vpx/test/sad_test.cc
James Zern 29e1b1a4b0 tests: add API_REGISTER_STATE_CHECK
used to wrap API functions to ensure full environment consistency as
opposed to the renamed ASM_REGISTER_STATE_CHECK which is used with
assembly functions.
currently checks the FPU tag word in x86/x86_64 gcc builds to ensure
emms has been called.

Change-Id: Ie241772dbf903d33d516a1add4c8c6783f2e1490
2014-07-10 12:40:31 -07:00

651 lines
23 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <limits.h>
#include <stdio.h>
#include "./vpx_config.h"
#if CONFIG_VP8_ENCODER
#include "./vp8_rtcd.h"
#endif
#if CONFIG_VP9_ENCODER
#include "./vp9_rtcd.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
#if CONFIG_VP8_ENCODER
typedef unsigned int (*sad_m_by_n_fn_t)(const unsigned char *source_ptr,
int source_stride,
const unsigned char *reference_ptr,
int reference_stride,
unsigned int max_sad);
typedef std::tr1::tuple<int, int, sad_m_by_n_fn_t> sad_m_by_n_test_param_t;
#endif
#if CONFIG_VP9_ENCODER
typedef unsigned int (*sad_m_by_n_fn_vp9_t)(const unsigned char *source_ptr,
int source_stride,
const unsigned char *reference_ptr,
int reference_stride);
typedef std::tr1::tuple<int, int, sad_m_by_n_fn_vp9_t>
sad_m_by_n_test_param_vp9_t;
#endif
typedef void (*sad_n_by_n_by_4_fn_t)(const uint8_t *src_ptr,
int src_stride,
const unsigned char * const ref_ptr[],
int ref_stride,
unsigned int *sad_array);
typedef std::tr1::tuple<int, int, sad_n_by_n_by_4_fn_t>
sad_n_by_n_by_4_test_param_t;
using libvpx_test::ACMRandom;
namespace {
class SADTestBase : public ::testing::Test {
public:
SADTestBase(int width, int height) : width_(width), height_(height) {}
static void SetUpTestCase() {
source_data_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBlockSize));
reference_data_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBufferSize));
}
static void TearDownTestCase() {
vpx_free(source_data_);
source_data_ = NULL;
vpx_free(reference_data_);
reference_data_ = NULL;
}
virtual void TearDown() {
libvpx_test::ClearSystemState();
}
protected:
// Handle blocks up to 4 blocks 64x64 with stride up to 128
static const int kDataAlignment = 16;
static const int kDataBlockSize = 64 * 128;
static const int kDataBufferSize = 4 * kDataBlockSize;
virtual void SetUp() {
source_stride_ = (width_ + 31) & ~31;
reference_stride_ = width_ * 2;
rnd_.Reset(ACMRandom::DeterministicSeed());
}
virtual uint8_t* GetReference(int block_idx) {
return reference_data_ + block_idx * kDataBlockSize;
}
// Sum of Absolute Differences. Given two blocks, calculate the absolute
// difference between two pixels in the same relative location; accumulate.
