vpx/vp9/encoder/vp9_encodeframe.c
Yaowu Xu 896d79a57e Removed the reset of mode_info from previous frame
Prior to this commit, both encoder and decoder reset mode/mv info from
previous frame in error resilient mode to ensure bitstreams are able to
decode when there is loss of frame in decoder side. However, this is
not necessary. This commit changed to remove the reset, so encoder can
continue to use mode/mv/partition information from previously encoded
frame without affecting decodeablilty under loss of frame.

Change-Id: I0279f862900dc647fb471ae3389770bb1b9f454f
2014-02-13 12:48:08 -08:00

2886 lines
101 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_vaq.h"
static INLINE uint8_t *get_sb_index(MACROBLOCK *x, BLOCK_SIZE subsize) {
switch (subsize) {
case BLOCK_64X64:
case BLOCK_64X32:
case BLOCK_32X64:
case BLOCK_32X32:
return &x->sb_index;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
return &x->mb_index;
case BLOCK_16X8:
case BLOCK_8X16:
case BLOCK_8X8:
return &x->b_index;
case BLOCK_8X4:
case BLOCK_4X8:
case BLOCK_4X4:
return &x->ab_index;
default:
assert(0);
return NULL;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
// activity_avg must be positive, or flat regions could get a zero weight
// (infinite lambda), which confounds analysis.
// This also avoids the need for divide by zero checks in
// vp9_activity_masking().
#define ACTIVITY_AVG_MIN (64)
// Motion vector component magnitude threshold for defining fast motion.
#define FAST_MOTION_MV_THRESH (24)
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bs) {
unsigned int var, sse;
var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(MACROBLOCK *x) {
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
unsigned int act = vp9_variance16x16(x->plane[0].src.buf,
x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse) << 4;
// If the region is flat, lower the activity some more.
if (act < (8 << 12))
act = MIN(act, 5 << 12);
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
return vp9_encode_intra(x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(x);
}
return MAX(mb_activity, ACTIVITY_AVG_MIN);
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else {
break;
}
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
#endif // ACT_MEDIAN
if (cpi->activity_avg < ACTIVITY_AVG_MIN)
cpi->activity_avg = ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate an activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif // USE_ACT_INDEX
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON *const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = get_frame_new_buffer(cm);
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
#if ALT_ACT_MEASURE
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
// measure activity
mb_activity = mb_activity_measure(x, mb_row, mb_col);
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->plane[0].src.buf += 16;
}
// adjust to the next row of mbs
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
#endif
}
// Macroblock activity masking
static void activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
const int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
const int64_t a = act + (2 * cpi->activity_avg);
const int64_t b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
// Select a segment for the current SB64
static void select_in_frame_q_segment(VP9_COMP *cpi,
int mi_row, int mi_col,
int output_enabled, int projected_rate) {
VP9_COMMON *const cm = &cpi->common;
int target_rate = cpi->rc.sb64_target_rate << 8; // convert to bits << 8
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
const int xmis = MIN(cm->mi_cols - mi_col, bw);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
int complexity_metric = 64;
int x, y;
unsigned char segment;
if (!output_enabled) {
segment = 0;
} else {
// Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh).
// It is converted to bits * 256 units
target_rate = (cpi->rc.sb64_target_rate * xmis * ymis * 256) / (bw * bh);
if (projected_rate < (target_rate / 4)) {
segment = 2;
} else if (projected_rate < (target_rate / 2)) {
segment = 1;
} else {
segment = 0;
}
if (target_rate > 0) {
complexity_metric =
clamp((int)((projected_rate * 64) / target_rate), 16, 255);
}
}
// Fill in the entires in the segment map corresponding to this SB64
for (y = 0; y < ymis; y++) {
for (x = 0; x < xmis; x++) {
cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment;
cpi->complexity_map[mi_offset + y * cm->mi_cols + x] =
(unsigned char)complexity_metric;
}
}
}
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
MODE_INFO *mi_addr = xd->mi_8x8[0];
const int mb_mode_index = ctx->best_mode_index;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int max_plane;
assert(mi->mbmi.mode < MB_MODE_COUNT);
assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES);
assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES);
assert(mi->mbmi.sb_type == bsize);
// For in frame adaptive Q copy over the chosen segment id into the
// mode innfo context for the chosen mode / partition.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && output_enabled)
mi->mbmi.segment_id = xd->mi_8x8[0]->mbmi.segment_id;
*mi_addr = *mi;
max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
for (i = 0; i < max_plane; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][1];
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
p[i].eobs = ctx->eobs_pbuf[i][1];
}
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][2];
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
p[i].eobs = ctx->eobs_pbuf[i][2];
}
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi_8x8[x_idx + y * mis] = mi_addr;
}
if ((cpi->oxcf.aq_mode == VARIANCE_AQ) ||
(cpi->oxcf.aq_mode == COMPLEXITY_AQ)) {
vp9_mb_init_quantizer(cpi, x);
}
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
// (i.e. after the output_enabled)
if (bsize < BLOCK_32X32) {
if (bsize < BLOCK_16X16)
ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
}
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
sizeof(uint8_t) * ctx->num_4x4_blk);
if (!output_enabled)
return;
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < TX_MODES; i++)
cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
}
if (frame_is_intra_only(cm)) {
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]]++;
#endif
} else {
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (is_inter_block(mbmi)) {
if (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV) {
int_mv best_mv[2];
for (i = 0; i < 1 + has_second_ref(mbmi); ++i)
best_mv[i].as_int = mbmi->ref_mvs[mbmi->ref_frame[i]][0].as_int;
vp9_update_mv_count(cpi, x, best_mv);
}
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
}
}
cpi->rd_comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
}
}
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
src->alpha_buffer};
