vpx/vp8/encoder/encodemb.c
Yaowu Xu bba710fcbd added transform type to MB_MODE_INFO
this commit is to add an variable in the macroblock level mode
info structure to track the transform size used in each MB, so
the information can be used later in the loop filter to change
how loop filter works on MBs with different transform sizes.

Change-Id: Id0eeaba6cc854c6d1be00ed8d237b3d9e250e447
2011-12-01 07:34:27 -08:00

1405 lines
41 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "vp8/common/reconinter.h"
#include "quantize.h"
#include "tokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconintra.h"
#include "dct.h"
#include "vpx_mem/vpx_mem.h"
#include "rdopt.h"
#include "vp8/common/systemdependent.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
#ifdef ENC_DEBUG
extern int enc_debug;
#endif
void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch)
{
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch)
{
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc, unsigned char *pred, int stride)
{
short *udiff = diff + 256;
short *vdiff = diff + 320;
unsigned char *upred = pred + 256;
unsigned char *vpred = pred + 320;
int r, c;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += 8;
usrc += stride;
}
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += 8;
vsrc += stride;
}
}
void vp8_subtract_mby_c(short *diff, unsigned char *src, unsigned char *pred, int stride)
{
int r, c;
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += 16;
src += stride;
}
}
static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
BLOCK *b = &x->block[0];
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, *(b->base_src), x->e_mbd.predictor, b->src_stride);
ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
}
static void build_dcblock(MACROBLOCK *x)
{
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++)
{
src_diff_ptr[i] = x->coeff[i * 16];
}
}
#if CONFIG_T8X8
void vp8_build_dcblock_8x8(MACROBLOCK *x)
{
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++)
{
src_diff_ptr[i] = 0;
}
src_diff_ptr[0] = x->coeff[0 * 16];
src_diff_ptr[1] = x->coeff[4 * 16];
src_diff_ptr[4] = x->coeff[8 * 16];
src_diff_ptr[8] = x->coeff[12 * 16];
}
#endif
void vp8_transform_mbuv(MACROBLOCK *x)
{
int i;
for (i = 16; i < 24; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp8_transform_intra_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
build_dcblock(x);
// do 2nd order transform on the dc block
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
static void transform_mb(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
build_dcblock(x);
for (i = 16; i < 24; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
// do 2nd order transform on the dc block
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
static void transform_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
build_dcblock(x);
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
#if CONFIG_T8X8
void vp8_transform_mbuv_8x8(MACROBLOCK *x)
{
int i;
vp8_clear_system_state();
for (i = 16; i < 24; i += 4)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp8_transform_intra_mby_8x8(MACROBLOCK *x)//changed
{
int i;
vp8_clear_system_state();
for (i = 0; i < 9; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
for (i = 2; i < 11; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i+2].coeff[0], 32);
}
// build dc block from 16 y dc values
vp8_build_dcblock_8x8(x);
//vp8_build_dcblock(x);
// do 2nd order transform on the dc block
x->short_fhaar2x2(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
void vp8_transform_mb_8x8(MACROBLOCK *x)
{
int i;
vp8_clear_system_state();
for (i = 0; i < 9; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
for (i = 2; i < 11; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i+2].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != B_PRED &&x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
vp8_build_dcblock_8x8(x);
//vp8_build_dcblock(x);
for (i = 16; i < 24; i += 4)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
// do 2nd order transform on the dc block
if (x->e_mbd.mode_info_context->mbmi.mode != B_PRED &&x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
x->short_fhaar2x2(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
void vp8_transform_mby_8x8(MACROBLOCK *x)
{
int i;
vp8_clear_system_state();
for (i = 0; i < 9; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
for (i = 2; i < 11; i += 8)
{
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i+2].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
//vp8_build_dcblock(x);
vp8_build_dcblock_8x8(x);
x->short_fhaar2x2(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
#endif
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp8_token_state vp8_token_state;
struct vp8_token_state{
int rate;
int error;
signed char next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
#if !CONFIG_EXTEND_QRANGE
#define Y2_RD_MULT 16
#else
#define Y2_RD_MULT 4
#endif
static const int plane_rd_mult[4]=
{
Y1_RD_MULT,
Y2_RD_MULT,
UV_RD_MULT,
Y1_RD_MULT
};
static void optimize_b(MACROBLOCK *mb, int ib, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
const VP8_ENCODER_RTCD *rtcd)
{
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[17][2];
unsigned best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int rd_cost0;
int rd_cost1;
int rate0;
int rate1;
int error0;
int error1;
int t0;
int t1;
int best;
int band;
int pt;
int i;
int err_mult = plane_rd_mult[type];
b = &mb->block[ib];
d = &mb->e_mbd.block[ib];
/* Enable this to test the effect of RDO as a replacement for the dynamic
* zero bin instead of an augmentation of it.
