inter_block_mode_info(pbi, mi, mi_row, mi_col, r);
else
read_intra_block_mode_info(pbi, mi, r);
}
static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) {
int i;
cm->comp_pred_mode = cm->allow_comp_inter_inter ? read_comp_pred_mode(r)
: SINGLE_PREDICTION_ONLY;
if (cm->comp_pred_mode == HYBRID_PREDICTION)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]);
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++) {
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]);
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]);
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]);
}
void vp9_prepare_read_mode_info(VP9D_COMP* pbi, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
int k;
// TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove.
// vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs));
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.mbskip_probs[k]);
if (cm->frame_type != KEY_FRAME && !cm->intra_only) {
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
int i, j;
read_inter_mode_probs(&cm->fc, r);
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(&cm->fc, r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.intra_inter_prob[i]);
read_comp_pred(cm, r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.y_mode_prob[j][i]);
for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
if (vp9_read(r, MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &cm->fc.partition_prob[INTER_FRAME][j][i]);
read_mv_probs(r, nmvc, xd->allow_high_precision_mv);
}
}
void vp9_read_mode_info(VP9D_COMP* pbi, int mi_row, int mi_col, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->this_mi;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int bw = 1 << mi_width_log2(bsize);
const int bh = 1 << mi_height_log2(bsize);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
int x, y, z;
if (cm->frame_type == KEY_FRAME || cm->intra_only)
read_intra_frame_mode_info(pbi, mi, mi_row, mi_col, r);
else
read_inter_frame_mode_info(pbi, mi, mi_row, mi_col, r);
for (y = 0, z = 0; y < y_mis; y++, z += cm->mode_info_stride)
for (x = !y; x < x_mis; x++) {
xd->mi_8x8[z + x] = mi;
}
}