const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
src->alpha_stride};
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const int mb_row = mi_row >> 1;
const int mb_col = mi_col >> 1;
const int idx_map = mb_row * cm->mb_cols + mb_col;
const struct segmentation *const seg = &cm->seg;
set_skip_context(xd, cpi->above_context, cpi->left_context, mi_row, mi_col);
// Activity map pointer
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
x->active_ptr = cpi->active_map + idx_map;
xd->mi_8x8 = cm->mi_grid_visible + idx_str;
xd->prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL;
xd->mi_8x8[0] = cm->mi + idx_str;
mbmi = &xd->mi_8x8[0]->mbmi;
// Set up destination pointers
setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components
// mv beyond the range do not produce new/different prediction block
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_rows, cm->mi_cols);
/* set up source buffers */
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
/* R/D setup */
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* segment ID */
if (seg->enabled) {
if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
vp9_mb_init_quantizer(cpi, x);
if (seg->enabled && cpi->seg0_cnt > 0 &&
!vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME) &&
vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
const int y = mb_row & ~3;
const int x = mb_col & ~3;
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
const int tile_progress = tile->mi_col_start * cm->mb_rows >> 1;
const int mb_cols = (tile->mi_col_end - tile->mi_col_start) >> 1;
cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
<< 16) / cm->MBs;
}
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
} else {
mbmi->segment_id = 0;
x->encode_breakout = cpi->encode_breakout;
}
}
static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col,
int *totalrate, int64_t *totaldist,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
int i;
int orig_rdmult = x->rdmult;
double rdmult_ratio;
vp9_clear_system_state(); // __asm emms;
rdmult_ratio = 1.0; // avoid uninitialized warnings
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (x->ab_index != 0) {
*totalrate = 0;
*totaldist = 0;
return;
}
}
set_offsets(cpi, tile, mi_row, mi_col, bsize);
xd->mi_8x8[0]->mbmi.sb_type = bsize;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
ctx->is_coded = 0;
x->skip_recode = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
xd->mi_8x8[0]->mbmi.skip_coeff = 0;
x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
: vp9_block_energy(cpi, x, bsize);
xd->mi_8x8[0]->mbmi.segment_id = vp9_vaq_segment_id(energy);
rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
vp9_mb_init_quantizer(cpi, x);
}
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
activity_masking(cpi, x);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state(); // __asm emms;
x->rdmult = round(x->rdmult * rdmult_ratio);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
unsigned char complexity = cpi->complexity_map[mi_offset];
const int is_edge = (mi_row == 0) || (mi_row == (cm->mi_rows - 1)) ||
(mi_col == 0) || (mi_col == (cm->mi_cols - 1));
if (!is_edge && (complexity > 128))
x->rdmult = x->rdmult + ((x->rdmult * (complexity - 128)) / 256);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
best_rd);
} else {
if (bsize >= BLOCK_8X8)
vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col,
totalrate, totaldist, bsize, ctx, best_rd);
else
vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate,
totaldist, bsize, ctx, best_rd);
}
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
x->rdmult = orig_rdmult;
if (*totalrate != INT_MAX) {
vp9_clear_system_state(); // __asm emms;
*totalrate = round(*totalrate * rdmult_ratio);
}
}
}
static void update_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const MODE_INFO *const mi = xd->mi_8x8[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (!frame_is_intra_only(cm)) {
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
FRAME_COUNTS *const counts = &cm->counts;
const int inter_block = is_inter_block(mbmi);
counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
if (cm->reference_mode == REFERENCE_MODE_SELECT)
counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
[ref0 == GOLDEN_FRAME]++;
} else {
counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME)
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
}
}
}
}
static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_64X64:
return &x->sb64_partitioning;
case BLOCK_32X32:
return &x->sb_partitioning[x->sb_index];
case BLOCK_16X16:
return &x->mb_partitioning[x->sb_index][x->mb_index];
case BLOCK_8X8:
return &x->b_partitioning[x->sb_index][x->mb_index][x->b_index];
default:
assert(0);
return NULL;
}
}
static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(
cpi->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
cpi->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(cpi->above_seg_context + mi_col, sa,
sizeof(*cpi->above_seg_context) * mi_width);
vpx_memcpy(cpi->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(cpi->left_seg_context[0]) * mi_height);
}
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
vpx_memcpy(
a + num_4x4_blocks_wide * p,
cpi->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
l + num_4x4_blocks_high * p,
cpi->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(sa, cpi->above_seg_context + mi_col,
sizeof(*cpi->above_seg_context) * mi_width);
vpx_memcpy(sl, cpi->left_seg_context + (mi_row & MI_MASK),
sizeof(cpi->left_seg_context[0]) * mi_height);
}
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (x->ab_index > 0)
return;
}
set_offsets(cpi, tile, mi_row, mi_col, bsize);
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
if (output_enabled) {
update_stats(cpi);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
ctx = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, bsize);
subsize = *get_sb_partitioning(x, bsize);
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
switch (partition) {
case PARTITION_NONE:
if (output_enabled && bsize >= BLOCK_8X8)
cm->counts.partition[ctx][PARTITION_NONE]++;
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
break;
case PARTITION_VERT:
if (output_enabled)
cm->counts.partition[ctx][PARTITION_VERT]++;
*get_sb_index(x, subsize) = 0;
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
if (mi_col + hbs < cm->mi_cols) {
*get_sb_index(x, subsize) = 1;
encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize);
}
break;
case PARTITION_HORZ:
if (output_enabled)
cm->counts.partition[ctx][PARTITION_HORZ]++;
*get_sb_index(x, subsize) = 0;
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
if (mi_row + hbs < cm->mi_rows) {
*get_sb_index(x, subsize) = 1;
encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (output_enabled)
cm->counts.partition[ctx][PARTITION_SPLIT]++;
