4b2c2b9aa4
Change-Id: Ic084c475844b24092a433ab88138cf58af3abbe4
951 lines
28 KiB
C
951 lines
28 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "vpx_ports/config.h"
|
|
#include "encodemb.h"
|
|
#include "vp9/common/reconinter.h"
|
|
#include "quantize.h"
|
|
#include "tokenize.h"
|
|
#include "vp9/common/invtrans.h"
|
|
#include "vp9/common/reconintra.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "rdopt.h"
|
|
#include "vp9/common/systemdependent.h"
|
|
#include "vpx_rtcd.h"
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#define IF_RTCD(x) (x)
|
|
#else
|
|
#define IF_RTCD(x) NULL
|
|
#endif
|
|
|
|
void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
|
|
unsigned char *src_ptr = (*(be->base_src) + be->src);
|
|
short *diff_ptr = be->src_diff;
|
|
unsigned char *pred_ptr = bd->predictor;
|
|
int src_stride = be->src_stride;
|
|
|
|
int r, c;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
for (c = 0; c < 4; c++) {
|
|
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
|
|
}
|
|
|
|
diff_ptr += pitch;
|
|
pred_ptr += pitch;
|
|
src_ptr += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
|
|
unsigned char *src_ptr = (*(be->base_src) + be->src);
|
|
short *diff_ptr = be->src_diff;
|
|
unsigned char *pred_ptr = bd->predictor;
|
|
int src_stride = be->src_stride;
|
|
int r, c;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
|
|
}
|
|
diff_ptr += pitch;
|
|
pred_ptr += pitch;
|
|
src_ptr += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mbuv_s_c(short *diff, const unsigned char *usrc,
|
|
const unsigned char *vsrc, int src_stride,
|
|
const unsigned char *upred,
|
|
const unsigned char *vpred, int dst_stride) {
|
|
short *udiff = diff + 256;
|
|
short *vdiff = diff + 320;
|
|
int r, c;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
udiff[c] = usrc[c] - upred[c];
|
|
}
|
|
|
|
udiff += 8;
|
|
upred += dst_stride;
|
|
usrc += src_stride;
|
|
}
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
vdiff[c] = vsrc[c] - vpred[c];
|
|
}
|
|
|
|
vdiff += 8;
|
|
vpred += dst_stride;
|
|
vsrc += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mbuv_c(short *diff, unsigned char *usrc,
|
|
unsigned char *vsrc, unsigned char *pred, int stride) {
|
|
unsigned char *upred = pred + 256;
|
|
unsigned char *vpred = pred + 320;
|
|
|
|
vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8);
|
|
}
|
|
|
|
void vp9_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride,
|
|
const unsigned char *pred, int dst_stride) {
|
|
int r, c;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
for (c = 0; c < 16; c++) {
|
|
diff[c] = src[c] - pred[c];
|
|
}
|
|
|
|
diff += 16;
|
|
pred += dst_stride;
|
|
src += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mby_c(short *diff, unsigned char *src,
|
|
unsigned char *pred, int stride) {
|
|
vp9_subtract_mby_s_c(diff, src, stride, pred, 16);
|
|
}
|
|
|
|
static void subtract_mb(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
|
|
BLOCK *b = &x->block[0];
|
|
|
|
vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor,
|
|
b->src_stride);
|
|
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
|
|
x->e_mbd.predictor, x->src.uv_stride);
|
|
}
|
|
|
|
static void build_dcblock_4x4(MACROBLOCK *x) {
|
|
short *src_diff_ptr = &x->src_diff[384];
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
src_diff_ptr[i] = x->coeff[i * 16];