unsigned int ReferenceSAD(unsigned int max_sad, int block_idx) {
unsigned int sad = 0;
const uint8_t* const reference = GetReference(block_idx);
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
sad += abs(source_data_[h * source_stride_ + w]
- reference[h * reference_stride_ + w]);
}
if (sad > max_sad) {
break;
}
}
return sad;
}
void FillConstant(uint8_t *data, int stride, uint8_t fill_constant) {
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
data[h * stride + w] = fill_constant;
}
}
}
void FillRandom(uint8_t *data, int stride) {
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
data[h * stride + w] = rnd_.Rand8();
}
}
}
int width_, height_;
static uint8_t* source_data_;
int source_stride_;
static uint8_t* reference_data_;
int reference_stride_;
ACMRandom rnd_;
};
class SADx4Test
: public SADTestBase,
public ::testing::WithParamInterface<sad_n_by_n_by_4_test_param_t> {
public:
SADx4Test() : SADTestBase(GET_PARAM(0), GET_PARAM(1)) {}
protected:
void SADs(unsigned int *results) {
const uint8_t* refs[] = {GetReference(0), GetReference(1),
GetReference(2), GetReference(3)};
ASM_REGISTER_STATE_CHECK(GET_PARAM(2)(source_data_, source_stride_,
refs, reference_stride_,
results));
}
void CheckSADs() {
unsigned int reference_sad, exp_sad[4];
SADs(exp_sad);
for (int block = 0; block < 4; ++block) {
reference_sad = ReferenceSAD(UINT_MAX, block);
EXPECT_EQ(reference_sad, exp_sad[block]) << "block " << block;
}
}
};
#if CONFIG_VP8_ENCODER
class SADTest
: public SADTestBase,
public ::testing::WithParamInterface<sad_m_by_n_test_param_t> {
public:
SADTest() : SADTestBase(GET_PARAM(0), GET_PARAM(1)) {}
protected:
unsigned int SAD(unsigned int max_sad, int block_idx) {
unsigned int ret;
const uint8_t* const reference = GetReference(block_idx);
ASM_REGISTER_STATE_CHECK(ret = GET_PARAM(2)(source_data_, source_stride_,
reference, reference_stride_,
max_sad));
return ret;
}
void CheckSAD(unsigned int max_sad) {
const unsigned int reference_sad = ReferenceSAD(max_sad, 0);
const unsigned int exp_sad = SAD(max_sad, 0);
if (reference_sad <= max_sad) {
ASSERT_EQ(exp_sad, reference_sad);
} else {
// Alternative implementations are not required to check max_sad
ASSERT_GE(exp_sad, reference_sad);
}
}
};
#endif // CONFIG_VP8_ENCODER
#if CONFIG_VP9_ENCODER
class SADVP9Test
: public SADTestBase,
public ::testing::WithParamInterface<sad_m_by_n_test_param_vp9_t> {
public:
SADVP9Test() : SADTestBase(GET_PARAM(0), GET_PARAM(1)) {}
protected:
unsigned int SAD(int block_idx) {
unsigned int ret;
const uint8_t* const reference = GetReference(block_idx);
ASM_REGISTER_STATE_CHECK(ret = GET_PARAM(2)(source_data_, source_stride_,
reference, reference_stride_));
return ret;
}
void CheckSAD() {
const unsigned int reference_sad = ReferenceSAD(UINT_MAX, 0);
const unsigned int exp_sad = SAD(0);
ASSERT_EQ(reference_sad, exp_sad);
}
};
#endif // CONFIG_VP9_ENCODER
uint8_t* SADTestBase::source_data_ = NULL;
uint8_t* SADTestBase::reference_data_ = NULL;
#if CONFIG_VP8_ENCODER
TEST_P(SADTest, MaxRef) {
FillConstant(source_data_, source_stride_, 0);
FillConstant(reference_data_, reference_stride_, 255);
CheckSAD(UINT_MAX);
}
TEST_P(SADTest, MaxSrc) {
FillConstant(source_data_, source_stride_, 255);
FillConstant(reference_data_, reference_stride_, 0);
CheckSAD(UINT_MAX);
}
TEST_P(SADTest, ShortRef) {
int tmp_stride = reference_stride_;
reference_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD(UINT_MAX);
reference_stride_ = tmp_stride;
}
TEST_P(SADTest, UnalignedRef) {
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
const int tmp_stride = reference_stride_;
reference_stride_ -= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD(UINT_MAX);
reference_stride_ = tmp_stride;
}
TEST_P(SADTest, ShortSrc) {
const int tmp_stride = source_stride_;
source_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD(UINT_MAX);
source_stride_ = tmp_stride;
}
TEST_P(SADTest, MaxSAD) {
// Verify that, when max_sad is set, the implementation does not return a
// value lower than the reference.
