vpx/vp9/encoder/vp9_denoiser.c
Marco 823a47ee3b Update to vp9-denoising.
Set increase_denoising parameter for temporal filter.

Change-Id: Id98bf160db98dfa9aedf76e20b43e6f7c783fb1c
2015-10-27 15:52:56 -07:00

695 lines
25 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_denoiser.h"
#include "vp9/encoder/vp9_encoder.h"
/* The VP9 denoiser is similar to that of the VP8 denoiser. While
* choosing the motion vectors / reference frames, the denoiser is run, and if
* it did not modify the signal to much, the denoised block is copied to the
* signal.
*/
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
#endif
static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
return 3 + (increase_denoising ? 1 : 0);
}
static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 4;
}
static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 625;
}
static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 60 : 40);
}
static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
int motion_magnitude) {
if (motion_magnitude >
noise_motion_thresh(bs, increase_denoising)) {
return 0;
} else {
return (1 << num_pels_log2_lookup[bs]) * 20;
}
}
static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
}
// TODO(jackychen): If increase_denoising is enabled in the future,
// we might need to update the code for calculating 'total_adj' in
// case the C code is not bit-exact with corresponding sse2 code.
int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg,
int mc_avg_stride,
uint8_t *avg, int avg_stride,
int increase_denoising,
BLOCK_SIZE bs,
int motion_magnitude) {
int r, c;
const uint8_t *sig_start = sig;
const uint8_t *mc_avg_start = mc_avg;
uint8_t *avg_start = avg;
int diff, adj, absdiff, delta;
int adj_val[] = {3, 4, 6};
int total_adj = 0;
int shift_inc = 1;
// If motion_magnitude is small, making the denoiser more aggressive by
// increasing the adjustment for each level. Add another increment for
// blocks that are labeled for increase denoising.
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
if (increase_denoising) {
shift_inc = 2;
}
adj_val[0] += shift_inc;
adj_val[1] += shift_inc;
adj_val[2] += shift_inc;
}
// First attempt to apply a strong temporal denoising filter.
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4: case 5: case 6: case 7:
adj = adj_val[0];
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
adj = adj_val[1];
break;
default:
adj = adj_val[2];
}
if (diff > 0) {
avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = VPXMAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// If the strong filter did not modify the signal too much, we're all set.
if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
// Otherwise, we try to dampen the filter if the delta is not too high.
delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising))
>> num_pels_log2_lookup[bs]) + 1;
if (delta >= delta_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
mc_avg = mc_avg_start;
avg = avg_start;
sig = sig_start;
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
adj = abs(diff);
if (adj > delta) {
adj = delta;
}
if (diff > 0) {
// Diff positive means we made positive adjustment above
// (in first try/attempt), so now make negative adjustment to bring
// denoised signal down.
avg[c] = VPXMAX(0, avg[c] - adj);
total_adj -= adj;
} else {
// Diff negative means we made negative adjustment above
// (in first try/attempt), so now make positive adjustment to bring
// denoised signal up.
avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
total_adj += adj;
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// We can use the filter if it has been sufficiently dampened
if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
return COPY_BLOCK;
}
static uint8_t *block_start(uint8_t *framebuf, int stride,
int mi_row, int mi_col) {
return framebuf + (stride * mi_row * 8) + (mi_col * 8);
}
static VP9_DENOISER_DECISION perform_motion_compensation(VP9_DENOISER *denoiser,
MACROBLOCK *mb,
BLOCK_SIZE bs,
int increase_denoising,
int mi_row,
int mi_col,
PICK_MODE_CONTEXT *ctx,
int motion_magnitude,
int is_skin) {
int mv_col, mv_row;
int sse_diff = ctx->zeromv_sse - ctx->newmv_sse;
MV_REFERENCE_FRAME frame;
MACROBLOCKD *filter_mbd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &filter_mbd->mi[0]->mbmi;
MB_MODE_INFO saved_mbmi;
int i, j;
struct buf_2d saved_dst[MAX_MB_PLANE];
struct buf_2d saved_pre[MAX_MB_PLANE][2]; // 2 pre buffers
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
frame = ctx->best_reference_frame;
saved_mbmi = *mbmi;
if (is_skin && motion_magnitude > 16)
return COPY_BLOCK;
// If the best reference frame uses inter-prediction and there is enough of a
// difference in sum-squared-error, use it.
if (frame != INTRA_FRAME &&
sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
mbmi->ref_frame[0] = ctx->best_reference_frame;
mbmi->mode = ctx->best_sse_inter_mode;
mbmi->mv[0] = ctx->best_sse_mv;
} else {
// Otherwise, use the zero reference frame.