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mby_4x4(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i += 2) {
|
|
x->vp9_short_fdct8x4(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 32);
|
|
}
|
|
|
|
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
|
|
// build dc block from 16 y dc values
|
|
build_dcblock_4x4(x);
|
|
|
|
// do 2nd order transform on the dc block
|
|
x->short_walsh4x4(&x->block[24].src_diff[0],
|
|
&x->block[24].coeff[0], 8);
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mbuv_4x4(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 16; i < 24; i += 2) {
|
|
x->vp9_short_fdct8x4(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 16);
|
|
}
|
|
}
|
|
|
|
static void transform_mb_4x4(MACROBLOCK *x) {
|
|
vp9_transform_mby_4x4(x);
|
|
vp9_transform_mbuv_4x4(x);
|
|
}
|
|
|
|
static void build_dcblock_8x8(MACROBLOCK *x) {
|
|
int16_t *src_diff_ptr = x->block[24].src_diff;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
src_diff_ptr[i] = 0;
|
|
}
|
|
src_diff_ptr[0] = x->coeff[0 * 16];
|
|
src_diff_ptr[1] = x->coeff[4 * 16];
|
|
src_diff_ptr[4] = x->coeff[8 * 16];
|
|
src_diff_ptr[8] = x->coeff[12 * 16];
|
|
}
|
|
|
|
void vp9_transform_mby_8x8(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i += 8) {
|
|
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 32);
|
|
}
|
|
for (i = 2; i < 11; i += 8) {
|
|
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
|
|
&x->block[i + 2].coeff[0], 32);
|
|
}
|
|
|
|
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
|
|
// build dc block from 2x2 y dc values
|
|
build_dcblock_8x8(x);
|
|
|
|
// do 2nd order transform on the dc block
|
|
x->short_fhaar2x2(&x->block[24].src_diff[0],
|
|
&x->block[24].coeff[0], 8);
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mbuv_8x8(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 16; i < 24; i += 4) {
|
|
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 16);
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mb_8x8(MACROBLOCK *x) {
|
|
vp9_transform_mby_8x8(x);
|
|
vp9_transform_mbuv_8x8(x);
|
|
}
|
|
|
|
void vp9_transform_mby_16x16(MACROBLOCK *x) {
|
|
vp9_clear_system_state();
|
|
x->vp9_short_fdct16x16(&x->block[0].src_diff[0],
|
|
&x->block[0].coeff[0], 32);
|
|
}
|
|
|
|
void vp9_transform_mb_16x16(MACROBLOCK *x) {
|
|
vp9_transform_mby_16x16(x);
|
|
vp9_transform_mbuv_8x8(x);
|
|
}
|
|
|
|
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
|
|
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
|
|
typedef struct vp9_token_state vp9_token_state;
|
|
|
|
struct vp9_token_state {
|
|
int rate;
|
|
int error;
|
|
int next;
|
|
signed char token;
|
|
short qc;
|
|
};
|
|
|
|
// TODO: experiments to find optimal multiple numbers
|
|
#define Y1_RD_MULT 4
|
|
#define UV_RD_MULT 2
|
|
#define Y2_RD_MULT 4
|
|
|
|
static const int plane_rd_mult[4] = {
|
|
Y1_RD_MULT,
|
|
Y2_RD_MULT,
|
|
UV_RD_MULT,
|
|
Y1_RD_MULT
|
|
};
|
|
|
|
#define UPDATE_RD_COST()\
|
|
{\
|
|
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
|
|
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
|
|
if (rd_cost0 == rd_cost1) {\
|
|
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
|
|
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
|
|
}\
|
|
}
|
|
|
|
static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
|
|
const VP9_ENCODER_RTCD *rtcd, int tx_size) {
|
|
BLOCK *b;
|
|
BLOCKD *d;
|
|
vp9_token_state tokens[65][2];
|
|
