vpx/vp8/encoder/rdopt.c
Deb Mukherjee 3f5d60b384 Entropy coding for hybrid transform
Separates the entropy coding context models for 4x4, 8x8 and 16x16
ADST variants.

There is a small improvement for HD (hd/std-hd) by about 0.1-0.2%.
Results on derf/yt are about the same, probably because there is not
enough statistics.

Results may improve somewhat once the initial probability tables are
updated for the hybrid transforms which is coming soon.

Change-Id: Ic7c0c62dacc68ef551054fdb575be8b8507d32a8
2012-09-27 11:21:39 -07:00

4945 lines
168 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp8/common/pragmas.h"
#include "tokenize.h"
#include "treewriter.h"
#include "onyx_int.h"
#include "modecosts.h"
#include "encodeintra.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/reconinter.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/quant_common.h"
#include "encodemb.h"
#include "quantize.h"
#include "vp8/common/idct.h"
#include "vp8/common/g_common.h"
#include "variance.h"
#include "mcomp.h"
#include "rdopt.h"
#include "ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "dct.h"
#include "vp8/common/systemdependent.h"
#include "vp8/encoder/encodemv.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#if CONFIG_NEWBESTREFMV
#include "vp8/common/mvref_common.h"
#endif
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x);
extern void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x);
#if CONFIG_HYBRIDTRANSFORM
extern void vp8_ht_quantize_b(BLOCK *b, BLOCKD *d);
#endif
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
#define INVALID_MV 0x80008000
#if CONFIG_SWITCHABLE_INTERP
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
#endif
static const int auto_speed_thresh[17] = {
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
#if CONFIG_PRED_FILTER
const MODE_DEFINITION vp8_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, 0, 0},
{ZEROMV, LAST_FRAME, 0, 1},
{DC_PRED, INTRA_FRAME, 0, 0},
{NEARESTMV, LAST_FRAME, 0, 0},
{NEARESTMV, LAST_FRAME, 0, 1},
{NEARMV, LAST_FRAME, 0, 0},
{NEARMV, LAST_FRAME, 0, 1},
{ZEROMV, GOLDEN_FRAME, 0, 0},
{ZEROMV, GOLDEN_FRAME, 0, 1},
{NEARESTMV, GOLDEN_FRAME, 0, 0},
{NEARESTMV, GOLDEN_FRAME, 0, 1},
{ZEROMV, ALTREF_FRAME, 0, 0},
{ZEROMV, ALTREF_FRAME, 0, 1},
{NEARESTMV, ALTREF_FRAME, 0, 0},
{NEARESTMV, ALTREF_FRAME, 0, 1},
{NEARMV, GOLDEN_FRAME, 0, 0},
{NEARMV, GOLDEN_FRAME, 0, 1},
{NEARMV, ALTREF_FRAME, 0, 0},
{NEARMV, ALTREF_FRAME, 0, 1},
{V_PRED, INTRA_FRAME, 0, 0},
{H_PRED, INTRA_FRAME, 0, 0},
{D45_PRED, INTRA_FRAME, 0, 0},
{D135_PRED, INTRA_FRAME, 0, 0},
{D117_PRED, INTRA_FRAME, 0, 0},
{D153_PRED, INTRA_FRAME, 0, 0},
{D27_PRED, INTRA_FRAME, 0, 0},
{D63_PRED, INTRA_FRAME, 0, 0},
{TM_PRED, INTRA_FRAME, 0, 0},
{NEWMV, LAST_FRAME, 0, 0},
{NEWMV, LAST_FRAME, 0, 1},
{NEWMV, GOLDEN_FRAME, 0, 0},
{NEWMV, GOLDEN_FRAME, 0, 1},
{NEWMV, ALTREF_FRAME, 0, 0},
{NEWMV, ALTREF_FRAME, 0, 1},
{SPLITMV, LAST_FRAME, 0, 0},
{SPLITMV, GOLDEN_FRAME, 0, 0},
{SPLITMV, ALTREF_FRAME, 0, 0},
{B_PRED, INTRA_FRAME, 0, 0},
{I8X8_PRED, INTRA_FRAME, 0, 0},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEARMV, LAST_FRAME, GOLDEN_FRAME, 0},
{ZEROMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEARMV, ALTREF_FRAME, LAST_FRAME, 0},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{NEWMV, LAST_FRAME, GOLDEN_FRAME, 0},
{NEWMV, ALTREF_FRAME, LAST_FRAME, 0},
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME, 0},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME, 0},
{SPLITMV, ALTREF_FRAME, LAST_FRAME, 0},
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME, 0}
};
#else
const MODE_DEFINITION vp8_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, 0},
{DC_PRED, INTRA_FRAME, 0},
{NEARESTMV, LAST_FRAME, 0},
{NEARMV, LAST_FRAME, 0},
{ZEROMV, GOLDEN_FRAME, 0},
{NEARESTMV, GOLDEN_FRAME, 0},
{ZEROMV, ALTREF_FRAME, 0},
{NEARESTMV, ALTREF_FRAME, 0},
{NEARMV, GOLDEN_FRAME, 0},
{NEARMV, ALTREF_FRAME, 0},
{V_PRED, INTRA_FRAME, 0},
{H_PRED, INTRA_FRAME, 0},
{D45_PRED, INTRA_FRAME, 0},
{D135_PRED, INTRA_FRAME, 0},
{D117_PRED, INTRA_FRAME, 0},
{D153_PRED, INTRA_FRAME, 0},
{D27_PRED, INTRA_FRAME, 0},
{D63_PRED, INTRA_FRAME, 0},
{TM_PRED, INTRA_FRAME, 0},
{NEWMV, LAST_FRAME, 0},
{NEWMV, GOLDEN_FRAME, 0},
{NEWMV, ALTREF_FRAME, 0},
{SPLITMV, LAST_FRAME, 0},
{SPLITMV, GOLDEN_FRAME, 0},
{SPLITMV, ALTREF_FRAME, 0},
{B_PRED, INTRA_FRAME, 0},
{I8X8_PRED, INTRA_FRAME, 0},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME},
{NEARMV, LAST_FRAME, GOLDEN_FRAME},
{ZEROMV, ALTREF_FRAME, LAST_FRAME},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME},
{NEARMV, ALTREF_FRAME, LAST_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, GOLDEN_FRAME},
{NEWMV, ALTREF_FRAME, LAST_FRAME },
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME},
{SPLITMV, ALTREF_FRAME, LAST_FRAME },
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}
};
#endif
static void fill_token_costs(
unsigned int (*c)[COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS],
const vp8_prob(*p)[COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES],
int block_type_counts) {
int i, j, k;
for (i = 0; i < block_type_counts; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k == 0 && ((j > 0 && i > 0) || (j > 1 && i == 0)))
vp8_cost_tokens_skip((int *)(c [i][j][k]),
p [i][j][k],
vp8_coef_tree);
else
vp8_cost_tokens((int *)(c [i][j][k]),
p [i][j][k],
vp8_coef_tree);
}
}
static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp8_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp8_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)((0.063 * vp8_convert_qindex_to_q(i)) + 2.742);
}
}
int compute_rd_mult(int qindex) {
int q;
q = vp8_dc_quant(qindex, 0);
return (11 * q * q) >> 6;
}
void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
}
void vp8_initialize_rd_consts(VP8_COMP *cpi, int QIndex) {
int q, i;
vp8_clear_system_state(); // __asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
QIndex = (QIndex < 0) ? 0 : ((QIndex > MAXQ) ? MAXQ : QIndex);
cpi->RDMULT = compute_rd_mult(QIndex);
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0) {
double oq_factor;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
cpi->RDMULT = (int)((double)cpi->RDMULT * oq_factor * oq_factor);
}
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
if (cpi->RDMULT < 7)
cpi->RDMULT = 7;
cpi->mb.errorperbit = (cpi->RDMULT / 110);
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp8_set_speed_features(cpi);
q = (int)pow(vp8_dc_quant(QIndex, 0) >> 2, 1.25);
q = q << 2;
cpi->RDMULT = cpi->RDMULT << 4;
if (q < 8)
q = 8;
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < INT_MAX) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
} else {
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(
cpi->mb.token_costs[TX_4X4],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs,
BLOCK_TYPES);
#if CONFIG_HYBRIDTRANSFORM
fill_token_costs(
cpi->mb.hybrid_token_costs[TX_4X4],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11])
cpi->common.fc.hybrid_coef_probs,
BLOCK_TYPES);
#endif
fill_token_costs(
cpi->mb.token_costs[TX_8X8],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_8x8,
BLOCK_TYPES_8X8);
#if CONFIG_HYBRIDTRANSFORM8X8
fill_token_costs(
cpi->mb.hybrid_token_costs[TX_8X8],
(const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11])
cpi->common.fc.hybrid_coef_probs_8x8,
BLOCK_TYPES_8X8);
#endif
#if CONFIG_TX16X16
fill_token_costs(
cpi->mb.token_costs[TX_16X16],
(const vp8_prob(*)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_16x16,
BLOCK_TYPES_16X16);
#if CONFIG_HYBRIDTRANSFORM16X16
fill_token_costs(
cpi->mb.hybrid_token_costs[TX_16X16],
(const vp8_prob(*)[8][PREV_COEF_CONTEXTS][11])
cpi->common.fc.hybrid_coef_probs_16x16,
BLOCK_TYPES_16X16);
#endif
#endif
/*rough estimate for costing*/
cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4;
vp8_init_mode_costs(cpi);
if (cpi->common.frame_type != KEY_FRAME)
{
#if CONFIG_NEWMVENTROPY
vp8_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
#endif
}
}
void vp8_auto_select_speed(VP8_COMP *cpi) {
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16;
#if 0
if (0) {
FILE *f;
f = fopen("speed.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time);
fclose(f);
}
#endif
/*
// this is done during parameter valid check
if( cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
if( cpi->oxcf.cpu_used < -16)
cpi->oxcf.cpu_used = -16;
*/
if (cpi->avg_pick_mode_time < milliseconds_for_compress &&
(cpi->avg_encode_time - cpi->avg_pick_mode_time) <
milliseconds_for_compress) {
if (cpi->avg_pick_mode_time == 0) {
cpi->Speed = 4;
} else {
if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) {
cpi->Speed += 2;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
if (cpi->Speed > 16) {
cpi->Speed = 16;
}
}
if (milliseconds_for_compress * 100 >
cpi->avg_encode_time * auto_speed_thresh[cpi->Speed]) {
cpi->Speed -= 1;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
// In real-time mode, cpi->speed is in [4, 16].