frame = ctx->best_zeromv_reference_frame;
mbmi->ref_frame[0] = ctx->best_zeromv_reference_frame;
mbmi->mode = ZEROMV;
mbmi->mv[0].as_int = 0;
ctx->best_sse_inter_mode = ZEROMV;
ctx->best_sse_mv.as_int = 0;
ctx->newmv_sse = ctx->zeromv_sse;
}
if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
// Restore everything to its original state
*mbmi = saved_mbmi;
return COPY_BLOCK;
}
if (motion_magnitude >
(noise_motion_thresh(bs, increase_denoising) << 3)) {
// Restore everything to its original state
*mbmi = saved_mbmi;
return COPY_BLOCK;
}
// We will restore these after motion compensation.
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (j = 0; j < 2; ++j) {
saved_pre[i][j] = filter_mbd->plane[i].pre[j];
}
saved_dst[i] = filter_mbd->plane[i].dst;
}
// Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
// struct.
for (j = 0; j < 2; ++j) {
filter_mbd->plane[0].pre[j].buf =
block_start(denoiser->running_avg_y[frame].y_buffer,
denoiser->running_avg_y[frame].y_stride,
mi_row, mi_col);
filter_mbd->plane[0].pre[j].stride =
denoiser->running_avg_y[frame].y_stride;
filter_mbd->plane[1].pre[j].buf =
block_start(denoiser->running_avg_y[frame].u_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].pre[j].stride =
denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[2].pre[j].buf =
block_start(denoiser->running_avg_y[frame].v_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].pre[j].stride =
denoiser->running_avg_y[frame].uv_stride;
}
filter_mbd->plane[0].dst.buf =
block_start(denoiser->mc_running_avg_y.y_buffer,
denoiser->mc_running_avg_y.y_stride,
mi_row, mi_col);
filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride;
filter_mbd->plane[1].dst.buf =
block_start(denoiser->mc_running_avg_y.u_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride;
filter_mbd->plane[2].dst.buf =
block_start(denoiser->mc_running_avg_y.v_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride;
vp9_build_inter_predictors_sby(filter_mbd, mv_row, mv_col, bs);
// Restore everything to its original state
*mbmi = saved_mbmi;
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (j = 0; j < 2; ++j) {
filter_mbd->plane[i].pre[j] = saved_pre[i][j];
}
filter_mbd->plane[i].dst = saved_dst[i];
}
mv_row = ctx->best_sse_mv.as_mv.row;
mv_col = ctx->best_sse_mv.as_mv.col;
return FILTER_BLOCK;
}
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs,
PICK_MODE_CONTEXT *ctx) {
int mv_col, mv_row;
int motion_magnitude = 0;
VP9_DENOISER_DECISION decision = COPY_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
int is_skin = 0;
if (bs <= BLOCK_16X16 && denoiser->denoising_level >= kMedium) {
// Take center pixel in block to determine is_skin.
const int y_width_shift = (4 << b_width_log2_lookup[bs]) >> 1;
const int y_height_shift = (4 << b_height_log2_lookup[bs]) >> 1;
const int uv_width_shift = y_width_shift >> 1;
const int uv_height_shift = y_height_shift >> 1;
const int stride = mb->plane[0].src.stride;
const int strideuv = mb->plane[1].src.stride;
const uint8_t ysource =
mb->plane[0].src.buf[y_height_shift * stride + y_width_shift];
const uint8_t usource =
mb->plane[1].src.buf[uv_height_shift * strideuv + uv_width_shift];
const uint8_t vsource =
mb->plane[2].src.buf[uv_height_shift * strideuv + uv_width_shift];
is_skin = vp9_skin_pixel(ysource, usource, vsource);
}
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
motion_magnitude = mv_row * mv_row + mv_col * mv_col;
if (denoiser->denoising_level == kHigh && motion_magnitude < 16) {
denoiser->increase_denoising = 1;
} else {
denoiser->increase_denoising = 0;
}
if (denoiser->denoising_level >= kMedium)
decision = perform_motion_compensation(denoiser, mb, bs,
denoiser->increase_denoising,
mi_row, mi_col, ctx,
motion_magnitude,
is_skin);
if (decision == FILTER_BLOCK) {
decision = vp9_denoiser_filter(src.buf, src.stride,
mc_avg_start, mc_avg.y_stride,
avg_start, avg.y_stride,
denoiser->increase_denoising,
bs, motion_magnitude);
}
if (decision == FILTER_BLOCK) {
vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
NULL, 0, NULL, 0,
num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
} else { // COPY_BLOCK
vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
NULL, 0, NULL, 0,
num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
}
}
static void copy_frame(YV12_BUFFER_CONFIG * const dest,
const YV12_BUFFER_CONFIG * const src) {
int r;
const uint8_t *srcbuf = src->y_buffer;
uint8_t *destbuf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
for (r = 0; r < dest->y_height; ++r) {
memcpy(destbuf, srcbuf, dest->y_width);
destbuf += dest->y_stride;
srcbuf += src->y_stride;
}
}
static void swap_frame_buffer(YV12_BUFFER_CONFIG * const dest,
YV12_BUFFER_CONFIG * const src) {
uint8_t *tmp_buf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
dest->y_buffer = src->y_buffer;
src->y_buffer = tmp_buf;
}
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame,
int resized) {
// Copy source into denoised reference buffers on KEY_FRAME or
// if the just encoded frame was resized.