uint64_t best_mask[2];
|
|
const short *dequant_ptr;
|
|
const short *coeff_ptr;
|
|
short *qcoeff_ptr;
|
|
short *dqcoeff_ptr;
|
|
int eob;
|
|
int i0;
|
|
int rc;
|
|
int x;
|
|
int sz = 0;
|
|
int next;
|
|
int rdmult;
|
|
int rddiv;
|
|
int final_eob;
|
|
int64_t rd_cost0, rd_cost1;
|
|
int rate0, rate1;
|
|
int error0, error1;
|
|
int t0, t1;
|
|
int best;
|
|
int band;
|
|
int pt;
|
|
int err_mult = plane_rd_mult[type];
|
|
int default_eob;
|
|
int const *scan, *bands;
|
|
|
|
b = &mb->block[i];
|
|
d = &mb->e_mbd.block[i];
|
|
switch (tx_size) {
|
|
default:
|
|
case TX_4X4:
|
|
scan = vp9_default_zig_zag1d;
|
|
bands = vp9_coef_bands;
|
|
default_eob = 16;
|
|
// TODO: this isn't called (for intra4x4 modes), but will be left in
|
|
// since it could be used later
|
|
{
|
|
TX_TYPE tx_type = get_tx_type(&mb->e_mbd, d);
|
|
if (tx_type != DCT_DCT) {
|
|
switch (tx_type) {
|
|
case ADST_DCT:
|
|
scan = vp9_row_scan;
|
|
break;
|
|
|
|
case DCT_ADST:
|
|
scan = vp9_col_scan;
|
|
break;
|
|
|
|
default:
|
|
scan = vp9_default_zig_zag1d;
|
|
break;
|
|
}
|
|
} else {
|
|
scan = vp9_default_zig_zag1d;
|
|
}
|
|
}
|
|
break;
|
|
case TX_8X8:
|
|
scan = vp9_default_zig_zag1d_8x8;
|
|
bands = vp9_coef_bands_8x8;
|
|
default_eob = 64;
|
|
break;
|
|
}
|
|
|
|
dequant_ptr = d->dequant;
|
|
coeff_ptr = b->coeff;
|
|
qcoeff_ptr = d->qcoeff;
|
|
dqcoeff_ptr = d->dqcoeff;
|
|
i0 = (type == PLANE_TYPE_Y_NO_DC);
|
|
eob = d->eob;
|
|
|
|
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
|
|
rdmult = mb->rdmult * err_mult;
|
|
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
|
|
rdmult = (rdmult * 9) >> 4;
|
|
rddiv = mb->rddiv;
|
|
best_mask[0] = best_mask[1] = 0;
|
|
/* Initialize the sentinel node of the trellis. */
|
|
tokens[eob][0].rate = 0;
|
|
tokens[eob][0].error = 0;
|
|
tokens[eob][0].next = default_eob;
|
|
tokens[eob][0].token = DCT_EOB_TOKEN;
|
|
tokens[eob][0].qc = 0;
|
|
*(tokens[eob] + 1) = *(tokens[eob] + 0);
|
|
next = eob;
|
|
for (i = eob; i-- > i0;) {
|
|
int base_bits;
|
|
int d2;
|
|
int dx;
|
|
|
|
rc = scan[i];
|
|
x = qcoeff_ptr[rc];
|
|
/* Only add a trellis state for non-zero coefficients. */
|
|
if (x) {
|
|
int shortcut = 0;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
/* Evaluate the first possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
/* Consider both possible successor states. */
|
|
if (next < default_eob) {
|
|
band = bands[i + 1];
|
|
pt = vp9_prev_token_class[t0];
|
|
rate0 +=
|
|
mb->token_costs[tx_size][type][band][pt][tokens[next][0].token];
|
|
rate1 +=
|
|
mb->token_costs[tx_size][type][band][pt][tokens[next][1].token];
|
|
}
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
|
|
d2 = dx * dx;
|
|
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][0].error = d2 + (best ? error1 : error0);
|
|
tokens[i][0].next = next;
|
|
tokens[i][0].token = t0;
|
|
tokens[i][0].qc = x;
|
|
best_mask[0] |= best << i;
|
|
/* Evaluate the second possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
|
|
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) &&
|
|
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0]))
|
|
shortcut = 1;
|
|
else
|
|
shortcut = 0;
|
|
|
|
if (shortcut) {
|
|
sz = -(x < 0);
|
|
x -= 2 * sz + 1;
|
|
}
|
|
|
|
/* Consider both possible successor states. */
|
|
if (!x) {
|
|
/* If we reduced this coefficient to zero, check to see if
|
|
* we need to move the EOB back here.