if (cpi->Speed < 4) { // if ( cpi->Speed < 0 )
cpi->Speed = 4; // cpi->Speed = 0;
}
}
}
} else {
cpi->Speed += 4;
if (cpi->Speed > 16)
cpi->Speed = 16;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
}
}
int vp8_block_error_c(short *coeff, short *dqcoeff, int block_size) {
int i, error = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) {
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++) {
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp8_mbuverror_c(MACROBLOCK *mb) {
BLOCK *be;
BLOCKD *bd;
int i, error = 0;
for (i = 16; i < 24; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff, 16);
}
return error;
}
int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd) {
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.row;
int mv_col = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
if (mv_row < 0)
mv_row -= 1;
else
mv_row += 1;
if (mv_col < 0)
mv_col -= 1;
else
mv_col += 1;
mv_row /= 2;
mv_col /= 2;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7) {
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride,
(mv_col & 7) << 1, (mv_row & 7) << 1, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride,
(mv_col & 7) << 1, (mv_row & 7) << 1, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
} else {
VARIANCE_INVOKE(rtcd, var8x8)(uptr, pre_stride,
upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, var8x8)(vptr, pre_stride,
vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
}
static int cost_coeffs_2x2(MACROBLOCK *mb,
BLOCKD *b, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int c = !type; /* start at coef 0, unless Y with Y2 */
int eob = b->eob;
int pt; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
assert(eob <= 4);
for (; c < eob; c++) {
int v = qcoeff_ptr[vp8_default_zig_zag1d[c]];
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]][pt][t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
if (c < 4)
cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]]
[pt] [DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int tx_size) {
const int eob = b->eob;
int c = !type; /* start at coef 0, unless Y with Y2 */
int cost = 0, default_eob, seg_eob;
int pt; /* surrounding block/prev coef predictor */
int const *scan, *band;
short *qcoeff_ptr = b->qcoeff;
MACROBLOCKD *xd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &mb->e_mbd.mode_info_context->mbmi;
#if CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM8X8 || CONFIG_HYBRIDTRANSFORM16X16
TX_TYPE tx_type = DCT_DCT;
#endif
int segment_id = mbmi->segment_id;
switch (tx_size) {
case TX_4X4:
scan = vp8_default_zig_zag1d;
band = vp8_coef_bands;
default_eob = 16;
#if CONFIG_HYBRIDTRANSFORM
if (type == PLANE_TYPE_Y_WITH_DC &&
mb->q_index < ACTIVE_HT &&
mbmi->mode_rdopt == B_PRED) {
tx_type = b->bmi.as_mode.tx_type;
switch (tx_type) {
case ADST_DCT:
scan = vp8_row_scan;
break;
case DCT_ADST:
scan = vp8_col_scan;
break;
default:
scan = vp8_default_zig_zag1d;
break;
}
}
#endif
break;
case TX_8X8:
scan = vp8_default_zig_zag1d_8x8;
band = vp8_coef_bands_8x8;
default_eob = 64;
#if CONFIG_HYBRIDTRANSFORM8X8
{
BLOCKD *bb;
int ib = (b - xd->block);
if (ib >= 16) tx_type = DCT_DCT;
ib = (ib & 8) + ((ib & 4) >> 1);
bb = xd->block + ib;
if (mbmi->mode_rdopt == I8X8_PRED)
tx_type = bb->bmi.as_mode.tx_type;
}
#endif
break;
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
case TX_16X16:
scan = vp8_default_zig_zag1d_16x16;
band = vp8_coef_bands_16x16;
default_eob = 256;
#if CONFIG_HYBRIDTRANSFORM16X16
if (type == PLANE_TYPE_Y_WITH_DC &&
mbmi->mode_rdopt < I8X8_PRED &&
mb->q_index < ACTIVE_HT16)
tx_type = b->bmi.as_mode.tx_type;
#endif
break;
#endif
default:
break;
}
if (segfeature_active(&mb->e_mbd, segment_id, SEG_LVL_EOB))
seg_eob = get_segdata(&mb->e_mbd, segment_id, SEG_LVL_EOB);
else
seg_eob = default_eob;
//mbmi->mode = mode;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
#if CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM8X8 || CONFIG_HYBRIDTRANSFORM16X16
if (tx_type != DCT_DCT) {
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->hybrid_token_costs[tx_size][type][band[c]][pt][t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
if (c < seg_eob)
cost += mb->hybrid_token_costs[tx_size][type][band[c]]
[pt][DCT_EOB_TOKEN];
} else
#endif
{
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs[tx_size][type][band[c]][pt][t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
if (c < seg_eob)
cost += mb->token_costs[tx_size][type][band[c]]
[pt][DCT_EOB_TOKEN];
}
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int vp8_rdcost_mby(MACROBLOCK *mb) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC,
ta + vp8_block2above[b], tl + vp8_block2left[b],
TX_4X4);
cost += cost_coeffs(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24],
TX_4X4);
return cost;
}
static void macro_block_yrd(MACROBLOCK *mb,
int *Rate,
int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
int b;
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
short *Y2DCPtr = mb_y2->src_diff;
BLOCK *beptr;
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
xd->predictor,
mb->block[0].src_stride);
// Fdct and building the 2nd order block
for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) {
mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32);
*Y2DCPtr++ = beptr->coeff[0];
*Y2DCPtr++ = beptr->coeff[16];
}
// 2nd order fdct
mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8);
// Quantization
for (b = 0; b < 16; b++) {
mb->quantize_b(&mb->block[b], &xd->block[b]);
}
// DC predication and Quantization of 2nd Order block
mb->quantize_b(mb_y2, x_y2);
// Distortion
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 1);
d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby(mb);
}
static int vp8_rdcost_mby_8x8(MACROBLOCK *mb, int backup) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (backup) {
vpx_memcpy(&t_above,xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)mb->e_mbd.above_context;
tl = (ENTROPY_CONTEXT *)mb->e_mbd.left_context;
}
for (b = 0; b < 16; b += 4)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC,
ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b],
TX_8X8);
cost += cost_coeffs_2x2(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
return cost;
}
static void macro_block_yrd_8x8(MACROBLOCK *mb,
int *Rate,
int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
xd->predictor,
mb->block[0].src_stride);
vp8_transform_mby_8x8(mb);
vp8_quantize_mby_8x8(mb);
/* remove 1st order dc to properly combine 1st/2nd order distortion */
mb->coeff[0] = 0;
mb->coeff[64] = 0;
mb->coeff[128] = 0;
mb->coeff[192] = 0;
xd->dqcoeff[0] = 0;
xd->dqcoeff[64] = 0;
xd->dqcoeff[128] = 0;
xd->dqcoeff[192] = 0;
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0);
d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby_8x8(mb, 1);
}
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
static int vp8_rdcost_mby_16x16(MACROBLOCK *mb) {
int cost;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
cost = cost_coeffs(mb, xd->block, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_16X16);
return cost;
}
static void macro_block_yrd_16x16(MACROBLOCK *mb, int *Rate, int *Distortion,
const VP8_ENCODER_RTCD *rtcd) {
int d;
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(
mb->src_diff,
*(mb->block[0].base_src),
mb->e_mbd.predictor,
mb->block[0].src_stride);
#if CONFIG_HYBRIDTRANSFORM16X16
if ((mb->e_mbd.mode_info_context->mbmi.mode_rdopt < I8X8_PRED) &&
(mb->q_index < ACTIVE_HT16)) {
BLOCKD *b = &mb->e_mbd.block[0];
BLOCK *be = &mb->block[0];
txfm_map(b, pred_mode_conv(mb->e_mbd.mode_info_context->mbmi.mode_rdopt));
vp8_fht_c(be->src_diff, be->coeff, 32, b->bmi.as_mode.tx_type, 16);
} else
vp8_transform_mby_16x16(mb);
#else
vp8_transform_mby_16x16(mb);
#endif
vp8_quantize_mby_16x16(mb);
#if CONFIG_HYBRIDTRANSFORM16X16
// TODO(jingning) is it possible to quickly determine whether to force
// trailing coefficients to be zero, instead of running trellis
// optimization in the rate-distortion optimization loop?