*/
#if 0
vp8_strict_quantize_b(b, d);
#endif
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = !type;
eob = d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if(mb->e_mbd.mode_info_context->mbmi.ref_frame==INTRA_FRAME)
rdmult = (rdmult * 9)>>4;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 16;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;)
{
int base_bits;
int d2;
int dx;
rc = vp8_default_zig_zag1d[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x)
{
int shortcut=0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 16)
{
band = vp8_coef_bands[i + 1];
pt = vp8_prev_token_class[t0];
rate0 +=
mb->token_costs[type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[type][band][pt][tokens[next][1].token];
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc]<abs(coeff_ptr[rc])+dequant_ptr[rc]))
shortcut = 1;
else
shortcut = 0;
if(shortcut)
{
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x)
{
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
{
t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < 16)
{
band = vp8_coef_bands[i + 1];
if(t0!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][
tokens[next][0].token];
}
if(t1!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[type][band][pt][
tokens[next][1].token];
}
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if(shortcut)
{
dx -= (dequant_ptr[rc] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token =best?t1:t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else
{
band = vp8_coef_bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN)
{
tokens[next][0].rate += mb->token_costs[type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN)
{
tokens[next][1].rate += mb->token_costs[type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[type][band][pt][t0];
rate1 += mb->token_costs[type][band][pt][t1];
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next)
{
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp8_default_zig_zag1d[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = x * dequant_ptr[rc];
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob != !type);
}
#if CONFIG_EXTEND_QRANGE
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And
dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -65 and +65.
**************************************************************************/
#define SUM_2ND_COEFF_THRESH 65
#else
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+3)>>3. And
dc only idct is (dc+4)>>3. So if all the sums are between -35 and 29, the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 35 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -35 and +35.
**************************************************************************/
#define SUM_2ND_COEFF_THRESH 35
#endif
static void check_reset_2nd_coeffs(MACROBLOCKD *x, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int sum=0;
int i;
BLOCKD *bd = &x->block[24];
if(bd->dequant[0]>=SUM_2ND_COEFF_THRESH
&& bd->dequant[1]>=SUM_2ND_COEFF_THRESH)
return;
for(i=0;i<bd->eob;i++)
{
int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]];
sum+= (coef>=0)?coef:-coef;
if(sum>=SUM_2ND_COEFF_THRESH)
return;
}
if(sum < SUM_2ND_COEFF_THRESH)
{
for(i=0;i<bd->eob;i++)
{
int rc = vp8_default_zig_zag1d[i];
bd->qcoeff[rc]=0;
bd->dqcoeff[rc]=0;
}
bd->eob = 0;
*a = *l = (bd->eob != !type);
}
}
#define SUM_2ND_COEFF_THRESH_8X8 32
static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *x, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int sum=0;
int i;
BLOCKD *bd = &x->block[24];
int coef;
coef = bd->dqcoeff[0];
sum+= (coef>=0)?coef:-coef;
coef = bd->dqcoeff[1];
sum+= (coef>=0)?coef:-coef;
coef = bd->dqcoeff[4];
sum+= (coef>=0)?coef:-coef;
coef = bd->dqcoeff[8];
sum+= (coef>=0)?coef:-coef;
if(sum < SUM_2ND_COEFF_THRESH_8X8)
{
bd->qcoeff[0] = 0;
bd->dqcoeff[0] = 0;
bd->qcoeff[1] = 0;
bd->dqcoeff[1] = 0;
bd->qcoeff[4] = 0;
bd->dqcoeff[4] = 0;
bd->qcoeff[8] = 0;
bd->dqcoeff[8] = 0;
bd->eob = 0;
*a = *l = (bd->eob != !type);
}
}
static void optimize_mb(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++)
{
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
for (b = 16; b < 24; b++)
{
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
if (has_2nd_order)
{
b=24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_optimize_mby(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++)
{
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
if (has_2nd_order)
{
b=24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_optimize_mbuv(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++)
{
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
}
#if CONFIG_T8X8
void optimize_b_8x8(MACROBLOCK *mb, int i, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
ENTROPY_CONTEXT *a1, ENTROPY_CONTEXT *l1,
const VP8_ENCODER_RTCD *rtcd)
{
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[65][2];
unsigned best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int rd_cost0;
int rd_cost1;
int rate0;
int rate1;
int error0;
int error1;
int t0;
int t1;
int best;
int band;
int pt;
int err_mult = plane_rd_mult[type];
b = &mb->block[i];
d = &mb->e_mbd.block[i];
/* Enable this to test the effect of RDO as a replacement for the dynamic
* zero bin instead of an augmentation of it.
