vpx/vp9/encoder/vp9_encodemb.c
Dmitry Kovalev 9087d6d470 Replacing VP9_COMBINEENTROPYCONTEXTS macro with function.
Change-Id: I3bbc31840af69481e1d9bb4427c9ee25abf82946
2013-04-16 15:30:28 -07:00

935 lines
32 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_reconintra.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9_rtcd.h"
void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
uint8_t *src_ptr = (*(be->base_src) + be->src);
int16_t *diff_ptr = be->src_diff;
uint8_t *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
uint8_t *src_ptr = (*(be->base_src) + be->src);
int16_t *diff_ptr = be->src_diff;
uint8_t *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++)
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_sby_s_c(int16_t *diff, const uint8_t *src, int src_stride,
const uint8_t *pred, int dst_stride,
BLOCK_SIZE_TYPE bsize) {
const int bh = 16 << mb_height_log2(bsize), bw = 16 << mb_width_log2(bsize);
int r, c;
for (r = 0; r < bh; r++) {
for (c = 0; c < bw; c++)
diff[c] = src[c] - pred[c];
diff += bw;
pred += dst_stride;
src += src_stride;
}
}
void vp9_subtract_sbuv_s_c(int16_t *diff, const uint8_t *usrc,
const uint8_t *vsrc, int src_stride,
const uint8_t *upred,
const uint8_t *vpred, int dst_stride,
BLOCK_SIZE_TYPE bsize) {
const int bhl = mb_height_log2(bsize), bwl = mb_width_log2(bsize);
const int uoff = (16 * 16) << (bhl + bwl), voff = (uoff * 5) >> 2;
const int bw = 8 << bwl, bh = 8 << bhl;
int16_t *udiff = diff + uoff;
int16_t *vdiff = diff + voff;
int r, c;
for (r = 0; r < bh; r++) {
for (c = 0; c < bw; c++)
udiff[c] = usrc[c] - upred[c];
udiff += bw;
upred += dst_stride;
usrc += src_stride;
}
for (r = 0; r < bh; r++) {
for (c = 0; c < bw; c++)
vdiff[c] = vsrc[c] - vpred[c];
vdiff += bw;
vpred += dst_stride;
vsrc += src_stride;
}
}
void vp9_subtract_mby_c(int16_t *diff, uint8_t *src,
uint8_t *pred, int stride) {
vp9_subtract_sby_s_c(diff, src, stride, pred, 16, BLOCK_SIZE_MB16X16);
}
void vp9_subtract_mbuv_c(int16_t *diff, uint8_t *usrc,
uint8_t *vsrc, uint8_t *pred, int stride) {
uint8_t *upred = pred + 256;
uint8_t *vpred = pred + 320;
vp9_subtract_sbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8,
BLOCK_SIZE_MB16X16);
}
static void subtract_mb(MACROBLOCK *x) {
vp9_subtract_mby(x->src_diff, x->src.y_buffer, x->e_mbd.predictor,
x->src.y_stride);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
}
void vp9_transform_sby_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) - 1);
const int stride = 32 << bwl;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
vp9_short_fdct32x32(x->src_diff + y_idx * stride * 32 + x_idx * 32,
x->coeff + n * 1024, stride * 2);
}
}
void vp9_transform_sby_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bh = 1 << mb_height_log2(bsize);
const int stride = 16 << bwl, bstride = 4 << bwl;
MACROBLOCKD *const xd = &x->e_mbd;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
const TX_TYPE tx_type = get_tx_type_16x16(xd,
(y_idx * bstride + x_idx) * 4);
if (tx_type != DCT_DCT) {
vp9_short_fht16x16(x->src_diff + y_idx * stride * 16 + x_idx * 16,
x->coeff + n * 256, stride, tx_type);
} else {
x->fwd_txm16x16(x->src_diff + y_idx * stride * 16 + x_idx * 16,
x->coeff + n * 256, stride * 2);
}
}
}
void vp9_transform_sby_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) + 1);
const int stride = 8 << bwl, bstride = 2 << bwl;
MACROBLOCKD *const xd = &x->e_mbd;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * bstride + x_idx) * 2);
if (tx_type != DCT_DCT) {
vp9_short_fht8x8(x->src_diff + y_idx * stride * 8 + x_idx * 8,
x->coeff + n * 64, stride, tx_type);
} else {
x->fwd_txm8x8(x->src_diff + y_idx * stride * 8 + x_idx * 8,
x->coeff + n * 64, stride * 2);
}
}
}
void vp9_transform_sby_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) + 2);
const int stride = 4 << bwl;
MACROBLOCKD *const xd = &x->e_mbd;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