FillConstant(source_data_, source_stride_, 255);
FillConstant(reference_data_, reference_stride_, 0);
CheckSAD(128);
}
#endif // CONFIG_VP8_ENCODER
#if CONFIG_VP9_ENCODER
TEST_P(SADVP9Test, MaxRef) {
FillConstant(source_data_, source_stride_, 0);
FillConstant(reference_data_, reference_stride_, 255);
CheckSAD();
}
TEST_P(SADVP9Test, MaxSrc) {
FillConstant(source_data_, source_stride_, 255);
FillConstant(reference_data_, reference_stride_, 0);
CheckSAD();
}
TEST_P(SADVP9Test, ShortRef) {
const int tmp_stride = reference_stride_;
reference_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD();
reference_stride_ = tmp_stride;
}
TEST_P(SADVP9Test, UnalignedRef) {
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
const int tmp_stride = reference_stride_;
reference_stride_ -= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD();
reference_stride_ = tmp_stride;
}
TEST_P(SADVP9Test, ShortSrc) {
const int tmp_stride = source_stride_;
source_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSAD();
source_stride_ = tmp_stride;
}
#endif // CONFIG_VP9_ENCODER
TEST_P(SADx4Test, MaxRef) {
FillConstant(source_data_, source_stride_, 0);
FillConstant(GetReference(0), reference_stride_, 255);
FillConstant(GetReference(1), reference_stride_, 255);
FillConstant(GetReference(2), reference_stride_, 255);
FillConstant(GetReference(3), reference_stride_, 255);
CheckSADs();
}
TEST_P(SADx4Test, MaxSrc) {
FillConstant(source_data_, source_stride_, 255);
FillConstant(GetReference(0), reference_stride_, 0);
FillConstant(GetReference(1), reference_stride_, 0);
FillConstant(GetReference(2), reference_stride_, 0);
FillConstant(GetReference(3), reference_stride_, 0);
CheckSADs();
}
TEST_P(SADx4Test, ShortRef) {
int tmp_stride = reference_stride_;
reference_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(GetReference(0), reference_stride_);
FillRandom(GetReference(1), reference_stride_);
FillRandom(GetReference(2), reference_stride_);
FillRandom(GetReference(3), reference_stride_);
CheckSADs();
reference_stride_ = tmp_stride;
}
TEST_P(SADx4Test, UnalignedRef) {
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
int tmp_stride = reference_stride_;
reference_stride_ -= 1;
FillRandom(source_data_, source_stride_);
FillRandom(GetReference(0), reference_stride_);
FillRandom(GetReference(1), reference_stride_);
FillRandom(GetReference(2), reference_stride_);
FillRandom(GetReference(3), reference_stride_);
CheckSADs();
reference_stride_ = tmp_stride;
}
TEST_P(SADx4Test, ShortSrc) {
int tmp_stride = source_stride_;
source_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(GetReference(0), reference_stride_);
FillRandom(GetReference(1), reference_stride_);
FillRandom(GetReference(2), reference_stride_);
FillRandom(GetReference(3), reference_stride_);