|
|
*/
|
|
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
} else {
|
|
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
}
|
|
if (next < default_eob) {
|
|
band = bands[i + 1];
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
pt = vp9_prev_token_class[t0];
|
|
rate0 += mb->token_costs[tx_size][type][band][pt][
|
|
tokens[next][0].token];
|
|
}
|
|
if (t1 != DCT_EOB_TOKEN) {
|
|
pt = vp9_prev_token_class[t1];
|
|
rate1 += mb->token_costs[tx_size][type][band][pt][
|
|
tokens[next][1].token];
|
|
}
|
|
}
|
|
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
|
|
if (shortcut) {
|
|
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
|
|
d2 = dx * dx;
|
|
}
|
|
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][1].error = d2 + (best ? error1 : error0);
|
|
tokens[i][1].next = next;
|
|
tokens[i][1].token = best ? t1 : t0;
|
|
tokens[i][1].qc = x;
|
|
best_mask[1] |= best << i;
|
|
/* Finally, make this the new head of the trellis. */
|
|
next = i;
|
|
}
|
|
/* There's no choice to make for a zero coefficient, so we don't
|
|
* add a new trellis node, but we do need to update the costs.
|
|
*/
|
|
else {
|
|
band = bands[i + 1];
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
/* Update the cost of each path if we're past the EOB token. */
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0];
|
|
tokens[next][0].token = ZERO_TOKEN;
|
|
}
|
|
if (t1 != DCT_EOB_TOKEN) {
|
|
tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1];
|
|
tokens[next][1].token = ZERO_TOKEN;
|
|
}
|
|
/* Don't update next, because we didn't add a new node. */
|
|
}
|
|
}
|
|
|
|
/* Now pick the best path through the whole trellis. */
|
|
band = bands[i + 1];
|
|
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
rate0 += mb->token_costs[tx_size][type][band][pt][t0];
|
|
rate1 += mb->token_costs[tx_size][type][band][pt][t1];
|
|
UPDATE_RD_COST();
|
|
best = rd_cost1 < rd_cost0;
|
|
final_eob = i0 - 1;
|
|
for (i = next; i < eob; i = next) {
|
|
x = tokens[i][best].qc;
|
|
if (x)
|
|
final_eob = i;
|
|
rc = scan[i];
|
|
qcoeff_ptr[rc] = x;
|
|
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]);
|
|
|
|
next = tokens[i][best].next;
|
|
best = (best_mask[best] >> i) & 1;
|
|
}
|
|
final_eob++;
|
|
|
|
d->eob = final_eob;
|
|
*a = *l = (d->eob != !type);
|
|
}
|
|
|
|
/**************************************************************************
|
|
our inverse hadamard transform effectively is weighted sum of all 16 inputs
|
|
with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And
|
|
dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the
|
|
output after inverse wht and idct will be all zero. A sum of absolute value
|
|
smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht
|
|
fall between -65 and +65.
|
|
**************************************************************************/
|
|
#define SUM_2ND_COEFF_THRESH 65
|
|
|
|
static void check_reset_2nd_coeffs(MACROBLOCKD *xd,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
|
|
int sum = 0;
|
|
int i;
|
|
BLOCKD *bd = &xd->block[24];
|
|
if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH
|
|
&& bd->dequant[1] >= SUM_2ND_COEFF_THRESH)
|
|
return;
|
|
|
|
for (i = 0; i < bd->eob; i++) {
|
|
int coef = bd->dqcoeff[vp9_default_zig_zag1d[i]];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
if (sum >= SUM_2ND_COEFF_THRESH)
|
|
return;
|
|
}
|
|
|
|
if (sum < SUM_2ND_COEFF_THRESH) {
|
|
for (i = 0; i < bd->eob; i++) {
|
|
int rc = vp9_default_zig_zag1d[i];
|
|
bd->qcoeff[rc] = 0;
|
|
bd->dqcoeff[rc] = 0;
|
|
}
|
|
bd->eob = 0;
|
|
*a = *l = (bd->eob != 0);