const TX_TYPE tx_type = get_tx_type_4x4(xd, n);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(x->src_diff + y_idx * stride * 4 + x_idx * 4,
x->coeff + n * 16, stride, tx_type);
} else {
x->fwd_txm4x4(x->src_diff + y_idx * stride * 4 + x_idx * 4,
x->coeff + n * 16, stride * 2);
}
}
}
void vp9_transform_sbuv_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
assert(bsize == BLOCK_SIZE_SB64X64);
vp9_clear_system_state();
vp9_short_fdct32x32(x->src_diff + 4096,
x->coeff + 4096, 64);
vp9_short_fdct32x32(x->src_diff + 4096 + 1024,
x->coeff + 4096 + 1024, 64);
}
void vp9_transform_sbuv_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
const int uoff = (16 * 16) << (bwl + bhl), voff = (uoff * 5) >> 2;
const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1);
const int stride = 16 << (bwl - 1);
int n;
vp9_clear_system_state();
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
x->fwd_txm16x16(x->src_diff + uoff + y_idx * stride * 16 + x_idx * 16,
x->coeff + uoff + n * 256, stride * 2);
x->fwd_txm16x16(x->src_diff + voff + y_idx * stride * 16 + x_idx * 16,
x->coeff + voff + n * 256, stride * 2);
}
}
void vp9_transform_sbuv_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1;
const int uoff = (8 * 8) << (bwl + bhl), voff = (uoff * 5) >> 2;
const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1);
const int stride = 8 << (bwl - 1);
int n;
vp9_clear_system_state();
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
x->fwd_txm8x8(x->src_diff + uoff + y_idx * stride * 8 + x_idx * 8,
x->coeff + uoff + n * 64, stride * 2);
x->fwd_txm8x8(x->src_diff + voff + y_idx * stride * 8 + x_idx * 8,
x->coeff + voff + n * 64, stride * 2);
}
}
void vp9_transform_sbuv_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2;
const int uoff = (4 * 4) << (bwl + bhl), voff = (uoff * 5) >> 2;
const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1);
const int stride = 4 << (bwl - 1);
int n;
vp9_clear_system_state();
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
x->fwd_txm4x4(x->src_diff + uoff + y_idx * stride * 4 + x_idx * 4,
x->coeff + uoff + n * 16, stride * 2);
x->fwd_txm4x4(x->src_diff + voff + y_idx * stride * 4 + x_idx * 4,
x->coeff + voff + n * 16, stride * 2);
}
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp9_token_state vp9_token_state;
struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
UV_RD_MULT,
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int *scan,
const int *nb,
int idx, int token,
uint8_t *token_cache,
int pad, int l) {
int bak = token_cache[idx], pt;
token_cache[idx] = token;
pt = vp9_get_coef_context(scan, nb, pad, token_cache, idx + 1, l);
token_cache[idx] = bak;
return pt;
}
static void optimize_b(VP9_COMMON *const cm,
MACROBLOCK *mb, int ib, PLANE_TYPE type,
const int16_t *dequant_ptr,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int tx_size, int y_blocks) {
const int ref = mb->e_mbd.mode_info_context->mbmi.ref_frame != INTRA_FRAME;
MACROBLOCKD *const xd = &mb->e_mbd;
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, ib);
const int16_t *coeff_ptr = mb->coeff + ib * 16;
int16_t *qcoeff_ptr;
int16_t *dqcoeff_ptr;
int eob = xd->plane[pb_idx.plane].eobs[pb_idx.block], final_eob, sz = 0;
const int i0 = 0;
int rc, x, next, i;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
int err_mult = plane_rd_mult[type];
int default_eob, pad;
int const *scan, *nb;
const int mul = 1 + (tx_size == TX_32X32);
uint8_t token_cache[1024];
#if CONFIG_CODE_NONZEROCOUNT
// TODO(debargha): the dynamic programming approach used in this function
// is not compatible with the true rate cost when nzcs are used. Note
// the total rate is the sum of the nzc rate and the indicvidual token
// rates. The latter part can be optimized in this function, but because
// the nzc rate is a function of all the other tokens without a Markov
// relationship this rate cannot be considered correctly.