if (mb->e_mbd.mode_info_context->mbmi.mode_rdopt < I8X8_PRED)
vp8_optimize_mby_16x16(mb, rtcd);
#endif
d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0);
*Distortion = (d >> 2);
// rate
*Rate = vp8_rdcost_mby_16x16(mb);
}
#endif
static void copy_predictor(unsigned char *dst, const unsigned char *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[4] = p[4];
d[8] = p[8];
d[12] = p[12];
}
#if CONFIG_SUPERBLOCKS
static void super_block_yrd_8x8(MACROBLOCK *x,
int *rate,
int *distortion,
const VP8_ENCODER_RTCD *rtcd, int *skip)
{
MACROBLOCKD *const xd = &x->e_mbd;
BLOCK *const by2 = x->block + 24;
BLOCKD *const bdy2 = xd->block + 24;
int d = 0, r = 0, n;
const uint8_t *src = x->src.y_buffer, *dst = xd->dst.y_buffer;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->dst.y_stride;
ENTROPY_CONTEXT_PLANES *ta = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl = xd->left_context;
ENTROPY_CONTEXT_PLANES t_above[2];
ENTROPY_CONTEXT_PLANES t_left[2];
int skippable = 1;
vpx_memcpy(t_above, xd->above_context, sizeof(t_above));
vpx_memcpy(t_left, xd->left_context, sizeof(t_left));
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
vp8_subtract_mby_s_c(x->src_diff,
src + x_idx * 16 + y_idx * 16 * src_y_stride,
src_y_stride,
dst + x_idx * 16 + y_idx * 16 * dst_y_stride,
dst_y_stride);
vp8_transform_mby_8x8(x);
vp8_quantize_mby_8x8(x);
/* remove 1st order dc to properly combine 1st/2nd order distortion */
x->coeff[ 0] = 0;
x->coeff[ 64] = 0;
x->coeff[128] = 0;
x->coeff[192] = 0;
xd->dqcoeff[ 0] = 0;
xd->dqcoeff[ 64] = 0;
xd->dqcoeff[128] = 0;
xd->dqcoeff[192] = 0;
d += ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(x, 0);
d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(by2->coeff, bdy2->dqcoeff, 16);
xd->above_context = ta + x_idx;
xd->left_context = tl + y_idx;
r += vp8_rdcost_mby_8x8(x, 0);
skippable = skippable && mby_is_skippable_8x8(xd, 1);
}
*distortion = (d >> 2);
*rate = r;
if (skip) *skip = skippable;
xd->above_context = ta;
xd->left_context = tl;
vpx_memcpy(xd->above_context, &t_above, sizeof(t_above));
vpx_memcpy(xd->left_context, &t_left, sizeof(t_left));
}
#endif
static void copy_predictor_8x8(unsigned char *dst, const unsigned char *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[1] = p[1];
d[4] = p[4];
d[5] = p[5];
d[8] = p[8];
d[9] = p[9];
d[12] = p[12];
d[13] = p[13];
d[16] = p[16];
d[17] = p[17];
d[20] = p[20];
d[21] = p[21];
d[24] = p[24];
d[25] = p[25];
d[28] = p[28];
d[29] = p[29];
}
static int64_t rd_pick_intra4x4block(VP8_COMP *cpi, MACROBLOCK *x, BLOCK *be,
BLOCKD *b, B_PREDICTION_MODE *best_mode,
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE *best_second_mode,
int allow_comp,
#endif
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
B_PREDICTION_MODE mode;
#if CONFIG_HYBRIDTRANSFORM
int QIndex = x->q_index;
int active_ht = (QIndex < ACTIVE_HT);
TX_TYPE best_tx_type;
#endif
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE mode2;
#endif
int64_t best_rd = INT64_MAX;
int rate = 0;
int distortion;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 4x4 block
* */
DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 4);
DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16);
for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = (allow_comp ? 0 : (B_DC_PRED - 1));
mode2 != (allow_comp ? (mode + 1) : 0); mode2++) {
#endif
int64_t this_rd;
int ratey;
// TODO Temporarily ignore modes that need the above-right data. SB
// encoding means this data is not available for the bottom right MB
// Do we need to do this for mode2 also?
if (mode == B_LD_PRED || mode == B_VL_PRED)
continue;
rate = bmode_costs[mode];
#if CONFIG_COMP_INTRA_PRED
if (mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, intra4x4_predict)
(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra4x4_predict)
(b, mode, mode2, b->predictor);
rate += bmode_costs[mode2];
}
#endif
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), subb)(be, b, 16);
#if CONFIG_HYBRIDTRANSFORM
if (active_ht) {
b->bmi.as_mode.test = mode;
txfm_map(b, mode);
vp8_fht_c(be->src_diff, be->coeff, 32, b->bmi.as_mode.tx_type, 4);
vp8_ht_quantize_b(be, b);
} else {
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b(be, b);
}
#else
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b(be, b);
#endif
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(
be->coeff, b->dqcoeff, 16) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
#if CONFIG_HYBRIDTRANSFORM
best_tx_type = b->bmi.as_mode.tx_type ;
#endif
#if CONFIG_COMP_INTRA_PRED
*best_second_mode = mode2;
#endif
*a = tempa;
*l = templ;
copy_predictor(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 32);
}
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
b->bmi.as_mode.first = (B_PREDICTION_MODE)(*best_mode);
#if CONFIG_COMP_INTRA_PRED
b->bmi.as_mode.second = (B_PREDICTION_MODE)(*best_second_mode);
#endif
#if CONFIG_HYBRIDTRANSFORM
b->bmi.as_mode.tx_type = best_tx_type;
// inverse transform
if (active_ht)
vp8_ihtllm_c(best_dqcoeff, b->diff, 32, b->bmi.as_mode.tx_type, 4);
else
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff,
b->diff, 32);
#else
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff, 32);
#endif
RECON_INVOKE(IF_RTCD(&cpi->rtcd.common->recon), recon)(best_predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
return best_rd;
}
static int64_t rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate,
int *rate_y, int *Distortion, int64_t best_rd,
#if CONFIG_COMP_INTRA_PRED
int allow_comp,
#endif
int update_contexts) {
int i;
MACROBLOCKD *const xd = &mb->e_mbd;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *bmode_costs;
if (update_contexts) {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
} else {
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
}
// TODO(agrange)
// vp8_intra_prediction_down_copy(xd);
bmode_costs = mb->inter_bmode_costs;
for (i = 0; i < 16; i++) {
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode);
#endif
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
if (xd->frame_type == KEY_FRAME) {
const B_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const B_PREDICTION_MODE L = left_block_mode(mic, i);
bmode_costs = mb->bmode_costs[A][L];
}
total_rd += rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode,
#if CONFIG_COMP_INTRA_PRED
& best_second_mode, allow_comp,
#endif
bmode_costs, ta + vp8_block2above[i],
tl + vp8_block2left[i], &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
#if CONFIG_COMP_INTRA_PRED
mic->bmi[i].as_mode.second = best_second_mode;
#endif
if (total_rd >= best_rd)
break;
}
if (total_rd >= best_rd)
return INT64_MAX;
#if CONFIG_COMP_INTRA_PRED
cost += vp8_cost_bit(128, allow_comp);
#endif
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
#if CONFIG_SUPERBLOCKS
static int64_t rd_pick_intra_sby_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int this_rate, this_rate_tokenonly;
int this_distortion, s;
int64_t best_rd = INT64_MAX, this_rd;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.mode = mode;
RECON_INVOKE(&cpi->common.rtcd.recon,
build_intra_predictors_sby_s)(&x->e_mbd);
super_block_yrd_8x8(x, &this_rate_tokenonly,
&this_distortion, IF_RTCD(&cpi->rtcd), &s);
this_rate = this_rate_tokenonly +
x->mbmode_cost[x->e_mbd.frame_type]
[x->e_mbd.mode_info_context->mbmi.mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
return best_rd;
}
#endif
static int64_t rd_pick_intra16x16mby_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *Rate,
int *rate_y,
int *Distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected);
#endif
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, ratey;
int distortion;
int64_t best_rd = INT64_MAX;
int64_t this_rd;
int UNINITIALIZED_IS_SAFE(skip);
MACROBLOCKD *xd = &x->e_mbd;
#if CONFIG_HYBRIDTRANSFORM16X16
int best_txtype, rd_txtype;
#endif
// Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
mbmi->mode = mode;
#if CONFIG_HYBRIDTRANSFORM16X16
mbmi->mode_rdopt = mode;
#endif
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
mbmi->second_mode = mode2;
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby)
(&x->e_mbd);
#if CONFIG_COMP_INTRA_PRED
} else {
continue; // i.e. disable for now
RECON_INVOKE(&cpi->common.rtcd.recon, build_comp_intra_predictors_mby)
(&x->e_mbd);
}
#endif
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
macro_block_yrd_16x16(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd));
#else
macro_block_yrd_8x8(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd));
#endif
// FIXME add compoundmode cost
// FIXME add rate for mode2
rate = ratey + x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
#if CONFIG_HYBRIDTRANSFORM16X16
rd_txtype = x->e_mbd.block[0].bmi.as_mode.tx_type;
#endif
if (this_rd < best_rd) {
#if CONFIG_TX16X16
skip = mby_is_skippable_16x16(xd);
#else
skip = mby_is_skippable_8x8(xd, 1);
#endif
mode_selected = mode;
#if CONFIG_COMP_INTRA_PRED
mode2_selected = mode2;
#endif
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = distortion;
#if CONFIG_HYBRIDTRANSFORM16X16
best_txtype = rd_txtype;
#endif
}
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
*skippable = skip;
mbmi->mode = mode_selected;
#if CONFIG_HYBRIDTRANSFORM16X16
x->e_mbd.block[0].bmi.as_mode.tx_type = best_txtype;
#endif
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = mode2_selected;
#endif
return best_rd;
}
static int64_t rd_pick_intra8x8block(VP8_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE *best_second_mode,
#endif
int *mode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
MB_PREDICTION_MODE mode;
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
#endif
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int distortion, rate = 0;
BLOCK *be = x->block + ib;
BLOCKD *b = xd->block + ib;
ENTROPY_CONTEXT ta0, ta1, besta0 = 0, besta1 = 0;