*/
#if 0
vp8_strict_quantize_b(b, d);
#endif
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = !type;
eob = d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if(mb->e_mbd.mode_info_context->mbmi.ref_frame==INTRA_FRAME)
rdmult = (rdmult * 9)>>4;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 64;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;)
{
int base_bits;
int d2;
int dx;
rc = vp8_default_zig_zag1d_8x8[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x)
{
int shortcut=0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 64)
{
band = vp8_coef_bands_8x8[i + 1];
pt = vp8_prev_token_class[t0];
rate0 +=
mb->token_costs[type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[type][band][pt][tokens[next][1].token];
}
rd_cost0 = RDCOST_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST_8x8(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC_8x8(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc!=0]<abs(coeff_ptr[rc])+dequant_ptr[rc!=0]))
shortcut = 1;
else
shortcut = 0;
if(shortcut)
{
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x)
{
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
{
t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < 64)
{
band = vp8_coef_bands_8x8[i + 1];
if(t0!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][
tokens[next][0].token];
}
if(t1!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[type][band][pt][
tokens[next][1].token];
}
}
rd_cost0 = RDCOST_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST_8x8(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC_8x8(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if(shortcut)
{
dx -= (dequant_ptr[rc!=0] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token =best?t1:t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else
{
band = vp8_coef_bands_8x8[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN)
{
tokens[next][0].rate += mb->token_costs[type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN)
{
tokens[next][1].rate += mb->token_costs[type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands_8x8[i + 1];
VP8_COMBINEENTROPYCONTEXTS_8x8(pt, *a, *l, *a1, *l1);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[type][band][pt][t0];
rate1 += mb->token_costs[type][band][pt][t1];
rd_cost0 = RDCOST_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST_8x8(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC_8x8(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC_8x8(rdmult, rddiv, rate1, error1);
}
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next)
{
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp8_default_zig_zag1d_8x8[i];
qcoeff_ptr[rc] = x;
#if !CONFIG_EXTEND_QRANGE
dqcoeff_ptr[rc] = x * dequant_ptr[rc!=0];
#else
dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]+2)>>2;
#endif
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob != !type);
}
void optimize_mb_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? 0 : 3;
for (b = 0; b < 16; b+=4)
{
optimize_b_8x8(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+4],
rtcd);
if(b==0)
{
*(ta + vp8_block2above[1]) = *(ta + vp8_block2above[4]) = *(ta + vp8_block2above[5]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[1]) = *(tl + vp8_block2left[4]) = *(tl + vp8_block2left[5]) = *(tl + vp8_block2left[b]);
}
else if(b==4)
{
*(ta + vp8_block2above[2]) = *(ta + vp8_block2above[3]) = *(ta + vp8_block2above[6]) = *(ta + vp8_block2above[7]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[2]) = *(tl + vp8_block2left[3]) = *(tl + vp8_block2left[6]) = *(tl + vp8_block2left[7]) = *(tl + vp8_block2left[b]);