// The current implementation uses a suboptimal approach to account for
// the nzc rates somewhat, but in reality the optimization approach needs
// to change substantially.
const int nzc_used = get_nzc_used(tx_size);
uint16_t nzc = xd->nzcs[ib];
uint16_t nzc0, nzc1;
uint16_t final_nzc = 0, final_nzc_exp;
int nzc_context = vp9_get_nzc_context(cm, xd, ib);
unsigned int *nzc_cost;
nzc0 = nzc1 = nzc;
#endif
assert((!type && !pb_idx.plane) || (type && pb_idx.plane));
dqcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16);
qcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16);
switch (tx_size) {
default:
case TX_4X4: {
const TX_TYPE tx_type = get_tx_type_4x4(xd, ib);
default_eob = 16;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_4x4[nzc_context][ref][type];
#endif
if (tx_type == DCT_ADST) {
scan = vp9_col_scan_4x4;
} else if (tx_type == ADST_DCT) {
scan = vp9_row_scan_4x4;
} else {
scan = vp9_default_zig_zag1d_4x4;
}
break;
}
case TX_8X8: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 3 + mb_width_log2(sb_type);
const int x = ib & ((1 << sz) - 1), y = ib - x;
const TX_TYPE tx_type = get_tx_type_8x8(xd, y + (x >> 1));
if (tx_type == DCT_ADST) {
scan = vp9_col_scan_8x8;
} else if (tx_type == ADST_DCT) {
scan = vp9_row_scan_8x8;
} else {
scan = vp9_default_zig_zag1d_8x8;
}
default_eob = 64;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_8x8[nzc_context][ref][type];
#endif
break;
}
case TX_16X16: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 4 + mb_width_log2(sb_type);
const int x = ib & ((1 << sz) - 1), y = ib - x;
const TX_TYPE tx_type = get_tx_type_16x16(xd, y + (x >> 2));
if (tx_type == DCT_ADST) {
scan = vp9_col_scan_16x16;
} else if (tx_type == ADST_DCT) {
scan = vp9_row_scan_16x16;
} else {
scan = vp9_default_zig_zag1d_16x16;
}
default_eob = 256;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_16x16[nzc_context][ref][type];
#endif
break;
}
case TX_32X32:
scan = vp9_default_zig_zag1d_32x32;
default_eob = 1024;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_32x32[nzc_context][ref][type];
#endif
break;
}
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
memset(best_index, 0, sizeof(best_index));
/* Initialize the sentinel node of the trellis. */
#if CONFIG_CODE_NONZEROCOUNT
tokens[eob][0].rate = nzc_used ? nzc_cost[nzc] : 0;
#else
tokens[eob][0].rate = 0;
#endif
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = 0; i < eob; i++)
token_cache[i] = vp9_dct_value_tokens_ptr[qcoeff_ptr[scan[i]]].Token;
nb = vp9_get_coef_neighbors_handle(scan, &pad);
for (i = eob; i-- > i0;) {
int base_bits, d2, dx;
#if CONFIG_CODE_NONZEROCOUNT
int new_nzc0, new_nzc1;
#endif
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = get_coef_band(scan, tx_size, i + 1);
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache,
pad, default_eob);
rate0 +=
mb->token_costs[tx_size][type][ref][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[tx_size][type][ref][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]);
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
#if CONFIG_CODE_NONZEROCOUNT
new_nzc0 = (best ? nzc1 : nzc0);
#endif
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
#if CONFIG_CODE_NONZEROCOUNT
// Account for rate drop because of the nzc change.