*get_sb_index(x, subsize) = 0;
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
*get_sb_index(x, subsize) = 1;
encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize);
*get_sb_index(x, subsize) = 2;
encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize);
*get_sb_index(x, subsize) = 3;
encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize);
break;
default:
assert("Invalid partition type.");
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, subsize, bsize);
}
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return MIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; --bsize) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mi_8x8, int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
const int mis = cm->mode_info_stride;
int row8x8_remaining = tile->mi_row_end - mi_row;
int col8x8_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
// Find a partition size that fits
bsize = find_partition_size(cpi->sf.always_this_block_size,
(row8x8_remaining - block_row),
(col8x8_remaining - block_col), &bh, &bw);
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
}
}
static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8,
MODE_INFO **prev_mi_8x8) {
const int mis = cm->mode_info_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col];
const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
if (prev_mi) {
const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[block_row * mis + block_col] = cm->mi + offset;
mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
}
}
}
}
static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8) {
const int mis = cm->mode_info_stride;
int block_row, block_col;
if (cm->prev_mi) {
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col];
if (prev_mi) {
if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 ||
abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8)
return 1;
}
}
}
}
return 0;
}
static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, int output_enabled) {
int i;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
const int mb_mode_index = ctx->best_mode_index;
int max_plane;
max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
for (i = 0; i < max_plane; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][1];
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
p[i].eobs = ctx->eobs_pbuf[i][1];
}
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][2];
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
p[i].eobs = ctx->eobs_pbuf[i][2];
}
x->skip = ctx->skip;
if (frame_is_intra_only(cm)) {
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
};
++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
#endif
} else {
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (is_inter_block(mbmi)) {
if (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV) {
int_mv best_mv[2];
for (i = 0; i < 1 + has_second_ref(mbmi); ++i)
best_mv[i].as_int = mbmi->ref_mvs[mbmi->ref_frame[i]][0].as_int;
vp9_update_mv_count(cpi, x, best_mv);
}
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
}
}
}
}
static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (x->ab_index > 0)
return;
}
set_offsets(cpi, tile, mi_row, mi_col, bsize);
update_state_rt(cpi, get_block_context(x, bsize), bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
update_stats(cpi);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
ctx = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, bsize);
subsize = mi_8x8[0]->mbmi.sb_type;
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
switch (partition) {
case PARTITION_NONE:
if (output_enabled && bsize >= BLOCK_8X8)
cm->counts.partition[ctx][PARTITION_NONE]++;
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
break;
case PARTITION_VERT:
if (output_enabled)
cm->counts.partition[ctx][PARTITION_VERT]++;
*get_sb_index(x, subsize) = 0;
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
if (mi_col + hbs < cm->mi_cols) {
*get_sb_index(x, subsize) = 1;
encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize);
}
break;
case PARTITION_HORZ:
if (output_enabled)
cm->counts.partition[ctx][PARTITION_HORZ]++;
*get_sb_index(x, subsize) = 0;
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
if (mi_row + hbs < cm->mi_rows) {
*get_sb_index(x, subsize) = 1;
encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (output_enabled)
cm->counts.partition[ctx][PARTITION_SPLIT]++;
*get_sb_index(x, subsize) = 0;
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
*get_sb_index(x, subsize) = 1;
encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize);
*get_sb_index(x, subsize) = 2;
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize);
*get_sb_index(x, subsize) = 3;
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize);
break;
default:
assert("Invalid partition type.");
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, subsize, bsize);
}
static void rd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int mis = cm->mode_info_stride;
const int bsl = b_width_log2(bsize);
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
const int ms = num_4x4_blocks_wide / 2;
const int mh = num_4x4_blocks_high / 2;
const int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int last_part_rate = INT_MAX;
int64_t last_part_dist = INT_MAX;
int split_rate = INT_MAX;
int64_t split_dist = INT_MAX;
int none_rate = INT_MAX;
int64_t none_dist = INT_MAX;
int chosen_rate = INT_MAX;
int64_t chosen_dist = INT_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (x->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
} else {
*(get_sb_partitioning(x, bsize)) = subsize;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
}
x->fast_ms = 0;
x->subblock_ref = 0;
if (cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (ms >> 1) < cm->mi_rows &&
mi_col + (ms >> 1) < cm->mi_cols) {
*(get_sb_partitioning(x, bsize)) = bsize;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
get_block_context(x, bsize), INT64_MAX);
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row, mi_col, bsize);
none_rate += x->partition_cost[pl][PARTITION_NONE];
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, bsize,
get_block_context(x, bsize), INT64_MAX);
break;
case PARTITION_HORZ:
*get_sb_index(x, subsize) = 0;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, subsize,
get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(x, subsize) = 1;
rd_pick_sb_modes(cpi, tile, mi_row + (ms >> 1), mi_col, &rt, &dt,
subsize, get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_VERT:
*get_sb_index(x, subsize) = 0;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, subsize,
get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(x, subsize) = 1;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (ms >> 1), &rt, &dt,
subsize, get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_SPLIT:
// Split partition.