ENTROPY_CONTEXT tl0, tl1, bestl0 = 0, bestl1 = 0;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 8x8 block
* */
DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 8);
DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16 * 4);
// perform transformation of dimension 8x8
// note the input and output index mapping
int idx = (ib & 0x02) ? (ib + 2) : ib;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
#endif
int64_t this_rd;
int rate_t;
// FIXME rate for compound mode and second intrapred mode
rate = mode_costs[mode];
#if CONFIG_COMP_INTRA_PRED
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, intra8x8_predict)
(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
continue; // i.e. disable for now
RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra8x8_predict)
(b, mode, mode2, b->predictor);
}
#endif
vp8_subtract_4b_c(be, b, 16);
#if CONFIG_HYBRIDTRANSFORM8X8
txfm_map(b, pred_mode_conv(mode));
vp8_fht_c(be->src_diff, (x->block + idx)->coeff, 32,
b->bmi.as_mode.tx_type, 8);
#else
x->vp8_short_fdct8x8(be->src_diff, (x->block + idx)->coeff, 32);
#endif
x->quantize_b_8x8(x->block + idx, xd->block + idx);
// compute quantization mse of 8x8 block
distortion = vp8_block_error_c((x->block + idx)->coeff,
(xd->block + idx)->dqcoeff, 64)>>2;
ta0 = *(a + vp8_block2above_8x8[idx]);
tl0 = *(l + vp8_block2left_8x8 [idx]);
rate_t = cost_coeffs(x, xd->block + idx, PLANE_TYPE_Y_WITH_DC,
&ta0, &tl0, TX_8X8);
rate += rate_t;
ta1 = ta0;
tl1 = tl0;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = rate_t;
*bestdistortion = distortion;
besta0 = ta0;
besta1 = ta1;
bestl0 = tl0;
bestl1 = tl1;
best_rd = this_rd;
*best_mode = mode;
#if CONFIG_COMP_INTRA_PRED
*best_second_mode = mode2;
#endif
copy_predictor_8x8(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 64);
vpx_memcpy(best_dqcoeff + 32, b->dqcoeff + 64, 64);
#if CONFIG_COMP_INTRA_PRED
}
#endif
}
}
b->bmi.as_mode.first = (*best_mode);
#if CONFIG_COMP_INTRA_PRED
b->bmi.as_mode.second = (*best_second_mode);
#endif
vp8_encode_intra8x8(IF_RTCD(&cpi->rtcd), x, ib);
#if CONFIG_HYBRIDTRANSFORM8X8
*(a + vp8_block2above_8x8[idx]) = besta0;
*(a + vp8_block2above_8x8[idx] + 1) = besta1;
*(l + vp8_block2left_8x8 [idx]) = bestl0;
*(l + vp8_block2left_8x8 [idx] + 1) = bestl1;
#else
*(a + vp8_block2above[ib]) = besta0;
*(a + vp8_block2above[ib + 1]) = besta1;
*(l + vp8_block2above[ib]) = bestl0;
*(l + vp8_block2above[ib + 4]) = bestl1;
#endif
return best_rd;
}
int64_t rd_pick_intra8x8mby_modes(VP8_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
MACROBLOCKD *const xd = &mb->e_mbd;
int i, ib;
int cost = mb->mbmode_cost [xd->frame_type] [I8X8_PRED];
int distortion = 0;
int tot_rate_y = 0;
long long total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *i8x8mode_costs;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
i8x8mode_costs = mb->i8x8_mode_costs;
for (i = 0; i < 4; i++) {
MODE_INFO *const mic = xd->mode_info_context;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode);
#endif
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
ib = vp8_i8x8_block[i];
total_rd += rd_pick_intra8x8block(
cpi, mb, ib, &best_mode,
#if CONFIG_COMP_INTRA_PRED
& best_second_mode,
#endif
i8x8mode_costs, ta, tl, &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[ib].as_mode.first = best_mode;
#if CONFIG_COMP_INTRA_PRED
mic->bmi[ib].as_mode.second = best_second_mode;
#endif
}
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int rd_cost_mbuv(MACROBLOCK *mb) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b],
TX_4X4);
return cost;
}
static int64_t rd_inter16x16_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int rd_cost_mbuv_8x8(MACROBLOCK *mb, int backup) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)mb->e_mbd.above_context;
tl = (ENTROPY_CONTEXT *)mb->e_mbd.left_context;
}
for (b = 16; b < 24; b += 4)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp8_block2above_8x8[b],
tl + vp8_block2left_8x8[b], TX_8X8);
return cost;
}
#if CONFIG_SUPERBLOCKS
static int64_t rd_inter32x32_uv_8x8(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel, int *skip) {
MACROBLOCKD *xd = &x->e_mbd;
int n, r = 0, d = 0;
const uint8_t *usrc = x->src.u_buffer, *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer, *vdst = xd->dst.v_buffer;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
int skippable = 1;
ENTROPY_CONTEXT_PLANES t_above[2], t_left[2];
ENTROPY_CONTEXT_PLANES *ta = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl = xd->left_context;
memcpy(t_above, xd->above_context, sizeof(t_above));
memcpy(t_left, xd->left_context, sizeof(t_left));
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
vp8_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
xd->above_context = ta + x_idx;
xd->left_context = tl + y_idx;
r += rd_cost_mbuv_8x8(x, 0);
d += ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
skippable = skippable && mbuv_is_skippable_8x8(xd);
}
*rate = r;
*distortion = d;
if (skip) *skip = skippable;
xd->left_context = tl;
xd->above_context = ta;
memcpy(xd->above_context, t_above, sizeof(t_above));
memcpy(xd->left_context, t_left, sizeof(t_left));
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
#endif
static int64_t rd_inter16x16_uv_8x8(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
*rate = rd_cost_mbuv_8x8(x, 1);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int64_t rd_inter4x4_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel) {
vp8_build_inter4x4_predictors_mbuv(&x->e_mbd);
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void rd_pick_intra_mbuv_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
#if CONFIG_COMP_INTRA_PRED
MB_PREDICTION_MODE mode2;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected);
#endif
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to, UNINITIALIZED_IS_SAFE(skip);
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
#if CONFIG_COMP_INTRA_PRED
for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) {
#endif
int rate;
int distortion;
int64_t this_rd;
mbmi->uv_mode = mode;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = mode2;
if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv)
(&x->e_mbd);
#if CONFIG_COMP_INTRA_PRED
} else {
continue;
RECON_INVOKE(&cpi->rtcd.common->recon, build_comp_intra_predictors_mbuv)
(&x->e_mbd);
}
#endif
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor,
x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
rate_to = rd_cost_mbuv(x);
rate = rate_to
+ x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
skip = mbuv_is_skippable(xd);
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
#if CONFIG_COMP_INTRA_PRED
mode2_selected = mode2;
}
#endif
}
}
*rate = r;
*distortion = d;
*skippable = skip;
mbmi->uv_mode = mode_selected;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = mode2_selected;
#endif
}
static void rd_pick_intra_mbuv_mode_8x8(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MACROBLOCKD *xd = &x->e_mbd;
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to, UNINITIALIZED_IS_SAFE(skip);
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int rate;
int distortion;
int64_t this_rd;
mbmi->uv_mode = mode;
RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv)
(&x->e_mbd);
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff,
x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor,
x->src.uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
rate_to = rd_cost_mbuv_8x8(x, 1);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
skip = mbuv_is_skippable_8x8(xd);
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
*skippable = skip;
mbmi->uv_mode = mode_selected;
}
#if CONFIG_SUPERBLOCKS
static void super_block_uvrd_8x8(MACROBLOCK *x,
int *rate,
int *distortion,
const VP8_ENCODER_RTCD *rtcd,
int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
int d = 0, r = 0, n, s = 1;
const uint8_t *usrc = x->src.u_buffer, *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer, *vdst = xd->dst.v_buffer;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
ENTROPY_CONTEXT_PLANES t_above[2], t_left[2];
ENTROPY_CONTEXT_PLANES *ta = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl = xd->left_context;
memcpy(t_above, xd->above_context, sizeof(t_above));
memcpy(t_left, xd->left_context, sizeof(t_left));
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
vp8_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
vp8_transform_mbuv_8x8(x);
vp8_quantize_mbuv_8x8(x);
s &= mbuv_is_skippable_8x8(xd);
d += ENCODEMB_INVOKE(&rtcd->encodemb, mbuverr)(x) >> 2;
xd->above_context = ta + x_idx;
xd->left_context = tl + y_idx;
r += rd_cost_mbuv_8x8(x, 0);
}
xd->above_context = ta;
xd->left_context = tl;
*distortion = d;
*rate = r;
*skippable = s;
xd->left_context = tl;
xd->above_context = ta;
memcpy(xd->above_context, t_above, sizeof(t_above));
memcpy(xd->left_context, t_left, sizeof(t_left));
}
static int64_t rd_pick_intra_sbuv_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate;
int this_distortion, s;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
RECON_INVOKE(&cpi->rtcd.common->recon,
build_intra_predictors_sbuv_s)(&x->e_mbd);
super_block_uvrd_8x8(x, &this_rate_tokenonly,
&this_distortion, IF_RTCD(&cpi->rtcd), &s);
this_rate = this_rate_tokenonly +
x->mbmode_cost[x->e_mbd.frame_type]
[x->e_mbd.mode_info_context->mbmi.mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
#endif
int vp8_cost_mv_ref(VP8_COMP *cpi,
MB_PREDICTION_MODE m,
const int near_mv_ref_ct[4]) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// If the mode coding is done entirely at the segment level
// we should not account for it at the per mb level in rd code.
// Note that if the segment level coding is expanded from single mode
// to multiple mode masks as per reference frame coding we will need
// to do something different here.