CheckSADs();
source_stride_ = tmp_stride;
}
using std::tr1::make_tuple;
//------------------------------------------------------------------------------
// C functions
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_c = vp8_sad16x16_c;
const sad_m_by_n_fn_t sad_8x16_c = vp8_sad8x16_c;
const sad_m_by_n_fn_t sad_16x8_c = vp8_sad16x8_c;
const sad_m_by_n_fn_t sad_8x8_c = vp8_sad8x8_c;
const sad_m_by_n_fn_t sad_4x4_c = vp8_sad4x4_c;
const sad_m_by_n_test_param_t c_tests[] = {
make_tuple(16, 16, sad_16x16_c),
make_tuple(8, 16, sad_8x16_c),
make_tuple(16, 8, sad_16x8_c),
make_tuple(8, 8, sad_8x8_c),
make_tuple(4, 4, sad_4x4_c),
};
INSTANTIATE_TEST_CASE_P(C, SADTest, ::testing::ValuesIn(c_tests));
#endif // CONFIG_VP8_ENCODER
#if CONFIG_VP9_ENCODER
const sad_m_by_n_fn_vp9_t sad_64x64_c_vp9 = vp9_sad64x64_c;
const sad_m_by_n_fn_vp9_t sad_32x32_c_vp9 = vp9_sad32x32_c;
const sad_m_by_n_fn_vp9_t sad_16x16_c_vp9 = vp9_sad16x16_c;
const sad_m_by_n_fn_vp9_t sad_8x16_c_vp9 = vp9_sad8x16_c;
const sad_m_by_n_fn_vp9_t sad_16x8_c_vp9 = vp9_sad16x8_c;
const sad_m_by_n_fn_vp9_t sad_8x8_c_vp9 = vp9_sad8x8_c;
const sad_m_by_n_fn_vp9_t sad_8x4_c_vp9 = vp9_sad8x4_c;
const sad_m_by_n_fn_vp9_t sad_4x8_c_vp9 = vp9_sad4x8_c;
const sad_m_by_n_fn_vp9_t sad_4x4_c_vp9 = vp9_sad4x4_c;
const sad_m_by_n_test_param_vp9_t c_vp9_tests[] = {
make_tuple(64, 64, sad_64x64_c_vp9),
make_tuple(32, 32, sad_32x32_c_vp9),
make_tuple(16, 16, sad_16x16_c_vp9),
make_tuple(8, 16, sad_8x16_c_vp9),
make_tuple(16, 8, sad_16x8_c_vp9),
make_tuple(8, 8, sad_8x8_c_vp9),
make_tuple(8, 4, sad_8x4_c_vp9),
make_tuple(4, 8, sad_4x8_c_vp9),
make_tuple(4, 4, sad_4x4_c_vp9),
};
INSTANTIATE_TEST_CASE_P(C, SADVP9Test, ::testing::ValuesIn(c_vp9_tests));
const sad_n_by_n_by_4_fn_t sad_64x64x4d_c = vp9_sad64x64x4d_c;
const sad_n_by_n_by_4_fn_t sad_64x32x4d_c = vp9_sad64x32x4d_c;
const sad_n_by_n_by_4_fn_t sad_32x64x4d_c = vp9_sad32x64x4d_c;
const sad_n_by_n_by_4_fn_t sad_32x32x4d_c = vp9_sad32x32x4d_c;
const sad_n_by_n_by_4_fn_t sad_32x16x4d_c = vp9_sad32x16x4d_c;
const sad_n_by_n_by_4_fn_t sad_16x32x4d_c = vp9_sad16x32x4d_c;
const sad_n_by_n_by_4_fn_t sad_16x16x4d_c = vp9_sad16x16x4d_c;
const sad_n_by_n_by_4_fn_t sad_16x8x4d_c = vp9_sad16x8x4d_c;
const sad_n_by_n_by_4_fn_t sad_8x16x4d_c = vp9_sad8x16x4d_c;
const sad_n_by_n_by_4_fn_t sad_8x8x4d_c = vp9_sad8x8x4d_c;
const sad_n_by_n_by_4_fn_t sad_8x4x4d_c = vp9_sad8x4x4d_c;
const sad_n_by_n_by_4_fn_t sad_4x8x4d_c = vp9_sad4x8x4d_c;
const sad_n_by_n_by_4_fn_t sad_4x4x4d_c = vp9_sad4x4x4d_c;
INSTANTIATE_TEST_CASE_P(C, SADx4Test, ::testing::Values(
make_tuple(64, 64, sad_64x64x4d_c),
make_tuple(64, 32, sad_64x32x4d_c),
make_tuple(32, 64, sad_32x64x4d_c),
make_tuple(32, 32, sad_32x32x4d_c),
make_tuple(32, 16, sad_32x16x4d_c),
make_tuple(16, 32, sad_16x32x4d_c),