last_part_rate = 0;
last_part_dist = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (ms >> 1);
int y_idx = (i >> 1) * (ms >> 1);
int jj = i >> 1, ii = i & 0x01;
int rt;
int64_t dt;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(x, subsize) = i;
rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
i != 3);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
default:
assert(0);
}
pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, bsize);
if (last_part_rate < INT_MAX)
last_part_rate += x->partition_cost[pl][partition];
if (cpi->sf.adjust_partitioning_from_last_frame
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
&& (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
split_rate = 0;
split_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(x, split_subsize) = i;
*get_sb_partitioning(x, bsize) = split_subsize;
*get_sb_partitioning(x, split_subsize) = split_subsize;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
split_subsize, get_block_context(x, split_subsize),
INT64_MAX);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (rt == INT_MAX || dt == INT_MAX) {
split_rate = INT_MAX;
split_dist = INT_MAX;
break;
}
if (i != 3)
encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize);
split_rate += rt;
split_dist += dt;
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row + y_idx, mi_col + x_idx,
split_subsize);
split_rate += x->partition_cost[pl][PARTITION_NONE];
}
pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, bsize);
if (split_rate < INT_MAX) {
split_rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rate = split_rate;
chosen_dist = split_dist;
}
}
// If last_part is better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
< RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = subsize;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
}
// If none was better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
> RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
if (do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
select_in_frame_q_segment(cpi, mi_row, mi_col,
output_enabled, chosen_rate);
}
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
}
*rate = chosen_rate;
*dist = chosen_dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
BLOCK_SIZE * min_block_size,
BLOCK_SIZE * max_block_size ) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO * mi = mi_8x8[index+j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
}
index += xd->mode_info_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
int row, int col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO ** mi_8x8 = xd->mi_8x8;
MODE_INFO ** prev_mi_8x8 = xd->prev_mi_8x8;
const int left_in_image = xd->left_available && mi_8x8[-1];
const int above_in_image = xd->up_available &&
mi_8x8[-xd->mode_info_stride];
MODE_INFO ** above_sb64_mi_8x8;
MODE_INFO ** left_sb64_mi_8x8;
int row8x8_remaining = tile->mi_row_end - row;
int col8x8_remaining = tile->mi_col_end - col;
int bh, bw;
// Trap case where we do not have a prediction.
if (!left_in_image && !above_in_image &&
((cm->frame_type == KEY_FRAME) || !cm->prev_mi)) {
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
// Default "min to max" and "max to min"
*min_block_size = BLOCK_64X64;
*max_block_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
//
// Find the min and max partition used in previous frame at this location
if (cm->prev_mi && (cm->frame_type != KEY_FRAME)) {
get_sb_partition_size_range(cpi, prev_mi_8x8,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, left_sb64_mi_8x8,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, above_sb64_mi_8x8,
min_block_size, max_block_size);
}
}
// adjust observed min and max
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
*min_block_size = min_partition_size[*min_block_size];
*max_block_size = max_partition_size[*max_block_size];
}
// Check border cases where max and min from neighbours may not be legal.
*max_block_size = find_partition_size(*max_block_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
*min_block_size = MIN(*min_block_size, *max_block_size);
}
static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
if (cm->frame_type == INTER_FRAME &&
!cpi->rc.is_src_frame_alt_ref &&
(bsize == BLOCK_16X16 || bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
const PICK_MODE_CONTEXT *block_context = get_block_context(x, bsize);
const int ref0 = block_context[0].mic.mbmi.ref_frame[0];
const int ref1 = block_context[1].mic.mbmi.ref_frame[0];
const int ref2 = block_context[2].mic.mbmi.ref_frame[0];
const int ref3 = block_context[3].mic.mbmi.ref_frame[0];
// Currently, only consider 4 inter reference frames.
if (ref0 && ref1 && ref2 && ref3) {
int d01, d23, d02, d13;
// Motion vectors for the four subblocks.