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
VP8_COMMON *pc = &cpi->common;
vp8_prob p [VP8_MVREFS - 1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp8_mv_ref_probs(pc, p, near_mv_ref_ct);
return vp8_cost_token(vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
}
void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv seg_mvs[MAX_REF_FRAMES - 1],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
DEC_MVCOSTS) {
MACROBLOCKD *const xd = & x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
const int mis = xd->mode_info_stride;
int i, cost = 0, thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
for (i = 0; i < 16; ++i) {
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i - 1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i - 4])
m = ABOVE4X4;
else {
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEW4X4 :
if (mbmi->second_ref_frame) {
this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int;
this_second_mv->as_int =
seg_mvs[mbmi->second_ref_frame - 1].as_int;
}
thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, MVCOSTS,
102, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame) {
thismvcost += vp8_mv_bit_cost(this_second_mv, second_best_ref_mv,
MVCOSTS, 102,
xd->allow_high_precision_mv);
}
break;
case LEFT4X4:
this_mv->as_int = col ? d[-1].bmi.as_mv.first.as_int : left_block_mv(mic, i);
if (mbmi->second_ref_frame)
this_second_mv->as_int = col ? d[-1].bmi.as_mv.second.as_int : left_block_second_mv(mic, i);
break;
case ABOVE4X4:
this_mv->as_int = row ? d[-4].bmi.as_mv.first.as_int : above_block_mv(mic, i, mis);
if (mbmi->second_ref_frame)
this_second_mv->as_int = row ? d[-4].bmi.as_mv.second.as_int : above_block_second_mv(mic, i, mis);
break;
case ZERO4X4:
this_mv->as_int = 0;
if (mbmi->second_ref_frame)
this_second_mv->as_int = 0;
break;
default:
break;
}
if (m == ABOVE4X4) { // replace above with left if same
int_mv left_mv, left_second_mv;
left_second_mv.as_int = 0;
left_mv.as_int = col ? d[-1].bmi.as_mv.first.as_int :
left_block_mv(mic, i);
if (mbmi->second_ref_frame)
left_second_mv.as_int = col ? d[-1].bmi.as_mv.second.as_int :
left_block_second_mv(mic, i);
if (left_mv.as_int == this_mv->as_int &&
(!mbmi->second_ref_frame ||
left_second_mv.as_int == this_second_mv->as_int))
m = LEFT4X4;
}
cost = x->inter_bmode_costs[ m];
}
d->bmi.as_mv.first.as_int = this_mv->as_int;
if (mbmi->second_ref_frame)
d->bmi.as_mv.second.as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->second_ref_frame)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
}
cost += thismvcost;
return cost;
}
static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels,
int which_label, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int b, cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
for (b = 0; b < 16; b++)
if (labels[ b] == which_label)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_WITH_DC,
ta + vp8_block2above[b],
tl + vp8_block2left[b], TX_4X4);
return cost;
}
static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x,
int const *labels,
int which_label,
const VP8_ENCODER_RTCD *rtcd) {
int i;
unsigned int distortion = 0;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 16; i++) {
if (labels[i] == which_label) {
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
int thisdistortion;
vp8_build_inter_predictors_b(bd, 16, xd->subpixel_predict);
if (xd->mode_info_context->mbmi.second_ref_frame)
vp8_build_2nd_inter_predictors_b(bd, 16, xd->subpixel_predict_avg);
ENCODEMB_INVOKE(&rtcd->encodemb, subb)(be, bd, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
// set to 0 no way to account for 2nd order DC so discount
// be->coeff[0] = 0;
x->quantize_b(be, bd);
thisdistortion = ENCODEMB_INVOKE(&rtcd->encodemb, berr)(
be->coeff, bd->dqcoeff, 16) / 4;
distortion += thisdistortion;
}
}
return distortion;
}
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
int segment_num;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
int_mv mvs[16], second_mvs[16];
unsigned char eobs[16];
int mvthresh;
int *mdcounts;
int_mv sv_mvp[4]; // save 4 mvp from 8x8
int sv_istep[2]; // save 2 initial step_param for 16x8/8x16
} BEST_SEG_INFO;
static __inline
int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static void rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi, unsigned int segmentation,
int_mv seg_mvs[16 /* n_blocks */][MAX_REF_FRAMES - 1]) {
int i;
int const *labels;
int br = 0, bd = 0;
B_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int label_count;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int rate = 0;
int sbr = 0, sbd = 0;
int segmentyrate = 0;
vp8_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b, *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp8_mbsplits[segmentation];
label_count = vp8_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation);
rate += vp8_cost_mv_ref(cpi, SPLITMV, bsi->mdcounts);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
for (i = 0; i < label_count; i++) {
int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT];
int64_t best_label_rd = INT64_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) {
int64_t this_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
// motion search for newmv (single predictor case only)
if (!mbmi->second_ref_frame && this_mode == NEW4X4) {
int sseshift, n;
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
BLOCK *c;
BLOCKD *e;
// Is the best so far sufficiently good that we cant justify doing and new motion search.
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8) {
bsi->mvp.as_int = bsi->sv_mvp[i].as_int;
if (i == 1 && segmentation == BLOCK_16X8)
bsi->mvp.as_int = bsi->sv_mvp[2].as_int;
step_param = bsi->sv_istep[i];
}
// use previous block's result as next block's MV predictor.
if (segmentation == BLOCK_4X4 && i > 0) {
bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.as_mv.first.as_int;
if (i == 4 || i == 8 || i == 12)
bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.as_mv.first.as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
{
int sadpb = x->sadperbit4;
int_mv mvp_full;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// find first label
n = vp8_mbsplit_offset[segmentation][i];
c = &x->block[n];
e = &x->e_mbd.block[n];
bestsme = vp8_full_pixel_diamond(cpi, x, c, e, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEW4X4]);
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) {
/* Check if mvp_full is within the range. */
vp8_clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, c, e, &mvp_full,
sadpb, 16, v_fn_ptr,
XMVCOST, bsi->ref_mv);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEW4X4].as_int = e->bmi.as_mv.first.as_int;
} else {
// The full search result is actually worse so re-instate the previous best vector
e->bmi.as_mv.first.as_int = mode_mv[NEW4X4].as_int;
}
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr, XMVCOST,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int;
}
} /* NEW4X4 */
else if (mbmi->second_ref_frame && this_mode == NEW4X4) {
// motion search not completed? Then skip newmv for this block with comppred
if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) {
continue;
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, XMVCOST);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->second_ref_frame &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
distortion = vp8_encode_inter_mb_segment(
x, labels, i,
IF_RTCD(&cpi->rtcd));
labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s);
rate += labelyrate;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
}
} /*for each 4x4 mode*/
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, XMVCOST);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
if (this_segment_rd >= bsi->segment_rd) {
break;
}
} /* for each label */
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->second_ref_frame)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = bd->eob;
}
}
}
static __inline
void vp8_cal_step_param(int sr, int *sp) {
int step = 0;
if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP;
else if (sr < 1) sr = 1;
while (sr >>= 1)
step++;
*sp = MAX_MVSEARCH_STEPS - 1 - step;
}
static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd,
int *mdcounts, int *returntotrate,
int *returnyrate, int *returndistortion,
int mvthresh,
int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1]) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
for (i = 0; i < 16; i++)
bsi.modes[i] = ZERO4X4;
if (cpi->compressor_speed == 0) {
/* for now, we will keep the original segmentation order
when in best quality mode */
rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]);
rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]);
} else {
int sr;
rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]);
if (bsi.segment_rd < best_rd) {
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp8_clamp_mv_min_max(x, best_ref_mv);
/* Get 8x8 result */
bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int;
bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int;
bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int;
bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int;
/* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range according to the closeness of 2 MV. */
/* block 8X16 */
{
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]);
}
/* block 16X8 */
{
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]);
}
/* If 8x8 is better than 16x8/8x16, then do 4x4 search */
/* Not skip 4x4 if speed=0 (good quality) */
if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) { /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */
bsi.mvp.as_int = bsi.sv_mvp[0].as_int;
rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]);
}
/* restore UMV window */
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
}
}
/* set it to the best */
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.as_mv.first.as_int = bsi.mvs[i].as_int;
if (mbmi->second_ref_frame)
bd->bmi.as_mv.second.as_int = bsi.second_mvs[i].as_int;
bd->eob = bsi.eobs[i];
}
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
/* save partitions */
mbmi->partitioning = bsi.segment_num;
x->partition_info->count = vp8_mbsplit_count[bsi.segment_num];
for (i = 0; i < x->partition_info->count; i++) {
int j;
j = vp8_mbsplit_offset[bsi.segment_num][i];
x->partition_info->bmi[i].mode = bsi.modes[j];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv;
if (mbmi->second_ref_frame)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[j].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int;
if (mbmi->second_ref_frame)
x->partition_info->bmi[15].second_mv.as_int = bsi.second_mvs[15].as_int;
return bsi.segment_rd;
}
/* Order arr in increasing order, original position stored in idx */
static void insertsortmv(int arr[], int len) {
int i, j, k;
for (i = 1; i <= len - 1; i++) {
for (j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
int temp;
temp = arr[i];
for (k = i; k > j; k--)
arr[k] = arr[k - 1];
arr[j] = temp;
}
}
}
}
static void insertsortsad(int arr[], int idx[], int len) {
int i, j, k;
for (i = 1; i <= len - 1; i++) {
for (j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
int temp, tempi;
temp = arr[i];
tempi = idx[i];
for (k = i; k > j; k--) {
arr[k] = arr[k - 1];
idx[k] = idx[k - 1];
}
arr[j] = temp;
idx[j] = tempi;
}
}
}
}
// The improved MV prediction
void vp8_mv_pred(VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here,
int_mv *mvp, int refframe, int *ref_frame_sign_bias,
int *sr, int near_sadidx[]) {
const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1;
int_mv near_mvs[8];
int near_ref[8];
int_mv mv;
int vcnt = 0;
int find = 0;
int mb_offset;
int mvx[8];
int mvy[8];
int i;
mv.as_int = 0;
if (here->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = near_mvs[7].as_int = 0;
near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = near_ref[7] = 0;
// read in 3 nearby block's MVs from current frame as prediction candidates.
if (above->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = above->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = above->mbmi.ref_frame;
}
vcnt++;
if (left->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = left->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = left->mbmi.ref_frame;
}
vcnt++;
if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {
near_mvs[vcnt].as_int = aboveleft->mbmi.mv[0].as_int;
mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = aboveleft->mbmi.ref_frame;
}
vcnt++;
// read in 5 nearby block's MVs from last frame.
if (cpi->common.last_frame_type != KEY_FRAME) {
mb_offset = (-xd->mb_to_top_edge / 128 + 1) * (xd->mode_info_stride + 1) + (-xd->mb_to_left_edge / 128 + 1);
// current in last frame
if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset];
}
vcnt++;
// above in last frame
if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride - 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1];
}
vcnt++;
// left in last frame
if (cpi->lf_ref_frame[mb_offset - 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1];
}
vcnt++;
// right in last frame
if (cpi->lf_ref_frame[mb_offset + 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + 1];
}
vcnt++;
// below in last frame
if (cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1] != INTRA_FRAME) {
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + xd->mode_info_stride + 1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + xd->mode_info_stride + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1];
}
vcnt++;
}
for (i = 0; i < vcnt; i++) {
if (near_ref[near_sadidx[i]] != INTRA_FRAME) {
if (here->mbmi.ref_frame == near_ref[near_sadidx[i]]) {
mv.as_int = near_mvs[near_sadidx[i]].as_int;
find = 1;
if (i < 3)
*sr = 3;
else
*sr = 2;
break;
}
}
}
if (!find) {
for (i = 0; i < vcnt; i++) {
mvx[i] = near_mvs[i].as_mv.row;
mvy[i] = near_mvs[i].as_mv.col;
}
insertsortmv(mvx, vcnt);
insertsortmv(mvy, vcnt);
mv.as_mv.row = mvx[vcnt / 2];
mv.as_mv.col = mvy[vcnt / 2];
find = 1;
// sr is set to 0 to allow calling function to decide the search range.