if (frame_type == KEY_FRAME || resized != 0) {
int i;
// Start at 1 so as not to overwrite the INTRA_FRAME
for (i = 1; i < MAX_REF_FRAMES; ++i)
copy_frame(&denoiser->running_avg_y[i], &src);
return;
}
// If more than one refresh occurs, must copy frame buffer.
if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame)
> 1) {
if (refresh_alt_ref_frame) {
copy_frame(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
} else {
if (refresh_alt_ref_frame) {
swap_frame_buffer(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
swap_frame_buffer(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
swap_frame_buffer(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
ctx->zeromv_sse = UINT_MAX;
ctx->newmv_sse = UINT_MAX;
}
void vp9_denoiser_update_frame_stats(MB_MODE_INFO *mbmi, unsigned int sse,
PREDICTION_MODE mode,
PICK_MODE_CONTEXT *ctx) {
// TODO(tkopp): Use both MVs if possible
if (mbmi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
ctx->zeromv_sse = sse;
ctx->best_zeromv_reference_frame = mbmi->ref_frame[0];
}
if (mbmi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
ctx->newmv_sse = sse;
ctx->best_sse_inter_mode = mode;
ctx->best_sse_mv = mbmi->mv[0];
ctx->best_reference_frame = mbmi->ref_frame[0];
}
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int ssx, int ssy,
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth,
#endif
int border) {
int i, fail;
const int legacy_byte_alignment = 0;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vpx_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
}
fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
denoiser->increase_denoising = 0;
denoiser->frame_buffer_initialized = 1;
vp9_denoiser_init_noise_estimate(denoiser, width, height);
return 0;
}
void vp9_denoiser_init_noise_estimate(VP9_DENOISER *denoiser,
int width,
int height) {
// Denoiser is off by default, i.e., no denoising is performed.
// Noise level is measured periodically, and if observed to be above
// thresh_noise_estimate, then denoising is performed.
denoiser->denoising_level = kLow;
denoiser->noise_estimate = 0;
denoiser->noise_estimate_count = 0;
denoiser->thresh_noise_estimate = 20;
if (width * height >= 1920 * 1080) {
denoiser->thresh_noise_estimate = 70;
} else if (width * height >= 1280 * 720) {
denoiser->thresh_noise_estimate = 40;
}
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
int i;
denoiser->frame_buffer_initialized = 0;
if (denoiser == NULL) {
return;
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
vpx_free_frame_buffer(&denoiser->running_avg_y[i]);
}
vpx_free_frame_buffer(&denoiser->mc_running_avg_y);
vpx_free_frame_buffer(&denoiser->last_source);
}
void vp9_denoiser_update_noise_estimate(VP9_COMP *const cpi) {
const VP9_COMMON *const cm = &cpi->common;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
int frame_period = 10;
int thresh_consec_zeromv = 8;
unsigned int thresh_sum_diff = 128;
int num_frames_estimate = 20;
int min_blocks_estimate = cm->mi_rows * cm->mi_cols >> 7;
// Estimate of noise level every frame_period frames.
// Estimate is between current source and last source.
if (cm->current_video_frame % frame_period != 0 ||
cpi->denoiser.last_source.y_buffer == NULL) {
copy_frame(&cpi->denoiser.last_source, cpi->Source);
return;
} else {
int num_samples = 0;
uint64_t avg_est = 0;
int bsize = BLOCK_16X16;
static const unsigned char const_source[16] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128};
// Loop over sub-sample of 16x16 blocks of frame, and for blocks that have
// been encoded as zero/small mv at least x consecutive frames, compute
// the variance to update estimate of noise in the source.