int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
// Adjust sign if ref is alt_ref.
if (cm->ref_frame_sign_bias[ref0]) {
mvr0 *= -1;
mvc0 *= -1;
}
if (cm->ref_frame_sign_bias[ref1]) {
mvr1 *= -1;
mvc1 *= -1;
}
if (cm->ref_frame_sign_bias[ref2]) {
mvr2 *= -1;
mvc2 *= -1;
}
if (cm->ref_frame_sign_bias[ref3]) {
mvr3 *= -1;
mvc3 *= -1;
}
// Calculate mv distances.
d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
// Set fast motion search level.
x->fast_ms = 1;
if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
// Set fast motion search level.
x->fast_ms = 2;
if (!d01 && !d23 && !d02 && !d13) {
x->fast_ms = 3;
x->subblock_ref = ref0;
}
}
}
}
}
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
int i, pl;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int64_t sum_rd = 0;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
int partition_split_done = 0;
(void) *tp_orig;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (x->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
}
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
if (bsize == BLOCK_16X16) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
bsize >= cpi->sf.min_partition_size);
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_vert_split);
do_split &= bsize > cpi->sf.min_partition_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
do_split = 0;
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
do_rect = 0;
}
}
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
get_block_context(x, bsize), best_rd);
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row, mi_col, bsize);
this_rate += x->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
int64_t stop_thresh = 4096;
int64_t stop_thresh_rd;
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
// Adjust threshold according to partition size.
stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
// If obtained distortion is very small, choose current partition
// and stop splitting.
if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
do_split = 0;
do_rect = 0;
}
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
store_pred_mv(x, get_block_context(x, bsize));
// PARTITION_SPLIT
sum_rd = 0;
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
*get_sb_index(x, subsize) = i;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
get_block_context(x, subsize)->pred_interp_filter =
get_block_context(x, bsize)->mic.mbmi.interp_filter;
rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rate, &this_dist, i != 3, best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd && i == 4) {
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
}
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
partition_split_done = 1;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
x->fast_ms = 0;
x->subblock_ref = 0;
if (partition_split_done &&
cpi->sf.using_small_partition_info) {
compute_fast_motion_search_level(cpi, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
*get_sb_index(x, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
get_block_context(x, subsize)->pred_interp_filter =
get_block_context(x, bsize)->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(x, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
get_block_context(x, subsize)->pred_interp_filter =
get_block_context(x, bsize)->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
*get_sb_index(x, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
get_block_context(x, subsize)->pred_interp_filter =
get_block_context(x, bsize)->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(x, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
get_block_context(x, subsize)->pred_interp_filter =
get_block_context(x, bsize)->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
pl = partition_plane_context(cpi->above_seg_context,
cpi->left_seg_context,
mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_VERT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
*rate = best_rate;
*dist = best_dist;
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, best_rate);
}
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
assert(best_dist < INT_MAX);
} else {
assert(tp_orig == *tp);
}
}
// Examines 64x64 block and chooses a best reference frame
static void rd_pick_reference_frame(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl;
int ms = bs / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int pl;
int r;
int64_t d;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
// Default is non mask (all reference frames allowed.
cpi->ref_frame_mask = 0;
// Do RD search for 64x64.
if ((mi_row + (ms >> 1) < cm->mi_rows) &&
(mi_col + (ms >> 1) < cm->mi_cols)) {
cpi->set_ref_frame_mask = 1;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &r, &d, BLOCK_64X64,
get_block_context(x, BLOCK_64X64), INT64_MAX);
pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
mi_row, mi_col, BLOCK_64X64);
r += x->partition_cost[pl][PARTITION_NONE];
*(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64;
cpi->set_ref_frame_mask = 0;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
}
static void encode_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
VP9_COMMON *const cm = &cpi->common;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&cpi->left_context, 0, sizeof(cpi->left_context));
vpx_memset(cpi->left_seg_context, 0, sizeof(cpi->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate;
int64_t dummy_dist;
BLOCK_SIZE i;
MACROBLOCK *x = &cpi->mb;
for (i = BLOCK_4X4; i < BLOCK_8X8; ++i) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
const int num_4x4_h = num_4x4_blocks_high_lookup[i];
const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index)
for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index)
for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index)
get_block_context(x, i)->pred_interp_filter = SWITCHABLE;
}
vp9_zero(cpi->mb.pred_mv);
if (cpi->sf.use_lastframe_partitioning ||
cpi->sf.use_one_partition_size_always ) {
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
cpi->mb.source_variance = UINT_MAX;
if (cpi->sf.use_one_partition_size_always) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
set_partitioning(cpi, tile, mi_8x8, mi_row, mi_col);
rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
} else {
if ((cm->current_video_frame
% cpi->sf.last_partitioning_redo_frequency) == 0
|| cm->prev_mi == 0
|| cm->show_frame == 0
|| cm->frame_type == KEY_FRAME
|| cpi->rc.is_src_frame_alt_ref
|| ((cpi->sf.use_lastframe_partitioning ==
LAST_FRAME_PARTITION_LOW_MOTION) &&
sb_has_motion(cm, prev_mi_8x8))) {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
} else {
copy_partitioning(cm, mi_8x8, prev_mi_8x8);
rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
}
}
} else {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
}
}
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
xd->mode_info_stride = cm->mode_info_stride;
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
// TODO(jkoleszar): are these initializations required?