*sr = 0;
}
}
/* Set up return values */
mvp->as_int = mv.as_int;
vp8_clamp_mv2(mvp, xd);
}
void vp8_cal_sad(VP8_COMP *cpi, MACROBLOCKD *xd, MACROBLOCK *x, int recon_yoffset, int near_sadidx[]) {
int near_sad[8] = {0}; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf right, 7-lf below
BLOCK *b = &x->block[0];
unsigned char *src_y_ptr = *(b->base_src);
// calculate sad for current frame 3 nearby MBs.
if (xd->mb_to_top_edge == 0 && xd->mb_to_left_edge == 0) {
near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX;
} else if (xd->mb_to_top_edge == 0) {
// only has left MB for sad calculation.
near_sad[0] = near_sad[2] = INT_MAX;
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff);
} else if (xd->mb_to_left_edge == 0) {
// only has left MB for sad calculation.
near_sad[1] = near_sad[2] = INT_MAX;
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff);
} else {
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff);
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff);
near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16 - 16, xd->dst.y_stride, 0x7fffffff);
}
if (cpi->common.last_frame_type != KEY_FRAME) {
// calculate sad for last frame 5 nearby MBs.
unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset;
int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride;
if (xd->mb_to_top_edge == 0) near_sad[4] = INT_MAX;
if (xd->mb_to_left_edge == 0) near_sad[5] = INT_MAX;
if (xd->mb_to_right_edge == 0) near_sad[6] = INT_MAX;
if (xd->mb_to_bottom_edge == 0) near_sad[7] = INT_MAX;
if (near_sad[4] != INT_MAX)
near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - pre_y_stride * 16, pre_y_stride, 0x7fffffff);
if (near_sad[5] != INT_MAX)
near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff);
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
if (near_sad[6] != INT_MAX)
near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + 16, pre_y_stride, 0x7fffffff);
if (near_sad[7] != INT_MAX)
near_sad[7] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + pre_y_stride * 16, pre_y_stride, 0x7fffffff);
}
if (cpi->common.last_frame_type != KEY_FRAME) {
insertsortsad(near_sad, near_sadidx, 8);
} else {
insertsortsad(near_sad, near_sadidx, 3);
}
}
void rd_update_mvcount(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv, int_mv *second_best_ref_mv) {
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
#if CONFIG_NEWMVENTROPY
MV mv;
#endif
if (mbmi->mode == SPLITMV) {
int i;
for (i = 0; i < x->partition_info->count; i++) {
if (x->partition_info->bmi[i].mode == NEW4X4) {
if (x->e_mbd.allow_high_precision_mv) {
#if CONFIG_NEWMVENTROPY
mv.row = (x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row);
mv.col = (x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 1);
if (x->e_mbd.mode_info_context->mbmi.second_ref_frame) {
mv.row = (x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row);
mv.col = (x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv,
&cpi->NMVcount, 1);
}
#else
cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col)]++;
}
#endif
} else {
#if CONFIG_NEWMVENTROPY
mv.row = (x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row);
mv.col = (x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 0);
if (x->e_mbd.mode_info_context->mbmi.second_ref_frame) {
mv.row = (x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row);
mv.col = (x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv,
&cpi->NMVcount, 0);
}
#else
cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].mv.as_mv.row
- best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].mv.as_mv.col
- best_ref_mv->as_mv.col) >> 1)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.row
- second_best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.col
- second_best_ref_mv->as_mv.col) >> 1)]++;
}
#endif
}
}
}
} else if (mbmi->mode == NEWMV) {
if (x->e_mbd.allow_high_precision_mv) {
#if CONFIG_NEWMVENTROPY
mv.row = (mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row);
mv.col = (mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 1);
if (mbmi->second_ref_frame) {
mv.row = (mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row);
mv.col = (mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv, &cpi->NMVcount, 1);
}
#else
cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[0].as_mv.row
- best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[0].as_mv.col
- best_ref_mv->as_mv.col)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[1].as_mv.row
- second_best_ref_mv->as_mv.row)]++;
cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[1].as_mv.col
- second_best_ref_mv->as_mv.col)]++;
}
#endif
} else {
#if CONFIG_NEWMVENTROPY
mv.row = (mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row);
mv.col = (mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 0);
if (mbmi->second_ref_frame) {
mv.row = (mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row);
mv.col = (mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col);
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv, &cpi->NMVcount, 0);
}
#else
cpi->MVcount[0][mv_max + ((mbmi->mv[0].as_mv.row
- best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((mbmi->mv[0].as_mv.col
- best_ref_mv->as_mv.col) >> 1)]++;
if (mbmi->second_ref_frame) {
cpi->MVcount[0][mv_max + ((mbmi->mv[1].as_mv.row
- second_best_ref_mv->as_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max + ((mbmi->mv[1].as_mv.col
- second_best_ref_mv->as_mv.col) >> 1)]++;
}
#endif
}
}
}
static void set_i8x8_block_modes(MACROBLOCK *x, int modes[2][4]) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
xd->mode_info_context->bmi[ib + 0].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 1].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 4].as_mode.first = modes[0][i];
xd->mode_info_context->bmi[ib + 5].as_mode.first = modes[0][i];
#if CONFIG_COMP_INTRA_PRED
xd->mode_info_context->bmi[ib + 0].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 1].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 4].as_mode.second = modes[1][i];
xd->mode_info_context->bmi[ib + 5].as_mode.second = modes[1][i];
#endif
// printf("%d,%d,%d,%d %d,%d,%d,%d\n",
// modes[0][0], modes[0][1], modes[0][2], modes[0][3],
// modes[1][0], modes[1][1], modes[1][2], modes[1][3]);
}
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
extern void calc_ref_probs(int *count, vp8_prob *probs);
static void estimate_curframe_refprobs(VP8_COMP *cpi, vp8_prob mod_refprobs[3], int pred_ref) {
int norm_cnt[MAX_REF_FRAMES];
const int *const rfct = cpi->count_mb_ref_frame_usage;
int intra_count = rfct[INTRA_FRAME];
int last_count = rfct[LAST_FRAME];
int gf_count = rfct[GOLDEN_FRAME];
int arf_count = rfct[ALTREF_FRAME];
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
if (pred_ref == INTRA_FRAME) {
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[0] = 0; // This branch implicit
} else if (pred_ref == LAST_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[1] = 0; // This branch implicit
} else if (pred_ref == GOLDEN_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
} else {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
}
}
static __inline unsigned weighted_cost(vp8_prob *tab0, vp8_prob *tab1, int idx, int val, int weight) {
unsigned cost0 = tab0[idx] ? vp8_cost_bit(tab0[idx], val) : 0;
unsigned cost1 = tab1[idx] ? vp8_cost_bit(tab1[idx], val) : 0;
// weight is 16-bit fixed point, so this basically calculates:
// 0.5 + weight * cost1 + (1.0 - weight) * cost0
return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16;
}
static void vp8_estimate_ref_frame_costs(VP8_COMP *cpi, int segment_id, unsigned int *ref_costs) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
vp8_prob *mod_refprobs;
unsigned int cost;
int pred_ref;
int pred_flag;
int pred_ctx;
int i;
int tot_count;
vp8_prob pred_prob, new_pred_prob;
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
check_segref(xd, segment_id, LAST_FRAME) +
check_segref(xd, segment_id, GOLDEN_FRAME) +
check_segref(xd, segment_id, ALTREF_FRAME);
}
// Get the predicted reference for this mb
pred_ref = get_pred_ref(cm, xd);
// Get the context probability for the prediction flag (based on last frame)
pred_prob = get_pred_prob(cm, xd, PRED_REF);
// Predict probability for current frame based on stats so far
pred_ctx = get_pred_context(cm, xd, PRED_REF);
tot_count = cpi->ref_pred_count[pred_ctx][0] + cpi->ref_pred_count[pred_ctx][1];
if (tot_count) {
new_pred_prob =
(cpi->ref_pred_count[pred_ctx][0] * 255 + (tot_count >> 1)) / tot_count;
new_pred_prob += !new_pred_prob;
} else
new_pred_prob = 128;
// Get the set of probabilities to use if prediction fails
mod_refprobs = cm->mod_refprobs[pred_ref];
// For each possible selected reference frame work out a cost.
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (seg_ref_active && seg_ref_count == 1) {
cost = 0;
} else {
pred_flag = (i == pred_ref);
// Get the prediction for the current mb
cost = weighted_cost(&pred_prob, &new_pred_prob, 0,
pred_flag, cpi->seg0_progress);
if (cost > 1024) cost = 768; // i.e. account for 4 bits max.