|
|
}
|
|
}
|
|
|
|
#define SUM_2ND_COEFF_THRESH_8X8 32
|
|
static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
|
|
int sum = 0;
|
|
BLOCKD *bd = &xd->block[24];
|
|
int coef;
|
|
|
|
coef = bd->dqcoeff[0];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[1];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[4];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[8];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
|
|
if (sum < SUM_2ND_COEFF_THRESH_8X8) {
|
|
bd->qcoeff[0] = 0;
|
|
bd->dqcoeff[0] = 0;
|
|
bd->qcoeff[1] = 0;
|
|
bd->dqcoeff[1] = 0;
|
|
bd->qcoeff[4] = 0;
|
|
bd->dqcoeff[4] = 0;
|
|
bd->qcoeff[8] = 0;
|
|
bd->dqcoeff[8] = 0;
|
|
bd->eob = 0;
|
|
*a = *l = (bd->eob != 0);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mby_4x4(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
int b;
|
|
PLANE_TYPE type;
|
|
int has_2nd_order;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
MB_PREDICTION_MODE mode = x->e_mbd.mode_info_context->mbmi.mode;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
|
|
has_2nd_order = (mode != B_PRED && mode != I8X8_PRED && mode != SPLITMV);
|
|
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
|
|
|
|
for (b = 0; b < 16; b++) {
|
|
optimize_b(x, b, type,
|
|
ta + vp9_block2above[b], tl + vp9_block2left[b], rtcd, TX_4X4);
|
|
}
|
|
|
|
if (has_2nd_order) {
|
|
b = 24;
|
|
optimize_b(x, b, PLANE_TYPE_Y2,
|
|
ta + vp9_block2above[b], tl + vp9_block2left[b], rtcd, TX_4X4);
|
|
check_reset_2nd_coeffs(&x->e_mbd,
|
|
ta + vp9_block2above[b], tl + vp9_block2left[b]);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mbuv_4x4(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
int b;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
|
|
for (b = 16; b < 24; b++) {
|
|
optimize_b(x, b, PLANE_TYPE_UV,
|
|
ta + vp9_block2above[b], tl + vp9_block2left[b], rtcd, TX_4X4);
|
|
}
|
|
}
|
|
|
|
static void optimize_mb_4x4(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
vp9_optimize_mby_4x4(x, rtcd);
|
|
vp9_optimize_mbuv_4x4(x, rtcd);
|
|
}
|
|
|
|
void vp9_optimize_mby_8x8(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
int b;
|
|
PLANE_TYPE type;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
int has_2nd_order = x->e_mbd.mode_info_context->mbmi.mode != SPLITMV;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
|
|
for (b = 0; b < 16; b += 4) {
|
|
optimize_b(x, b, type,
|
|
ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b],
|
|
rtcd, TX_8X8);
|
|
ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]];
|
|
tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]];
|
|
}
|
|
|
|
// 8x8 always have 2nd roder haar block
|
|
if (has_2nd_order) {
|
|
check_reset_8x8_2nd_coeffs(&x->e_mbd,
|
|
ta + vp9_block2above_8x8[24],
|
|
tl + vp9_block2left_8x8[24]);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mbuv_8x8(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
int b;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
|
|
for (b = 16; b < 24; b += 4) {
|
|
optimize_b(x, b, PLANE_TYPE_UV,
|
|
ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b],
|
|
rtcd, TX_8X8);
|
|
ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]];
|
|
tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]];
|
|
}
|
|
}
|
|
|
|
static void optimize_mb_8x8(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
vp9_optimize_mby_8x8(x, rtcd);
|
|
vp9_optimize_mbuv_8x8(x, rtcd);
|
|
}
|
|
|
|
static void optimize_b_16x16(MACROBLOCK *mb, int i, PLANE_TYPE type,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
|
|
const VP9_ENCODER_RTCD *rtcd) {
|
|
BLOCK *b = &mb->block[i];