// TODO(debargha): Find a better solution
if (nzc_used) {
rate0 -= nzc_cost[nzc0] - nzc_cost[nzc0 - 1];
rate1 -= nzc_cost[nzc1] - nzc_cost[nzc1 - 1];
}
#endif
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token;
}
if (next < default_eob) {
band = get_coef_band(scan, tx_size, i + 1);
if (t0 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache,
pad, default_eob);
rate0 += mb->token_costs[tx_size][type][ref][band][pt][
tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache,
pad, default_eob);
rate1 += mb->token_costs[tx_size][type][ref][band][pt][
tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
#if CONFIG_CODE_NONZEROCOUNT
new_nzc1 = (best ? nzc1 : nzc0) - (!x);
nzc0 = new_nzc0;
nzc1 = new_nzc1;
#endif
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = get_coef_band(scan, tx_size, i + 1);
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = get_coef_band(scan, tx_size, i + 1);
pt = combine_entropy_contexts(*a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][pt][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
#if CONFIG_CODE_NONZEROCOUNT
final_nzc_exp = (best ? nzc1 : nzc0);
#endif
final_eob = i0 - 1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x) {
final_eob = i;
#if CONFIG_CODE_NONZEROCOUNT
++final_nzc;
#endif
}
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
xd->plane[pb_idx.plane].eobs[pb_idx.block] = final_eob;
*a = *l = (final_eob > 0);
#if CONFIG_CODE_NONZEROCOUNT
assert(final_nzc == final_nzc_exp);
xd->nzcs[ib] = final_nzc;
#endif
}
void vp9_optimize_sby_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) - 1);
ENTROPY_CONTEXT ta[2], tl[2];
int n;
for (n = 0; n < bw; n++) {
ENTROPY_CONTEXT *a =
(ENTROPY_CONTEXT *) (x->e_mbd.above_context + n * 2 + 0);
ENTROPY_CONTEXT *a1 =
(ENTROPY_CONTEXT *) (x->e_mbd.above_context + n * 2 + 1);
ta[n] = (a[0] + a[1] + a[2] + a[3] + a1[0] + a1[1] + a1[2] + a1[3]) != 0;
}
for (n = 0; n < bh; n++) {
ENTROPY_CONTEXT *l =
(ENTROPY_CONTEXT *) (x->e_mbd.left_context + n * 2);
ENTROPY_CONTEXT *l1 =
(ENTROPY_CONTEXT *) (x->e_mbd.left_context + n * 2 + 1);
tl[n] = (l[0] + l[1] + l[2] + l[3] + l1[0] + l1[1] + l1[2] + l1[3]) != 0;
}
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
optimize_b(cm, x, n * 64, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant,
ta + x_idx, tl + y_idx, TX_32X32, 64 * bw * bh);
}
}
void vp9_optimize_sby_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bh = 1 << mb_height_log2(bsize);
ENTROPY_CONTEXT ta[4], tl[4];
int n;
for (n = 0; n < bw; n++) {
ENTROPY_CONTEXT *a = (ENTROPY_CONTEXT *) (x->e_mbd.above_context + n);
ta[n] = (a[0] + a[1] + a[2] + a[3]) != 0;
}
for (n = 0; n < bh; n++) {
ENTROPY_CONTEXT *l = (ENTROPY_CONTEXT *) (x->e_mbd.left_context + n);
tl[n] = (l[0] + l[1] + l[2] + l[3]) != 0;
}
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
optimize_b(cm, x, n * 16, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant,
ta + x_idx, tl + y_idx, TX_16X16, 16 * bw * bh);
}
}
void vp9_optimize_sby_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bh = 2 << mb_height_log2(bsize);
ENTROPY_CONTEXT ta[8], tl[8];
int n;
for (n = 0; n < bw; n += 2) {
ENTROPY_CONTEXT *a =
(ENTROPY_CONTEXT *) (x->e_mbd.above_context + (n >> 1));
ta[n + 0] = (a[0] + a[1]) != 0;
ta[n + 1] = (a[2] + a[3]) != 0;
}
for (n = 0; n < bh; n += 2) {
ENTROPY_CONTEXT *l =
(ENTROPY_CONTEXT *) (x->e_mbd.left_context + (n >> 1));
tl[n + 0] = (l[0] + l[1]) != 0;