// for incorrectly predicted cases
if (! pred_flag) {
vp8_prob curframe_mod_refprobs[3];
if (cpi->seg0_progress) {
estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref);
} else {
vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs));
}
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0,
(i != INTRA_FRAME), cpi->seg0_progress);
if (i != INTRA_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1,
(i != LAST_FRAME), cpi->seg0_progress);
if (i != LAST_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2,
(i != GOLDEN_FRAME), cpi->seg0_progress);
}
}
}
}
ref_costs[i] = cost;
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int single_pred_diff,
int comp_pred_diff,
int hybrid_pred_diff) {
MACROBLOCKD *xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->best_mode_index = mode_index;
vpx_memcpy(&ctx->mic, xd->mode_info_context,
sizeof(MODE_INFO));
if (partition)
vpx_memcpy(&ctx->partition_info, partition,
sizeof(PARTITION_INFO));
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
// ctx[mb_index].rddiv = x->rddiv;
// ctx[mb_index].rdmult = x->rdmult;
ctx->single_pred_diff = single_pred_diff;
ctx->comp_pred_diff = comp_pred_diff;
ctx->hybrid_pred_diff = hybrid_pred_diff;
}
static void inter_mode_cost(VP8_COMP *cpi, MACROBLOCK *x, int this_mode,
int *rate2, int *distortion2, int *rate_y,
int *distortion, int* rate_uv, int *distortion_uv) {
// Y cost and distortion
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
if (this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV ||
this_mode == NEWMV)
macro_block_yrd_16x16(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
else {
#endif
if (cpi->common.txfm_mode == ALLOW_8X8)
macro_block_yrd_8x8(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
else
macro_block_yrd(x, rate_y, distortion, IF_RTCD(&cpi->rtcd));
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
}
#endif
*rate2 += *rate_y;
*distortion2 += *distortion;
// UV cost and distortion
if (cpi->common.txfm_mode == ALLOW_8X8
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
|| this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV ||
this_mode == NEWMV
#endif
)
rd_inter16x16_uv_8x8(cpi, x, rate_uv, distortion_uv,
cpi->common.full_pixel);
else
rd_inter16x16_uv(cpi, x, rate_uv, distortion_uv, cpi->common.full_pixel);
*rate2 += *rate_uv;
*distortion2 += *distortion_uv;
}
#define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y))
void setup_buffer_inter(VP8_COMP *cpi, MACROBLOCK *x, int idx, int frame_type,
int recon_yoffset, int recon_uvoffset,
int_mv frame_nearest_mv[4], int_mv frame_near_mv[4],
int_mv frame_best_ref_mv[4],
#if CONFIG_NEWBESTREFMV
int_mv ref_mv[MAX_REF_FRAMES],
#endif
int frame_mdcounts[4][4],
unsigned char *y_buffer[4], unsigned char *u_buffer[4],
unsigned char *v_buffer[4]) {
YV12_BUFFER_CONFIG *yv12 = &cpi->common.yv12_fb[idx];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
vp8_find_near_mvs(xd, xd->mode_info_context,
xd->prev_mode_info_context,
&frame_nearest_mv[frame_type], &frame_near_mv[frame_type],
&frame_best_ref_mv[frame_type], frame_mdcounts[frame_type],
frame_type, cpi->common.ref_frame_sign_bias);
y_buffer[frame_type] = yv12->y_buffer + recon_yoffset;
u_buffer[frame_type] = yv12->u_buffer + recon_uvoffset;
v_buffer[frame_type] = yv12->v_buffer + recon_uvoffset;
#if CONFIG_NEWBESTREFMV
// Update stats on relative distance of chosen vector to the
// possible best reference vectors.
{
find_mv_refs(xd, xd->mode_info_context,
xd->prev_mode_info_context,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias );
}
vp8_find_best_ref_mvs(xd, y_buffer[frame_type],
yv12->y_stride,
mbmi->ref_mvs[frame_type],
&frame_best_ref_mv[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
ref_mv[frame_type].as_int = frame_best_ref_mv[frame_type].as_int;
#endif
}
void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset,
int *returnrate, int *returndistortion, int64_t *returnintra) {
VP8_COMMON *cm = &cpi->common;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MACROBLOCKD *xd = &x->e_mbd;
union b_mode_info best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
int_mv best_ref_mv, second_best_ref_mv;
MB_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int i, best_mode_index = 0;
int mode8x8[2][4];
unsigned char segment_id = mbmi->segment_id;
int mode_index;
int mdcounts[4];
int rate, distortion;
int rate2, distortion2;
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
int64_t best_rd = INT64_MAX, best_intra_rd = INT64_MAX;
#if CONFIG_PRED_FILTER
int64_t best_overall_rd = INT64_MAX;
#endif
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int uv_intra_skippable = 0;
int uv_intra_rate_8x8 = 0, uv_intra_distortion_8x8 = 0, uv_intra_rate_tokenonly_8x8 = 0;
int uv_intra_skippable_8x8 = 0;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
int distortion_uv = INT_MAX;
int64_t best_yrd = INT64_MAX;
#if CONFIG_PRED_FILTER
int best_filter_state;
#endif
#if CONFIG_NEWBESTREFMV
int_mv ref_mv[MAX_REF_FRAMES] = {{0}};
#endif
#if CONFIG_SWITCHABLE_INTERP
int switchable_filter_index = 0;
#endif
MB_PREDICTION_MODE uv_intra_mode;
MB_PREDICTION_MODE uv_intra_mode_8x8 = 0;
int_mv mvp;
int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int saddone = 0;
int sr = 0; // search range got from mv_pred(). It uses step_param levels. (0-7)
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int_mv frame_best_ref_mv[4];
int frame_mdcounts[4][4];
unsigned char *y_buffer[4], *u_buffer[4], *v_buffer[4];
unsigned int ref_costs[MAX_REF_FRAMES];
int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1];
#if CONFIG_HYBRIDTRANSFORM16X16
int best_txtype, rd_txtype;
#endif
vpx_memset(mode8x8, 0, sizeof(mode8x8));
vpx_memset(&frame_mv, 0, sizeof(frame_mv));
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&best_bmodes, 0, sizeof(best_bmodes));
vpx_memset(&x->mb_context[xd->mb_index], 0, sizeof(PICK_MODE_CONTEXT));
for (i = 0; i < MAX_REF_FRAMES; i++)
frame_mv[NEWMV][i].as_int = INVALID_MV;
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < BLOCK_MAX_SEGMENTS - 1; i++) {
int j, k;
for (j = 0; j < 16; j++)
for (k = 0; k < MAX_REF_FRAMES - 1; k++)
seg_mvs[i][j][k].as_int = INVALID_MV;
}
if (cpi->ref_frame_flags & VP8_LAST_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.lst_fb_idx, LAST_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.gld_fb_idx, GOLDEN_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.alt_fb_idx, ALTREF_FRAME,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_best_ref_mv,
#if CONFIG_NEWBESTREFMV
ref_mv,
#endif
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
*returnintra = INT64_MAX;
x->skip = 0;
mbmi->ref_frame = INTRA_FRAME;
/* Initialize zbin mode boost for uv costing */
cpi->zbin_mode_boost = 0;
vp8_update_zbin_extra(cpi, x);
rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate,
&uv_intra_rate_tokenonly, &uv_intra_distortion,
&uv_intra_skippable);
uv_intra_mode = mbmi->uv_mode;
/* rough estimate for now */
if (cpi->common.txfm_mode == ALLOW_8X8) {
rd_pick_intra_mbuv_mode_8x8(cpi, x, &uv_intra_rate_8x8,
&uv_intra_rate_tokenonly_8x8,
&uv_intra_distortion_8x8,
&uv_intra_skippable_8x8);
uv_intra_mode_8x8 = mbmi->uv_mode;
}
// Get estimates of reference frame costs for each reference frame
// that depend on the current prediction etc.
vp8_estimate_ref_frame_costs(cpi, segment_id, ref_costs);
#if CONFIG_SWITCHABLE_INTERP
for (mode_index = 0; mode_index < MAX_MODES;
mode_index += (!switchable_filter_index)) {
#else
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
#endif
int64_t this_rd = INT64_MAX;
int is_comp_pred;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int mode_excluded = 0;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
rate_y = 0;
rate_uv = 0;
this_mode = vp8_mode_order[mode_index].mode;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = vp8_mode_order[mode_index].ref_frame;
mbmi->second_ref_frame = vp8_mode_order[mode_index].second_ref_frame;
is_comp_pred = x->e_mbd.mode_info_context->mbmi.second_ref_frame != 0;
#if CONFIG_NEWBESTREFMV
mbmi->ref_mv = ref_mv[mbmi->ref_frame];
mbmi->second_ref_mv = ref_mv[mbmi->second_ref_frame];
#endif
#if CONFIG_PRED_FILTER
mbmi->pred_filter_enabled = 0;
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
this_mode >= NEARESTMV && this_mode <= SPLITMV) {
mbmi->interp_filter =
vp8_switchable_interp[switchable_filter_index++];
if (switchable_filter_index == VP8_SWITCHABLE_FILTERS)
switchable_filter_index = 0;
//printf("Searching %d (%d)\n", this_mode, switchable_filter_index);
} else {
mbmi->interp_filter = cpi->common.mcomp_filter_type;
}
vp8_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
#endif
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// current coding mode under rate-distortion optimization test loop
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = this_mode;
#endif
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!check_segref(xd, segment_id, mbmi->ref_frame)) {
continue;
}
// If the segment mode feature is enabled....