*(ta + vp8_block2above[4]) = *(ta + vp8_block2above[1]);
*(tl + vp8_block2left[4]) = *(tl + vp8_block2left[1]);
}
else if(b==8)
{
*(ta + vp8_block2above[9]) = *(ta + vp8_block2above[12]) = *(ta + vp8_block2above[13]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[9]) = *(tl + vp8_block2left[12]) = *(tl + vp8_block2left[13]) = *(tl + vp8_block2left[b]);
}
else if(b==12)
{
*(ta + vp8_block2above[10]) = *(ta + vp8_block2above[11]) = *(ta + vp8_block2above[14]) = *(ta + vp8_block2above[15]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[10]) = *(tl + vp8_block2left[11]) = *(tl + vp8_block2left[14]) = *(tl + vp8_block2left[15]) = *(tl + vp8_block2left[b]);
*(ta + vp8_block2above[12]) = *(ta + vp8_block2above[8]);
*(tl + vp8_block2left[12]) = *(tl + vp8_block2left[8]);
}
}
for (b = 16; b < 20; b+=4)
{
optimize_b_8x8(x, b, PLANE_TYPE_UV, //vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+2],
rtcd);
*(ta + vp8_block2above[b+1]) = *(ta + vp8_block2above[b+2]) = *(ta + vp8_block2above[b+3]) =
*(ta + vp8_block2above[b]);
*(tl + vp8_block2left[b+1]) = *(tl + vp8_block2left[b+2]) = *(tl + vp8_block2left[b+3]) =
*(tl + vp8_block2left[b]);
}
for (b = 20; b < 24; b+=4)
{
optimize_b_8x8(x, b, PLANE_TYPE_UV, //vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+2],
rtcd);
*(ta + vp8_block2above[b+1]) = *(ta + vp8_block2above[b+2]) = *(ta + vp8_block2above[b+3]) =
*(ta + vp8_block2above[b]);
*(tl + vp8_block2left[b+1]) = *(tl + vp8_block2left[b+2]) = *(tl + vp8_block2left[b+3]) =
*(tl + vp8_block2left[b]);
}
//8x8 always have 2nd roder haar block
check_reset_8x8_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
}
void vp8_optimize_mby_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? 0 : 3;
for (b = 0; b < 16; b+=4)
{
optimize_b_8x8(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+4],
rtcd);
if(b==0)
{
*(ta + vp8_block2above[1]) = *(ta + vp8_block2above[4]) = *(ta + vp8_block2above[5]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[1]) = *(tl + vp8_block2left[4]) = *(tl + vp8_block2left[5]) = *(tl + vp8_block2left[b]);
}
else if(b==4)
{
*(ta + vp8_block2above[2]) = *(ta + vp8_block2above[3]) = *(ta + vp8_block2above[6]) = *(ta + vp8_block2above[7]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[2]) = *(tl + vp8_block2left[3]) = *(tl + vp8_block2left[6]) = *(tl + vp8_block2left[7]) = *(tl + vp8_block2left[b]);
*(ta + vp8_block2above[4]) = *(ta + vp8_block2above[1]);
*(tl + vp8_block2left[4]) = *(tl + vp8_block2left[1]);
}
else if(b==8)
{
*(ta + vp8_block2above[9]) = *(ta + vp8_block2above[12]) = *(ta + vp8_block2above[13]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[9]) = *(tl + vp8_block2left[12]) = *(tl + vp8_block2left[13]) = *(tl + vp8_block2left[b]);
}
else if(b==12)
{
*(ta + vp8_block2above[10]) = *(ta + vp8_block2above[11]) = *(ta + vp8_block2above[14]) = *(ta + vp8_block2above[15]) = *(ta + vp8_block2above[b]);
*(tl + vp8_block2left[10]) = *(tl + vp8_block2left[11]) = *(tl + vp8_block2left[14]) = *(tl + vp8_block2left[15]) = *(tl + vp8_block2left[b]);
*(ta + vp8_block2above[12]) = *(ta + vp8_block2above[8]);
*(tl + vp8_block2left[12]) = *(tl + vp8_block2left[8]);
}
}
//8x8 always have 2nd roder haar block
check_reset_8x8_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
}
void vp8_optimize_mbuv_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 20; b+=4)
{