setup_pre_planes(xd, 0, get_ref_frame_buffer(cpi, LAST_FRAME), 0, 0, NULL);
setup_dst_planes(xd, get_frame_new_buffer(cm), 0, 0);
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
xd->mi_8x8[0]->mbmi.mode = DC_PRED;
xd->mi_8x8[0]->mbmi.uv_mode = DC_PRED;
vp9_zero(cm->counts.y_mode);
vp9_zero(cm->counts.uv_mode);
vp9_zero(cm->counts.inter_mode);
vp9_zero(cm->counts.partition);
vp9_zero(cm->counts.intra_inter);
vp9_zero(cm->counts.comp_inter);
vp9_zero(cm->counts.single_ref);
vp9_zero(cm->counts.comp_ref);
vp9_zero(cm->counts.tx);
vp9_zero(cm->counts.skip);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cpi->above_context[0], 0,
sizeof(*cpi->above_context[0]) *
2 * aligned_mi_cols * MAX_MB_PLANE);
vpx_memset(cpi->above_seg_context, 0,
sizeof(*cpi->above_seg_context) * aligned_mi_cols);
}
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
// printf("Switching to lossless\n");
cpi->mb.fwd_txm4x4 = vp9_fwht4x4;
cpi->mb.e_mbd.itxm_add = vp9_iwht4x4_add;
cpi->mb.optimize = 0;
cpi->common.lf.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
cpi->common.tx_mode = ONLY_4X4;
} else {
// printf("Not lossless\n");
cpi->mb.fwd_txm4x4 = vp9_fdct4x4;
cpi->mb.e_mbd.itxm_add = vp9_idct4x4_add;
}
}
static void switch_tx_mode(VP9_COMP *cpi) {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
cpi->common.tx_mode >= ALLOW_32X32)
cpi->common.tx_mode = ALLOW_32X32;
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi_8x8[y * mis + x]->mbmi.skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs,
TX_SIZE tx_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++)
mi_8x8[y * mis + x]->mbmi.tx_size = tx_size;
}
}
static void reset_skip_txfm_size_b(VP9_COMMON *cm, MODE_INFO **mi_8x8,
int mis, TX_SIZE max_tx_size, int bw, int bh,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
return;
} else {
MB_MODE_INFO * const mbmi = &mi_8x8[0]->mbmi;
if (mbmi->tx_size > max_tx_size) {
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
get_skip_flag(mi_8x8, mis, ymbs, xmbs));
set_txfm_flag(mi_8x8, mis, ymbs, xmbs, max_tx_size);
}
}
}
static void reset_skip_txfm_size_sb(VP9_COMMON *cm, MODE_INFO **mi_8x8,
TX_SIZE max_tx_size, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int mis = cm->mode_info_stride;
int bw, bh;
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];
if (bw == bs && bh == bs) {
reset_skip_txfm_size_b(cm, mi_8x8, mis, max_tx_size, bs, bs, mi_row,
mi_col, bsize);
} else if (bw == bs && bh < bs) {
reset_skip_txfm_size_b(cm, mi_8x8, mis, max_tx_size, bs, hbs, mi_row,
mi_col, bsize);
reset_skip_txfm_size_b(cm, mi_8x8 + hbs * mis, mis, max_tx_size, bs, hbs,
mi_row + hbs, mi_col, bsize);
} else if (bw < bs && bh == bs) {
reset_skip_txfm_size_b(cm, mi_8x8, mis, max_tx_size, hbs, bs, mi_row,
mi_col, bsize);
reset_skip_txfm_size_b(cm, mi_8x8 + hbs, mis, max_tx_size, hbs, bs, mi_row,
mi_col + hbs, bsize);
} else {
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
int n;
assert(bw < bs && bh < bs);
for (n = 0; n < 4; n++) {
const int mi_dc = hbs * (n & 1);
const int mi_dr = hbs * (n >> 1);
reset_skip_txfm_size_sb(cm, &mi_8x8[mi_dr * mis + mi_dc], max_tx_size,
mi_row + mi_dr, mi_col + mi_dc, subsize);
}
}
}
static void reset_skip_txfm_size(VP9_COMMON *cm, TX_SIZE txfm_max) {
int mi_row, mi_col;
const int mis = cm->mode_info_stride;
MODE_INFO **mi_8x8, **mi_ptr = cm->mi_grid_visible;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) {
mi_8x8 = mi_ptr;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi_8x8 += 8) {
reset_skip_txfm_size_sb(cm, mi_8x8, txfm_max, mi_row, mi_col,
BLOCK_64X64);
}
}
}
static MV_REFERENCE_FRAME get_frame_type(VP9_COMP *cpi) {
if (frame_is_intra_only(&cpi->common))
return INTRA_FRAME;
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
return LAST_FRAME;
else
return GOLDEN_FRAME;
}
static void select_tx_mode(VP9_COMP *cpi) {
if (cpi->oxcf.lossless) {
cpi->common.tx_mode = ONLY_4X4;
} else if (cpi->common.current_video_frame == 0) {
cpi->common.tx_mode = TX_MODE_SELECT;
} else {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
cpi->common.tx_mode = ALLOW_32X32;
} else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
int frame_type = get_frame_type(cpi);
cpi->common.tx_mode =
cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
> cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
} else {
unsigned int total = 0;
int i;
for (i = 0; i < TX_SIZES; ++i)
total += cpi->tx_stepdown_count[i];
if (total) {