tl[n + 1] = (l[2] + l[3]) != 0;
}
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
optimize_b(cm, x, n * 4, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant,
ta + x_idx, tl + y_idx, TX_8X8, 4 * bw * bh);
}
}
void vp9_optimize_sby_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
int bwl = mb_width_log2(bsize), bw = 1 << bwl;
int bh = 1 << mb_height_log2(bsize);
ENTROPY_CONTEXT ta[16], tl[16];
int n;
for (n = 0; n < bw; n++)
vpx_memcpy(&ta[n * 4], x->e_mbd.above_context + n,
sizeof(ENTROPY_CONTEXT) * 4);
for (n = 0; n < bh; n++)
vpx_memcpy(&tl[n * 4], x->e_mbd.left_context + n,
sizeof(ENTROPY_CONTEXT) * 4);
bw *= 4;
bh *= 4;
bwl += 2;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
optimize_b(cm, x, n, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant,
ta + x_idx, tl + y_idx, TX_4X4, bh * bw);
}
}
void vp9_optimize_sbuv_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
ENTROPY_CONTEXT *ta = (ENTROPY_CONTEXT *) x->e_mbd.above_context;
ENTROPY_CONTEXT *tl = (ENTROPY_CONTEXT *) x->e_mbd.left_context;
ENTROPY_CONTEXT *a, *l, *a1, *l1, *a2, *l2, *a3, *l3, a_ec, l_ec;
int b;
assert(bsize == BLOCK_SIZE_SB64X64);
for (b = 256; b < 384; b += 64) {
const int cidx = b >= 320 ? 20 : 16;
a = ta + vp9_block2above_sb64[TX_32X32][b];
l = tl + vp9_block2left_sb64[TX_32X32][b];
a1 = a + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
l1 = l + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
a2 = a + 2 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
l2 = l + 2 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
a3 = a + 3 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
l3 = l + 3 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
a_ec = (a[0] + a[1] + a1[0] + a1[1] + a2[0] + a2[1] + a3[0] + a3[1]) != 0;
l_ec = (l[0] + l[1] + l1[0] + l1[1] + l2[0] + l2[1] + l3[0] + l3[1]) != 0;
optimize_b(cm, x, b, PLANE_TYPE_UV, x->e_mbd.block[cidx].dequant,
&a_ec, &l_ec, TX_32X32, 256);
}
}
void vp9_optimize_sbuv_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
int uvoff = 16 << (bwl + bhl);
ENTROPY_CONTEXT ta[2][2], tl[2][2];
int plane, n;
for (n = 0; n < bw; n++) {
ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + n * 2;
ENTROPY_CONTEXT_PLANES *a1 = x->e_mbd.above_context + n * 2 + 1;
ta[0][n] = (a->u[0] + a->u[1] + a1->u[0] + a1->u[1]) != 0;
ta[1][n] = (a->v[0] + a->v[1] + a1->v[0] + a1->v[1]) != 0;
}
for (n = 0; n < bh; n++) {
ENTROPY_CONTEXT_PLANES *l = (x->e_mbd.left_context + n * 2);
ENTROPY_CONTEXT_PLANES *l1 = (x->e_mbd.left_context + n * 2 + 1);
tl[0][n] = (l->u[0] + l->u[1] + l1->u[0] + l1->u[1]) != 0;
tl[1][n] = (l->v[0] + l->v[1] + l1->v[0] + l1->v[1]) != 0;
}
for (plane = 0; plane < 2; plane++) {
const int cidx = 16 + plane * 4;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
optimize_b(cm, x, uvoff + n * 16, PLANE_TYPE_UV,
x->e_mbd.block[cidx].dequant,
&ta[plane][x_idx], &tl[plane][y_idx],
TX_16X16, bh * bw * 64);
}
uvoff = (uvoff * 5) >> 2; // switch u -> v
}
}
void vp9_optimize_sbuv_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
int uvoff = 4 << (bwl + bhl);
ENTROPY_CONTEXT ta[2][4], tl[2][4];
int plane, n;
for (n = 0; n < bw; n++) {
ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + n;
ta[0][n] = (a->u[0] + a->u[1]) != 0;
ta[1][n] = (a->v[0] + a->v[1]) != 0;
}
for (n = 0; n < bh; n++) {
ENTROPY_CONTEXT_PLANES *l = x->e_mbd.left_context + n;
tl[0][n] = (l->u[0] + l->u[1]) != 0;