const uint8_t *src_y = cpi->Source->y_buffer;
const int src_ystride = cpi->Source->y_stride;
const uint8_t *last_src_y = cpi->denoiser.last_source.y_buffer;
const int last_src_ystride = cpi->denoiser.last_source.y_stride;
const uint8_t *src_u = cpi->Source->u_buffer;
const uint8_t *src_v = cpi->Source->v_buffer;
const int src_uvstride = cpi->Source->uv_stride;
const int y_width_shift = (4 << b_width_log2_lookup[bsize]) >> 1;
const int y_height_shift = (4 << b_height_log2_lookup[bsize]) >> 1;
const int uv_width_shift = y_width_shift >> 1;
const int uv_height_shift = y_height_shift >> 1;
int mi_row, mi_col;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row ++) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col ++) {
// 16x16 blocks, 1/4 sample of frame.
if (mi_row % 4 == 0 && mi_col % 4 == 0) {
int bl_index = mi_row * cm->mi_cols + mi_col;
int bl_index1 = bl_index + 1;
int bl_index2 = bl_index + cm->mi_cols;
int bl_index3 = bl_index2 + 1;
// Only consider blocks that are likely steady background. i.e, have
// been encoded as zero/low motion x (= thresh_consec_zeromv) frames
// in a row. consec_zero_mv[] defined for 8x8 blocks, so consider all
// 4 sub-blocks for 16x16 block. Also, avoid skin blocks.
const uint8_t ysource =
src_y[y_height_shift * src_ystride + y_width_shift];
const uint8_t usource =
src_u[uv_height_shift * src_uvstride + uv_width_shift];
const uint8_t vsource =
src_v[uv_height_shift * src_uvstride + uv_width_shift];
int is_skin = vp9_skin_pixel(ysource, usource, vsource);
if (cr->consec_zero_mv[bl_index] > thresh_consec_zeromv &&
cr->consec_zero_mv[bl_index1] > thresh_consec_zeromv &&
cr->consec_zero_mv[bl_index2] > thresh_consec_zeromv &&
cr->consec_zero_mv[bl_index3] > thresh_consec_zeromv &&
!is_skin) {
// Compute variance.
unsigned int sse;
unsigned int variance = cpi->fn_ptr[bsize].vf(src_y,
src_ystride,
last_src_y,
last_src_ystride,
&sse);
// Only consider this block as valid for noise measurement if the
// average term (sse - variance = N * avg^{2}, N = 16X16) of the
// temporal residual is small (avoid effects from lighting change).
if ((sse - variance) < thresh_sum_diff) {
unsigned int sse2;
const unsigned int spatial_variance =
cpi->fn_ptr[bsize].vf(src_y, src_ystride, const_source,
0, &sse2);
avg_est += variance / (10 + spatial_variance);
num_samples++;
}
}
}
src_y += 8;
last_src_y += 8;
src_u += 4;
src_v += 4;
}
src_y += (src_ystride << 3) - (cm->mi_cols << 3);
last_src_y += (last_src_ystride << 3) - (cm->mi_cols << 3);
src_u += (src_uvstride << 2) - (cm->mi_cols << 2);
src_v += (src_uvstride << 2) - (cm->mi_cols << 2);
}
// Update noise estimate if we have at a minimum number of block samples,
// and avg_est > 0 (avg_est == 0 can happen if the application inputs
// duplicate frames).
if (num_samples > min_blocks_estimate && avg_est > 0) {
// Normalize.
avg_est = (avg_est << 8) / num_samples;
// Update noise estimate.
cpi->denoiser.noise_estimate = (3 * cpi->denoiser.noise_estimate +
avg_est) >> 2;
cpi->denoiser.noise_estimate_count++;
if (cpi->denoiser.noise_estimate_count == num_frames_estimate) {
// Reset counter and check noise level condition.
cpi->denoiser.noise_estimate_count = 0;
if (cpi->denoiser.noise_estimate >
(cpi->denoiser.thresh_noise_estimate << 1))
cpi->denoiser.denoising_level = kHigh;
else
if (cpi->denoiser.noise_estimate >
cpi->denoiser.thresh_noise_estimate)
cpi->denoiser.denoising_level = kMedium;
else
cpi->denoiser.denoising_level = kLow;
}
}
}
copy_frame(&cpi->denoiser.last_source, cpi->Source);
}
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
int r, c;
uint8_t *u = yuv->u_buffer;
uint8_t *v = yuv->v_buffer;
for (r = 0; r < yuv->uv_height; ++r) {
for (c = 0; c < yuv->uv_width; ++c) {
u[c] = UINT8_MAX / 2;
v[c] = UINT8_MAX / 2;
}
u += yuv->uv_stride;
v += yuv->uv_stride;
}
}
#endif