|
|
BLOCKD *d = &mb->e_mbd.block[i];
|
|
vp9_token_state tokens[257][2];
|
|
unsigned best_index[257][2];
|
|
const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff;
|
|
short *qcoeff_ptr = qcoeff_ptr = d->qcoeff;
|
|
short *dqcoeff_ptr = dqcoeff_ptr = d->dqcoeff;
|
|
int eob = d->eob, final_eob, sz = 0;
|
|
int rc, x, next;
|
|
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
|
|
int rate0, rate1, error0, error1, t0, t1;
|
|
int best, band, pt;
|
|
int err_mult = plane_rd_mult[type];
|
|
|
|
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
|
|
rdmult = mb->rdmult * err_mult;
|
|
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
|
|
rdmult = (rdmult * 9)>>4;
|
|
rddiv = mb->rddiv;
|
|
memset(best_index, 0, sizeof(best_index));
|
|
/* Initialize the sentinel node of the trellis. */
|
|
tokens[eob][0].rate = 0;
|
|
tokens[eob][0].error = 0;
|
|
tokens[eob][0].next = 256;
|
|
tokens[eob][0].token = DCT_EOB_TOKEN;
|
|
tokens[eob][0].qc = 0;
|
|
*(tokens[eob] + 1) = *(tokens[eob] + 0);
|
|
next = eob;
|
|
for (i = eob; i-- > 0;) {
|
|
int base_bits, d2, dx;
|
|
|
|
rc = vp9_default_zig_zag1d_16x16[i];
|
|
x = qcoeff_ptr[rc];
|
|
/* Only add a trellis state for non-zero coefficients. */
|
|
if (x) {
|
|
int shortcut = 0;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
/* Evaluate the first possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
/* Consider both possible successor states. */
|
|
if (next < 256) {
|
|
band = vp9_coef_bands_16x16[i + 1];
|
|
pt = vp9_prev_token_class[t0];
|
|
rate0 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][0].token];
|
|
rate1 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][1].token];
|
|
}
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
|
|
d2 = dx*dx;
|
|
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][0].error = d2 + (best ? error1 : error0);
|
|
tokens[i][0].next = next;
|
|
tokens[i][0].token = t0;
|
|
tokens[i][0].qc = x;
|
|
best_index[i][0] = best;
|
|
/* Evaluate the second possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
|
|
if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) &&
|
|
(abs(x)*dequant_ptr[rc!=0]<abs(coeff_ptr[rc])+dequant_ptr[rc!=0]))
|
|
shortcut = 1;
|
|
else
|
|
shortcut = 0;
|
|
|
|
if (shortcut) {
|
|
sz = -(x < 0);
|
|
x -= 2*sz + 1;
|
|
}
|
|
|
|
/* Consider both possible successor states. */
|
|
if (!x) {
|
|
/* If we reduced this coefficient to zero, check to see if
|
|
* we need to move the EOB back here.
|
|
*/
|
|
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
}
|
|
else
|
|
t0=t1 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
if (next < 256) {
|
|
band = vp9_coef_bands_16x16[i + 1];
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
pt = vp9_prev_token_class[t0];
|
|
rate0 += mb->token_costs[TX_16X16][type][band][pt]
|
|
[tokens[next][0].token];
|
|
}
|
|
if (t1!=DCT_EOB_TOKEN) {
|
|
pt = vp9_prev_token_class[t1];
|
|
rate1 += mb->token_costs[TX_16X16][type][band][pt]
|
|
[tokens[next][1].token];
|
|
}
|
|
}
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
|
|
if(shortcut) {
|
|
dx -= (dequant_ptr[rc!=0] + sz) ^ sz;
|
|
d2 = dx*dx;
|
|
}
|
|
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][1].error = d2 + (best ? error1 : error0);
|
|
tokens[i][1].next = next;
|
|
tokens[i][1].token = best ? t1 : t0;
|
|
tokens[i][1].qc = x;
|
|
best_index[i][1] = best;
|
|
/* Finally, make this the new head of the trellis. */
|
|
next = i;
|
|
}
|
|
/* There's no choice to make for a zero coefficient, so we don't
|
|
* add a new trellis node, but we do need to update the costs.