make_tuple(16, 16, sad_16x16x4d_c),
make_tuple(16, 8, sad_16x8x4d_c),
make_tuple(8, 16, sad_8x16x4d_c),
make_tuple(8, 8, sad_8x8x4d_c),
make_tuple(8, 4, sad_8x4x4d_c),
make_tuple(4, 8, sad_4x8x4d_c),
make_tuple(4, 4, sad_4x4x4d_c)));
#endif // CONFIG_VP9_ENCODER
//------------------------------------------------------------------------------
// ARM functions
#if HAVE_MEDIA
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_armv6 = vp8_sad16x16_armv6;
INSTANTIATE_TEST_CASE_P(MEDIA, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_armv6)));
#endif // CONFIG_VP8_ENCODER
#endif // HAVE_MEDIA
#if HAVE_NEON
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_neon = vp8_sad16x16_neon;
const sad_m_by_n_fn_t sad_8x16_neon = vp8_sad8x16_neon;
const sad_m_by_n_fn_t sad_16x8_neon = vp8_sad16x8_neon;
const sad_m_by_n_fn_t sad_8x8_neon = vp8_sad8x8_neon;
const sad_m_by_n_fn_t sad_4x4_neon = vp8_sad4x4_neon;
INSTANTIATE_TEST_CASE_P(NEON, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_neon),
make_tuple(8, 16, sad_8x16_neon),
make_tuple(16, 8, sad_16x8_neon),
make_tuple(8, 8, sad_8x8_neon),
make_tuple(4, 4, sad_4x4_neon)));
#endif // CONFIG_VP8_ENCODER
#endif // HAVE_NEON
//------------------------------------------------------------------------------
// x86 functions
#if HAVE_MMX
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_mmx = vp8_sad16x16_mmx;
const sad_m_by_n_fn_t sad_8x16_mmx = vp8_sad8x16_mmx;
const sad_m_by_n_fn_t sad_16x8_mmx = vp8_sad16x8_mmx;
const sad_m_by_n_fn_t sad_8x8_mmx = vp8_sad8x8_mmx;
const sad_m_by_n_fn_t sad_4x4_mmx = vp8_sad4x4_mmx;
const sad_m_by_n_test_param_t mmx_tests[] = {
make_tuple(16, 16, sad_16x16_mmx),
make_tuple(8, 16, sad_8x16_mmx),
make_tuple(16, 8, sad_16x8_mmx),
make_tuple(8, 8, sad_8x8_mmx),
make_tuple(4, 4, sad_4x4_mmx),
};
INSTANTIATE_TEST_CASE_P(MMX, SADTest, ::testing::ValuesIn(mmx_tests));
#endif // CONFIG_VP8_ENCODER
#if CONFIG_VP9_ENCODER
const sad_m_by_n_fn_vp9_t sad_16x16_mmx_vp9 = vp9_sad16x16_mmx;
const sad_m_by_n_fn_vp9_t sad_8x16_mmx_vp9 = vp9_sad8x16_mmx;
const sad_m_by_n_fn_vp9_t sad_16x8_mmx_vp9 = vp9_sad16x8_mmx;
const sad_m_by_n_fn_vp9_t sad_8x8_mmx_vp9 = vp9_sad8x8_mmx;
const sad_m_by_n_fn_vp9_t sad_4x4_mmx_vp9 = vp9_sad4x4_mmx;
const sad_m_by_n_test_param_vp9_t mmx_vp9_tests[] = {
make_tuple(16, 16, sad_16x16_mmx_vp9),
make_tuple(8, 16, sad_8x16_mmx_vp9),
make_tuple(16, 8, sad_16x8_mmx_vp9),
make_tuple(8, 8, sad_8x8_mmx_vp9),
make_tuple(4, 4, sad_4x4_mmx_vp9),
};
INSTANTIATE_TEST_CASE_P(MMX, SADVP9Test, ::testing::ValuesIn(mmx_vp9_tests));
#endif // CONFIG_VP9_ENCODER
#endif // HAVE_MMX
#if HAVE_SSE
#if CONFIG_VP9_ENCODER
#if CONFIG_USE_X86INC
const sad_m_by_n_fn_vp9_t sad_4x4_sse_vp9 = vp9_sad4x4_sse;
const sad_m_by_n_fn_vp9_t sad_4x8_sse_vp9 = vp9_sad4x8_sse;