tl[1][n] = (l->v[0] + l->v[1]) != 0;
}
for (plane = 0; plane < 2; plane++) {
const int cidx = 16 + plane * 4;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
optimize_b(cm, x, uvoff + n * 4, PLANE_TYPE_UV,
x->e_mbd.block[cidx].dequant,
&ta[plane][x_idx], &tl[plane][y_idx],
TX_8X8, bh * bw * 16);
}
uvoff = (uvoff * 5) >> 2; // switch u -> v
}
}
void vp9_optimize_sbuv_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
int uvoff = 1 << (bwl + bhl);
ENTROPY_CONTEXT ta[2][8], tl[2][8];
int plane, n;
for (n = 0; n < bw; n += 2) {
ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + (n >> 1);
ta[0][n + 0] = (a->u[0]) != 0;
ta[0][n + 1] = (a->u[1]) != 0;
ta[1][n + 0] = (a->v[0]) != 0;
ta[1][n + 1] = (a->v[1]) != 0;
}
for (n = 0; n < bh; n += 2) {
ENTROPY_CONTEXT_PLANES *l = x->e_mbd.left_context + (n >> 1);
tl[0][n + 0] = (l->u[0]) != 0;
tl[0][n + 1] = (l->u[1]) != 0;
tl[1][n + 0] = (l->v[0]) != 0;
tl[1][n + 1] = (l->v[1]) != 0;
}
for (plane = 0; plane < 2; plane++) {
const int cidx = 16 + plane * 4;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1);
optimize_b(cm, x, uvoff + n, PLANE_TYPE_UV,
x->e_mbd.block[cidx].dequant,
&ta[plane][x_idx], &tl[plane][y_idx],
TX_4X4, bh * bw * 4);
}
uvoff = (uvoff * 5) >> 2; // switch u -> v
}
}
void vp9_fidct_mb(VP9_COMMON *const cm, MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
if (tx_size == TX_16X16) {
vp9_transform_sby_16x16(x, BLOCK_SIZE_MB16X16);
vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sby_16x16(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16);
if (x->optimize) {
vp9_optimize_sby_16x16(cm, x, BLOCK_SIZE_MB16X16);
vp9_optimize_sbuv_8x8(cm, x, BLOCK_SIZE_MB16X16);
}
vp9_inverse_transform_sby_16x16(xd, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16);
} else if (tx_size == TX_8X8) {
vp9_transform_sby_8x8(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sby_8x8(x, BLOCK_SIZE_MB16X16);
if (x->optimize)
vp9_optimize_sby_8x8(cm, x, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sby_8x8(xd, BLOCK_SIZE_MB16X16);
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4);
vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16);
if (x->optimize)
vp9_optimize_sbuv_4x4(cm, x, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16);
} else {
vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16);
if (x->optimize)
vp9_optimize_sbuv_8x8(cm, x, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16);
}
} else {
vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16);
vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16);
if (x->optimize) {
vp9_optimize_sby_4x4(cm, x, BLOCK_SIZE_MB16X16);
vp9_optimize_sbuv_4x4(cm, x, BLOCK_SIZE_MB16X16);
}
vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16);
}
}
void vp9_encode_inter16x16(VP9_COMMON *const cm, MACROBLOCK *x,
int mb_row, int mb_col) {
MACROBLOCKD *const xd = &x->e_mbd;
vp9_build_inter_predictors_mb(xd, mb_row, mb_col);
subtract_mb(x);
vp9_fidct_mb(cm, x);
vp9_recon_mb(xd);
}
/* this function is used by first pass only */
void vp9_encode_inter16x16y(MACROBLOCK *x, int mb_row, int mb_col) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
vp9_build_inter16x16_predictors_mby(xd, xd->predictor, 16, mb_row, mb_col);
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16);
vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16);
vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16);
vp9_recon_mby(xd);
}