double fraction = (double)cpi->tx_stepdown_count[0] / total;
cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
// printf("fraction = %f\n", fraction);
} // else keep unchanged
}
}
}
// Start RTC Exploration
typedef enum {
BOTH_ZERO = 0,
ZERO_PLUS_PREDICTED = 1,
BOTH_PREDICTED = 2,
NEW_PLUS_NON_INTRA = 3,
BOTH_NEW = 4,
INTRA_PLUS_NON_INTRA = 5,
BOTH_INTRA = 6,
INVALID_CASE = 9
} motion_vector_context;
static void set_mode_info(MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
MB_PREDICTION_MODE mode, int mi_row, int mi_col) {
mbmi->interp_filter = EIGHTTAP;
mbmi->mode = mode;
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
if (mode < NEARESTMV) {
mbmi->ref_frame[0] = INTRA_FRAME;
} else {
mbmi->ref_frame[0] = LAST_FRAME;
}
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->tx_size = max_txsize_lookup[bsize];
mbmi->uv_mode = mode;
mbmi->skip_coeff = 0;
mbmi->sb_type = bsize;
mbmi->segment_id = 0;
}
static INLINE int get_block_row(int b32i, int b16i, int b8i) {
return ((b32i >> 1) << 2) + ((b16i >> 1) << 1) + (b8i >> 1);
}
static INLINE int get_block_col(int b32i, int b16i, int b8i) {
return ((b32i & 1) << 2) + ((b16i & 1) << 1) + (b8i & 1);
}
static void rtc_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int mi_width = num_8x8_blocks_wide_lookup[cpi->sf.always_this_block_size];
int mi_height = num_8x8_blocks_high_lookup[cpi->sf.always_this_block_size];
int i, j;
int chosen_rate = INT_MAX;
int64_t chosen_dist = INT_MAX;
MB_PREDICTION_MODE mode = DC_PRED;
int row8x8_remaining = tile->mi_row_end - mi_row;
int col8x8_remaining = tile->mi_col_end - mi_col;
int b32i;
x->fast_ms = 0;
x->subblock_ref = 0;
for (b32i = 0; b32i < 4; b32i++) {
int b16i;
for (b16i = 0; b16i < 4; b16i++) {
int b8i;
int block_row = get_block_row(b32i, b16i, 0);
int block_col = get_block_col(b32i, b16i, 0);
int index = block_row * mis + block_col;
int rate;
int64_t dist;
int_mv frame_nearest_mv[MAX_REF_FRAMES];
int_mv frame_near_mv[MAX_REF_FRAMES];
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE];
// Find a partition size that fits
bsize = find_partition_size(cpi->sf.always_this_block_size,
(row8x8_remaining - block_row),
(col8x8_remaining - block_col),
&mi_height, &mi_width);
mi_8x8[index] = mi_8x8[0] + index;
set_mi_row_col(xd, tile, mi_row + block_row, mi_height,
mi_col + block_col, mi_width, cm->mi_rows, cm->mi_cols);
xd->mi_8x8 = mi_8x8 + index;
if (cm->frame_type != KEY_FRAME) {
set_offsets(cpi, tile, mi_row + block_row, mi_col + block_col, bsize);
vp9_pick_inter_mode(cpi, x, tile,
mi_row + block_row, mi_col + block_col,
&rate, &dist, bsize);
} else {
set_mode_info(&mi_8x8[index]->mbmi, bsize, mode,
mi_row + block_row, mi_col + block_col);
vp9_setup_buffer_inter(cpi, x, tile,
LAST_FRAME, cpi->sf.always_this_block_size,
mi_row + block_row, mi_col + block_col,
frame_nearest_mv, frame_near_mv, yv12_mb);
}
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > i
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > j) {
mi_8x8[index+ i + j * mis] = mi_8x8[index];
}
for (b8i = 0; b8i < 4; b8i++) {
}
}
}
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, BLOCK_64X64);
*rate = chosen_rate;
*dist = chosen_dist;
}
static void encode_rtc_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
VP9_COMMON * const cm = &cpi->common;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&cpi->left_context, 0, sizeof(cpi->left_context));
vpx_memset(cpi->left_seg_context, 0, sizeof(cpi->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate;
int64_t dummy_dist;
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
cpi->mb.source_variance = UINT_MAX;
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
set_partitioning(cpi, tile, mi_8x8, mi_row, mi_col);
rtc_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
}
}
// end RTC play code
static void encode_frame_internal(VP9_COMP *cpi) {
int mi_row;
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
vp9_zero(cm->counts.switchable_interp);
vp9_zero(cpi->tx_stepdown_count);
xd->mi_8x8 = cm->mi_grid_visible;
// required for vp9_frame_init_quantizer
xd->mi_8x8[0] = cm->mi;
xd->last_mi = cm->prev_mi;
vp9_zero(cm->counts.mv);
vp9_zero(cpi->coef_counts);
vp9_zero(cm->counts.eob_branch);
cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
&& cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi);
vp9_initialize_me_consts(cpi, cm->base_qindex);
switch_tx_mode(cpi);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// Re-initialize encode frame context.