INSTANTIATE_TEST_CASE_P(SSE, SADVP9Test, ::testing::Values(
make_tuple(4, 4, sad_4x4_sse_vp9),
make_tuple(4, 8, sad_4x8_sse_vp9)));
const sad_n_by_n_by_4_fn_t sad_4x8x4d_sse = vp9_sad4x8x4d_sse;
const sad_n_by_n_by_4_fn_t sad_4x4x4d_sse = vp9_sad4x4x4d_sse;
INSTANTIATE_TEST_CASE_P(SSE, SADx4Test, ::testing::Values(
make_tuple(4, 8, sad_4x8x4d_sse),
make_tuple(4, 4, sad_4x4x4d_sse)));
#endif // CONFIG_USE_X86INC
#endif // CONFIG_VP9_ENCODER
#endif // HAVE_SSE
#if HAVE_SSE2
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_wmt = vp8_sad16x16_wmt;
const sad_m_by_n_fn_t sad_8x16_wmt = vp8_sad8x16_wmt;
const sad_m_by_n_fn_t sad_16x8_wmt = vp8_sad16x8_wmt;
const sad_m_by_n_fn_t sad_8x8_wmt = vp8_sad8x8_wmt;
const sad_m_by_n_fn_t sad_4x4_wmt = vp8_sad4x4_wmt;
const sad_m_by_n_test_param_t sse2_tests[] = {
make_tuple(16, 16, sad_16x16_wmt),
make_tuple(8, 16, sad_8x16_wmt),
make_tuple(16, 8, sad_16x8_wmt),
make_tuple(8, 8, sad_8x8_wmt),
make_tuple(4, 4, sad_4x4_wmt),
};
INSTANTIATE_TEST_CASE_P(SSE2, SADTest, ::testing::ValuesIn(sse2_tests));
#endif // CONFIG_VP8_ENCODER
#if CONFIG_VP9_ENCODER
#if CONFIG_USE_X86INC
const sad_m_by_n_fn_vp9_t sad_64x64_sse2_vp9 = vp9_sad64x64_sse2;
const sad_m_by_n_fn_vp9_t sad_64x32_sse2_vp9 = vp9_sad64x32_sse2;
const sad_m_by_n_fn_vp9_t sad_32x64_sse2_vp9 = vp9_sad32x64_sse2;
const sad_m_by_n_fn_vp9_t sad_32x32_sse2_vp9 = vp9_sad32x32_sse2;
const sad_m_by_n_fn_vp9_t sad_32x16_sse2_vp9 = vp9_sad32x16_sse2;
const sad_m_by_n_fn_vp9_t sad_16x32_sse2_vp9 = vp9_sad16x32_sse2;
const sad_m_by_n_fn_vp9_t sad_16x16_sse2_vp9 = vp9_sad16x16_sse2;
const sad_m_by_n_fn_vp9_t sad_16x8_sse2_vp9 = vp9_sad16x8_sse2;
const sad_m_by_n_fn_vp9_t sad_8x16_sse2_vp9 = vp9_sad8x16_sse2;
const sad_m_by_n_fn_vp9_t sad_8x8_sse2_vp9 = vp9_sad8x8_sse2;
const sad_m_by_n_fn_vp9_t sad_8x4_sse2_vp9 = vp9_sad8x4_sse2;
const sad_m_by_n_test_param_vp9_t sse2_vp9_tests[] = {
make_tuple(64, 64, sad_64x64_sse2_vp9),
make_tuple(64, 32, sad_64x32_sse2_vp9),
make_tuple(32, 64, sad_32x64_sse2_vp9),
make_tuple(32, 32, sad_32x32_sse2_vp9),
make_tuple(32, 16, sad_32x16_sse2_vp9),
make_tuple(16, 32, sad_16x32_sse2_vp9),
make_tuple(16, 16, sad_16x16_sse2_vp9),
make_tuple(16, 8, sad_16x8_sse2_vp9),
make_tuple(8, 16, sad_8x16_sse2_vp9),
make_tuple(8, 8, sad_8x8_sse2_vp9),
make_tuple(8, 4, sad_8x4_sse2_vp9),
};
INSTANTIATE_TEST_CASE_P(SSE2, SADVP9Test, ::testing::ValuesIn(sse2_vp9_tests));