optimize_b_8x8(x, b, PLANE_TYPE_UV, //vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+2],
rtcd);
*(ta + vp8_block2above[b+1]) = *(ta + vp8_block2above[b+2]) = *(ta + vp8_block2above[b+3]) =
*(ta + vp8_block2above[b]);
*(tl + vp8_block2left[b+1]) = *(tl + vp8_block2left[b+2]) = *(tl + vp8_block2left[b+3]) =
*(tl + vp8_block2left[b]);
}
for (b = 20; b < 24; b+=4)
{
optimize_b_8x8(x, b, PLANE_TYPE_UV, //vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b],
ta + vp8_block2above[b+1], tl + vp8_block2left[b+2],
rtcd);
*(ta + vp8_block2above[b+1]) = *(ta + vp8_block2above[b+2]) = *(ta + vp8_block2above[b+3]) =
*(ta + vp8_block2above[b]);
*(tl + vp8_block2left[b+1]) = *(tl + vp8_block2left[b+2]) = *(tl + vp8_block2left[b+3]) =
*(tl + vp8_block2left[b]);
}
}
#endif
void vp8_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
#if CONFIG_T8X8
int tx_type = get_seg_tx_type(&x->e_mbd,
x->e_mbd.mode_info_context->mbmi.segment_id);
x->e_mbd.mode_info_context->mbmi.txfm_size = tx_type;
#endif
vp8_build_inter_predictors_mb(&x->e_mbd);
vp8_subtract_mb(rtcd, x);
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
vp8_transform_mb_8x8(x);
else
#endif
transform_mb(x);
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
vp8_quantize_mb_8x8(x);
else
#endif
vp8_quantize_mb(x);
if (x->optimize)
{
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
optimize_mb_8x8(x, rtcd);
else
#endif
optimize_mb(x, rtcd);
}
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
vp8_inverse_transform_mb_8x8(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
else
#endif
vp8_inverse_transform_mb(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
{
#ifdef ENC_DEBUG
if (enc_debug)
{
int i;
printf("qcoeff:\n");
printf("%d %d:\n", x->e_mbd.mb_to_left_edge, x->e_mbd.mb_to_top_edge);
for (i =0; i<400; i++) {
printf("%3d ", x->e_mbd.qcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("dqcoeff:\n");
for (i =0; i<400; i++) {
printf("%3d ", x->e_mbd.dqcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("diff:\n");
for (i =0; i<400; i++) {
printf("%3d ", x->e_mbd.diff[i]);
if (i%16 == 15) printf("\n");
}
printf("predictor:\n");
for (i =0; i<400; i++) {
printf("%3d ", x->e_mbd.predictor[i]);
if (i%16 == 15) printf("\n");
}
printf("\n");
}
#endif
}
#endif
RECON_INVOKE(&rtcd->common->recon, recon_mb)
(IF_RTCD(&rtcd->common->recon), &x->e_mbd);
#ifdef ENC_DEBUG
if (enc_debug) {
int i, j, k;
printf("Final Reconstruction\n");
for (i =0; i<16; i+=4) {
BLOCKD *b = &x->e_mbd.block[i];
unsigned char *d = *(b->base_dst) + b->dst;
for (k=0; k<4; k++) {
for (j=0; j<16; j++)
printf("%3d ", d[j]);
printf("\n");
d+=b->dst_stride;
}
}
}
#endif
}
/* this function is used by first pass only */
void vp8_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
#if CONFIG_T8X8
int tx_type = get_seg_tx_type(&x->e_mbd,
x->e_mbd.mode_info_context->mbmi.segment_id);
#endif
BLOCK *b = &x->block[0];
vp8_build_inter16x16_predictors_mby(&x->e_mbd);
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, *(b->base_src), x->e_mbd.predictor, b->src_stride);
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
vp8_transform_mby_8x8(x);
else
#endif
transform_mby(x);
vp8_quantize_mby(x);
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
vp8_inverse_transform_mby_8x8(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
else
#endif
vp8_inverse_transform_mby(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
RECON_INVOKE(&rtcd->common->recon, recon_mby)
(IF_RTCD(&rtcd->common->recon), &x->e_mbd);
}