init_encode_frame_mb_context(cpi);
vp9_zero(cpi->rd_comp_pred_diff);
vp9_zero(cpi->rd_filter_diff);
vp9_zero(cpi->rd_tx_select_diff);
vp9_zero(cpi->rd_tx_select_threshes);
set_prev_mi(cm);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
// Take tiles into account and give start/end MB
int tile_col, tile_row;
TOKENEXTRA *tp = cpi->tok;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile;
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_tile_init(&tile, cm, tile_row, tile_col);
for (mi_row = tile.mi_row_start;
mi_row < tile.mi_row_end; mi_row += 8) {
if (cpi->sf.use_pick_mode)
encode_rtc_sb_row(cpi, &tile, mi_row, &tp);
else
encode_sb_row(cpi, &tile, mi_row, &tp);
}
cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
}
}
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
if (cpi->sf.skip_encode_sb) {
int j;
unsigned int intra_count = 0, inter_count = 0;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += cm->counts.intra_inter[j][0];
inter_count += cm->counts.intra_inter[j][1];
}
cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count);
cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME);
cpi->sf.skip_encode_frame &= cm->show_frame;
} else {
cpi->sf.skip_encode_frame = 0;
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void vp9_encode_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
}
if (cpi->sf.frame_parameter_update) {
int i;
REFERENCE_MODE reference_mode;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
const int64_t *mode_thresh = cpi->rd_prediction_type_threshes[frame_type];
const int64_t *filter_thresh = cpi->rd_filter_threshes[frame_type];
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3 || !cm->allow_comp_inter_inter)
reference_mode = SINGLE_REFERENCE;
else if (mode_thresh[COMPOUND_REFERENCE] > mode_thresh[SINGLE_REFERENCE] &&
mode_thresh[COMPOUND_REFERENCE] >
mode_thresh[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) &&
cpi->static_mb_pct == 100)
reference_mode = COMPOUND_REFERENCE;
else if (mode_thresh[SINGLE_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT])
reference_mode = SINGLE_REFERENCE;
else
reference_mode = REFERENCE_MODE_SELECT;
if (cm->interp_filter == SWITCHABLE) {
if (frame_type != ALTREF_FRAME &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP_SHARP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SMOOTH;
} else if (filter_thresh[EIGHTTAP_SHARP] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SHARP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SHARP;
} else if (filter_thresh[EIGHTTAP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP;
}
}
cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
/* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */
select_tx_mode(cpi);
cm->reference_mode = reference_mode;
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i) {
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cm->MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
const int64_t diff = cpi->rd_filter_diff[i] / cm->MBs;
cpi->rd_filter_threshes[frame_type][i] =
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
}
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
diff = (int) (pd / cm->MBs);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cm->counts.comp_inter[i][0];
comp_count_zero += cm->counts.comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
vp9_zero(cm->counts.comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
vp9_zero(cm->counts.comp_inter);
}
}
if (cm->tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_txfm_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_txfm_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_txfm_size(cm, TX_16X16);
}
}
} else {
// Force the usage of the BILINEAR interp_filter.
cm->interp_filter = BILINEAR;
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
++counts->uv_mode[y_mode][uv_mode];
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high)
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide)
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
#endif
}
static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
if (enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
: LF_ZEROMV_ZBIN_BOOST;
} else {
return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
: MV_ZBIN_BOOST;
}
} else {
return INTRA_ZBIN_BOOST;
}
} else {
return 0;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi_8x8;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
unsigned int segment_id = mbmi->segment_id;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 &&
(cpi->oxcf.aq_mode != COMPLEXITY_AQ) &&
!cpi->sf.use_pick_mode;
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
x->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
xd->interp_kernel = vp9_get_interp_kernel(mbmi->interp_filter);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
cpi->zbin_mode_boost_enabled);
vp9_update_zbin_extra(cpi, x);
}
if (!is_inter_block(mbmi)) {
mbmi->skip_coeff = 1;
vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8));
vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8));
if (output_enabled)
sum_intra_stats(&cm->counts, mi);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
mbmi->ref_frame[ref]);
setup_pre_planes(xd, ref, cfg, mi_row, mi_col, &xd->block_refs[ref]->sf);
}
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
}
if (!is_inter_block(mbmi)) {
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else if (!x->skip) {
mbmi->skip_coeff = 1;
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
mbmi->skip_coeff = 1;
if (output_enabled)
cm->counts.skip[vp9_get_skip_context(xd)][1]++;
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) &&
(mbmi->skip_coeff ||
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
&cm->counts.tx)[mbmi->tx_size];
} else {
int x, y;
TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
} else {
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
}
}
}