|
|
*/
|
|
else {
|
|
band = vp9_coef_bands_16x16[i + 1];
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
/* Update the cost of each path if we're past the EOB token. */
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
tokens[next][0].rate += mb->token_costs[TX_16X16][type][band][0][t0];
|
|
tokens[next][0].token = ZERO_TOKEN;
|
|
}
|
|
if (t1 != DCT_EOB_TOKEN) {
|
|
tokens[next][1].rate += mb->token_costs[TX_16X16][type][band][0][t1];
|
|
tokens[next][1].token = ZERO_TOKEN;
|
|
}
|
|
/* Don't update next, because we didn't add a new node. */
|
|
}
|
|
}
|
|
|
|
/* Now pick the best path through the whole trellis. */
|
|
band = vp9_coef_bands_16x16[i + 1];
|
|
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
rate0 += mb->token_costs[TX_16X16][type][band][pt][t0];
|
|
rate1 += mb->token_costs[TX_16X16][type][band][pt][t1];
|
|
UPDATE_RD_COST();
|
|
best = rd_cost1 < rd_cost0;
|
|
final_eob = -1;
|
|
|
|
for (i = next; i < eob; i = next) {
|
|
x = tokens[i][best].qc;
|
|
if (x)
|
|
final_eob = i;
|
|
rc = vp9_default_zig_zag1d_16x16[i];
|
|
qcoeff_ptr[rc] = x;
|
|
dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]);
|
|
|
|
next = tokens[i][best].next;
|
|
best = best_index[i][best];
|
|
}
|
|
final_eob++;
|
|
|
|
d->eob = final_eob;
|
|
*a = *l = (d->eob != !type);
|
|
}
|
|
|
|
void vp9_optimize_mby_16x16(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta, *tl;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
optimize_b_16x16(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl, rtcd);
|
|
}
|
|
|
|
static void optimize_mb_16x16(MACROBLOCK *x, const VP9_ENCODER_RTCD *rtcd) {
|
|
vp9_optimize_mby_16x16(x, rtcd);
|
|
vp9_optimize_mbuv_8x8(x, rtcd);
|
|
}
|
|
|
|
void vp9_encode_inter16x16(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
|
|
|
|
vp9_build_inter_predictors_mb(xd);
|
|
subtract_mb(rtcd, x);
|
|
|
|
if (tx_size == TX_16X16) {
|
|
vp9_transform_mb_16x16(x);
|
|
vp9_quantize_mb_16x16(x);
|
|
if (x->optimize)
|
|
optimize_mb_16x16(x, rtcd);
|
|
vp9_inverse_transform_mb_16x16(IF_RTCD(&rtcd->common->idct), xd);
|
|
} else if (tx_size == TX_8X8) {
|
|
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
|
|
assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4);
|
|
vp9_transform_mby_8x8(x);
|
|
vp9_transform_mbuv_4x4(x);
|
|
vp9_quantize_mby_8x8(x);
|
|
vp9_quantize_mbuv_4x4(x);
|
|
if (x->optimize) {
|
|
vp9_optimize_mby_8x8(x, rtcd);
|
|
vp9_optimize_mbuv_4x4(x, rtcd);
|
|
}
|
|
vp9_inverse_transform_mby_8x8(IF_RTCD(&rtcd->common->idct), xd);
|
|
vp9_inverse_transform_mbuv_4x4(IF_RTCD(&rtcd->common->idct), xd);
|
|
} else {
|
|
vp9_transform_mb_8x8(x);
|
|
vp9_quantize_mb_8x8(x);
|
|
if (x->optimize)
|
|
optimize_mb_8x8(x, rtcd);
|
|
vp9_inverse_transform_mb_8x8(IF_RTCD(&rtcd->common->idct), xd);
|
|
}
|
|
} else {
|
|
transform_mb_4x4(x);
|
|
vp9_quantize_mb_4x4(x);
|
|
if (x->optimize)
|
|
optimize_mb_4x4(x, rtcd);
|
|
vp9_inverse_transform_mb_4x4(IF_RTCD(&rtcd->common->idct), xd);
|
|
}
|
|
|
|
vp9_recon_mb(xd);
|
|
}
|
|
|
|
/* this function is used by first pass only */
|
|
void vp9_encode_inter16x16y(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Disable the prediction filter for firstpass
|
|
xd->mode_info_context->mbmi.pred_filter_enabled = 0;
|
|
#endif
|
|
|
|
vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
|
|
|
|
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
|
|
|
|
vp9_transform_mby_4x4(x);
|
|
vp9_quantize_mby_4x4(x);
|
|
vp9_inverse_transform_mby_4x4(IF_RTCD(&rtcd->common->idct), xd);
|
|
|
|
vp9_recon_mby(xd);
|
|
}
|