const sad_n_by_n_by_4_fn_t sad_64x64x4d_sse2 = vp9_sad64x64x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_64x32x4d_sse2 = vp9_sad64x32x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_32x64x4d_sse2 = vp9_sad32x64x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_32x32x4d_sse2 = vp9_sad32x32x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_32x16x4d_sse2 = vp9_sad32x16x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_16x32x4d_sse2 = vp9_sad16x32x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_16x16x4d_sse2 = vp9_sad16x16x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_16x8x4d_sse2 = vp9_sad16x8x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_8x16x4d_sse2 = vp9_sad8x16x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_8x8x4d_sse2 = vp9_sad8x8x4d_sse2;
const sad_n_by_n_by_4_fn_t sad_8x4x4d_sse2 = vp9_sad8x4x4d_sse2;
INSTANTIATE_TEST_CASE_P(SSE2, SADx4Test, ::testing::Values(
make_tuple(64, 64, sad_64x64x4d_sse2),
make_tuple(64, 32, sad_64x32x4d_sse2),
make_tuple(32, 64, sad_32x64x4d_sse2),
make_tuple(32, 32, sad_32x32x4d_sse2),
make_tuple(32, 16, sad_32x16x4d_sse2),
make_tuple(16, 32, sad_16x32x4d_sse2),
make_tuple(16, 16, sad_16x16x4d_sse2),
make_tuple(16, 8, sad_16x8x4d_sse2),
make_tuple(8, 16, sad_8x16x4d_sse2),
make_tuple(8, 8, sad_8x8x4d_sse2),
make_tuple(8, 4, sad_8x4x4d_sse2)));
#endif // CONFIG_USE_X86INC
#endif // CONFIG_VP9_ENCODER
#endif // HAVE_SSE2
#if HAVE_SSE3
#if CONFIG_VP8_ENCODER
const sad_n_by_n_by_4_fn_t sad_16x16x4d_sse3 = vp8_sad16x16x4d_sse3;
const sad_n_by_n_by_4_fn_t sad_16x8x4d_sse3 = vp8_sad16x8x4d_sse3;
const sad_n_by_n_by_4_fn_t sad_8x16x4d_sse3 = vp8_sad8x16x4d_sse3;
const sad_n_by_n_by_4_fn_t sad_8x8x4d_sse3 = vp8_sad8x8x4d_sse3;
const sad_n_by_n_by_4_fn_t sad_4x4x4d_sse3 = vp8_sad4x4x4d_sse3;
INSTANTIATE_TEST_CASE_P(SSE3, SADx4Test, ::testing::Values(
make_tuple(16, 16, sad_16x16x4d_sse3),
make_tuple(16, 8, sad_16x8x4d_sse3),
make_tuple(8, 16, sad_8x16x4d_sse3),
make_tuple(8, 8, sad_8x8x4d_sse3),
make_tuple(4, 4, sad_4x4x4d_sse3)));
#endif // CONFIG_VP8_ENCODER
#endif // HAVE_SSE3
#if HAVE_SSSE3
#if CONFIG_USE_X86INC
#if CONFIG_VP8_ENCODER
const sad_m_by_n_fn_t sad_16x16_sse3 = vp8_sad16x16_sse3;
INSTANTIATE_TEST_CASE_P(SSE3, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_sse3)));
#endif // CONFIG_VP8_ENCODER
#endif // CONFIG_USE_X86INC
#endif // HAVE_SSSE3
#if HAVE_AVX2
#if CONFIG_VP9_ENCODER
// TODO(jzern): these prototypes can be removed after the avx2 versions are
// reenabled in vp9_rtcd_defs.pl.
extern "C" {
void vp9_sad32x32x4d_avx2(const uint8_t *src_ptr, int src_stride,
const uint8_t *const ref_ptr[], int ref_stride,
unsigned int *sad_array);
void vp9_sad64x64x4d_avx2(const uint8_t *src_ptr, int src_stride,
const uint8_t *const ref_ptr[], int ref_stride,
unsigned int *sad_array);
}
const sad_n_by_n_by_4_fn_t sad_64x64x4d_avx2 = vp9_sad64x64x4d_avx2;
const sad_n_by_n_by_4_fn_t sad_32x32x4d_avx2 = vp9_sad32x32x4d_avx2;
INSTANTIATE_TEST_CASE_P(DISABLED_AVX2, SADx4Test, ::testing::Values(
make_tuple(32, 32, sad_32x32x4d_avx2),
make_tuple(64, 64, sad_64x64x4d_avx2)));
#endif // CONFIG_VP9_ENCODER
#endif // HAVE_AVX2
} // namespace