// then do nothing if the current mode is not allowed..
else if (segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
(this_mode !=
get_segdata(xd, segment_id, SEG_LVL_MODE))) {
continue;
}
// Disable this drop out case if either the mode or ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that the we end up unable to pick any mode.
else if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV ||
mbmi->ref_frame != ALTREF_FRAME) {
continue;
}
}
}
/* everything but intra */
if (mbmi->ref_frame) {
int ref = mbmi->ref_frame;
x->e_mbd.pre.y_buffer = y_buffer[ref];
x->e_mbd.pre.u_buffer = u_buffer[ref];
x->e_mbd.pre.v_buffer = v_buffer[ref];
best_ref_mv = frame_best_ref_mv[ref];
vpx_memcpy(mdcounts, frame_mdcounts[ref], sizeof(mdcounts));
}
if (mbmi->second_ref_frame) {
int ref = mbmi->second_ref_frame;
x->e_mbd.second_pre.y_buffer = y_buffer[ref];
x->e_mbd.second_pre.u_buffer = u_buffer[ref];
x->e_mbd.second_pre.v_buffer = v_buffer[ref];
second_best_ref_mv = frame_best_ref_mv[ref];
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
if (cpi->zbin_mode_boost_enabled) {
if (vp8_mode_order[mode_index].ref_frame == INTRA_FRAME)
cpi->zbin_mode_boost = 0;
else {
if (vp8_mode_order[mode_index].mode == ZEROMV) {
if (vp8_mode_order[mode_index].ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (vp8_mode_order[mode_index].mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
vp8_update_zbin_extra(cpi, x);
}
// Intra
if (!mbmi->ref_frame) {
switch (this_mode) {
default:
case DC_PRED:
case V_PRED:
case H_PRED:
case TM_PRED:
case D45_PRED:
case D135_PRED:
case D117_PRED:
case D153_PRED:
case D27_PRED:
case D63_PRED:
mbmi->ref_frame = INTRA_FRAME;
// FIXME compound intra prediction
RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby)
(&x->e_mbd);
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
// FIXME: breaks lossless since 4x4 isn't allowed
macro_block_yrd_16x16(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
#if CONFIG_HYBRIDTRANSFORM16X16
rd_txtype = x->e_mbd.block[0].bmi.as_mode.tx_type;
#endif
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
rate2 += uv_intra_rate_8x8;
rate_uv = uv_intra_rate_tokenonly_8x8;
distortion2 += uv_intra_distortion_8x8;
distortion_uv = uv_intra_distortion_8x8;
break;
#else
if (cpi->common.txfm_mode == ALLOW_8X8)
macro_block_yrd_8x8(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
else
macro_block_yrd(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd));
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode];
if (cpi->common.txfm_mode == ALLOW_8X8) {
rate2 += uv_intra_rate_8x8;
rate_uv = uv_intra_rate_tokenonly_8x8;
distortion2 += uv_intra_distortion_8x8;
distortion_uv = uv_intra_distortion_8x8;
} else {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
}
break;
#endif
case B_PRED: {
int64_t tmp_rd;
// Note the rate value returned here includes the cost of coding
// the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED];
tmp_rd = rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion, best_yrd,
#if CONFIG_COMP_INTRA_PRED
0,
#endif
0);
rate2 += rate;
distortion2 += distortion;
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
case I8X8_PRED: {
int64_t tmp_rd;
tmp_rd = rd_pick_intra8x8mby_modes(cpi, x, &rate, &rate_y,
&distortion, best_yrd);
rate2 += rate;
distortion2 += distortion;
mode8x8[0][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.first;
mode8x8[0][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.first;
mode8x8[0][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.first;
mode8x8[0][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
mode8x8[1][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.second;
mode8x8[1][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.second;
mode8x8[1][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.second;
mode8x8[1][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.second;
#endif
/* TODO: uv rate maybe over-estimated here since there is UV intra
mode coded in I8X8_PRED prediction */
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
}
}
// Split MV. The code is very different from the other inter modes so
// special case it.
else if (this_mode == SPLITMV) {
int64_t tmp_rd, this_rd_thresh;
int_mv *second_ref = is_comp_pred ? &second_best_ref_mv : NULL;
this_rd_thresh =
(mbmi->ref_frame == LAST_FRAME) ?
cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh =
(mbmi->ref_frame == GOLDEN_FRAME) ?
cpi->rd_threshes[THR_NEWG] : this_rd_thresh;
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
second_ref, best_yrd, mdcounts,
&rate, &rate_y, &distortion,
this_rd_thresh, seg_mvs);
rate2 += rate;
distortion2 += distortion;
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[mbmi->interp_filter]];
#endif
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
if (tmp_rd < best_yrd) {
rd_inter4x4_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel);
rate2 += rate_uv;
distortion2 += distortion_uv;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
compmode_cost =
vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), is_comp_pred);
mbmi->mode = this_mode;
}
else {
const int num_refs = is_comp_pred ? 2 : 1;
int flag;
int refs[2] = {x->e_mbd.mode_info_context->mbmi.ref_frame,
x->e_mbd.mode_info_context->mbmi.second_ref_frame};
int_mv cur_mv[2];
switch (this_mode) {
case NEWMV:
if (is_comp_pred) {
if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV ||
frame_mv[NEWMV][refs[1]].as_int == INVALID_MV)
continue;
rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[0]],
&frame_best_ref_mv[refs[0]],
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[1]],
&frame_best_ref_mv[refs[1]],
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
} else {
int bestsme = INT_MAX;
int further_steps, step_param = cpi->sf.first_step;
int sadpb = x->sadperbit16;
int_mv mvp_full, tmp_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp8_clamp_mv_min_max(x, &best_ref_mv);
if (!saddone) {
vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]);
saddone = 1;
}
vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp,
mbmi->ref_frame, cpi->common.ref_frame_sign_bias,
&sr, &near_sadidx[0]);
mvp_full.as_mv.col = mvp.as_mv.col >> 3;
mvp_full.as_mv.row = mvp.as_mv.row >> 3;
// adjust search range according to sr from mv prediction
step_param = MAX(step_param, sr);
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp8_full_pixel_diamond(cpi, x, b, d, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[BLOCK_16X16],
&best_ref_mv, &tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, b, d, &tmp_mv, &best_ref_mv,
x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16],
XMVCOST, &dis, &sse);
}
d->bmi.as_mv.first.as_int = tmp_mv.as_int;
frame_mv[NEWMV][refs[0]].as_int = d->bmi.as_mv.first.as_int;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&tmp_mv, &best_ref_mv,
XMVCOST, 96,
x->e_mbd.allow_high_precision_mv);
}
break;
case NEARESTMV:
case NEARMV:
flag = 0;
// Do not bother proceeding if the vector (from newmv, nearest or
// near) is 0,0 as this should then be coded using the zeromv mode.
for (i = 0; i < num_refs; ++i)
if (frame_mv[this_mode][refs[i]].as_int == 0)
flag = 1;
if (flag)
continue;
case ZEROMV:
default:
break;
}
flag = 0;
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[this_mode][refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
vp8_clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
flag = 1;
x->e_mbd.mode_info_context->mbmi.mv[i].as_int = cur_mv[i].as_int;
}
if (flag)
continue;
#if CONFIG_PRED_FILTER
// Filtered prediction:
xd->mode_info_context->mbmi.pred_filter_enabled =
vp8_mode_order[mode_index].pred_filter_flag;
rate2 += vp8_cost_bit(cpi->common.prob_pred_filter_off,
xd->mode_info_context->mbmi.pred_filter_enabled);
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[
x->e_mbd.mode_info_context->mbmi.interp_filter]];
#endif
/* We don't include the cost of the second reference here, because there are only
* three options: Last/Golden, ARF/Last or Golden/ARF, or in other words if you
* present them in that order, the second one is always known if the first is known */
compmode_cost = vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP),
is_comp_pred);
rate2 += vp8_cost_mv_ref(cpi, this_mode, mdcounts);
vp8_build_1st_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor,
16, 0);
if (is_comp_pred)
vp8_build_2nd_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor,
16);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int sse, var;
int threshold = (xd->block[0].dequant[1]
* xd->block[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)
(*(b->base_src), b->src_stride,
x->e_mbd.predictor, 16, &sse);
if (sse < threshold) {
unsigned int q2dc = xd->block[24].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc *q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance));
if (sse2 * 2 < threshold) {
x->skip = 1;
distortion2 = sse + sse2;
rate2 = 500;
/* for best_yrd calculation */
rate_uv = 0;
distortion_uv = sse2;
disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
break;
}
}
}
}
vp8_build_1st_inter16x16_predictors_mbuv(&x->e_mbd, &xd->predictor[256],
&xd->predictor[320], 8);
if (is_comp_pred)
vp8_build_2nd_inter16x16_predictors_mbuv(&x->e_mbd,
&xd->predictor[256],
&xd->predictor[320], 8);
inter_mode_cost(cpi, x, this_mode, &rate2, &distortion2,
&rate_y, &distortion, &rate_uv, &distortion_uv);
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION)
rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[mbmi->ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
if (cpi->common.mb_no_coeff_skip) {
int mb_skippable;
int mb_skip_allowed;
int has_y2 = (this_mode != SPLITMV
&& this_mode != B_PRED
&& this_mode != I8X8_PRED);
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
if (this_mode <= TM_PRED ||
this_mode == NEWMV ||
this_mode == ZEROMV ||
this_mode == NEARESTMV ||
this_mode == NEARMV)
mb_skippable = mb_is_skippable_16x16(&x->e_mbd);
else
#endif
if ((cpi->common.txfm_mode == ALLOW_8X8) && has_y2) {
if (mbmi->ref_frame != INTRA_FRAME) {
#if CONFIG_TX16X16
mb_skippable = mb_is_skippable_16x16(&x->e_mbd);
#else
mb_skippable = mb_is_skippable_8x8(&x->e_mbd, has_y2);
#endif
} else {
#if CONFIG_TX16X16
mb_skippable = uv_intra_skippable_8x8
& mby_is_skippable_16x16(&x->e_mbd);
#else
mb_skippable = uv_intra_skippable_8x8
& mby_is_skippable_8x8(&x->e_mbd, has_y2);
#endif
}
} else {
if (mbmi->ref_frame != INTRA_FRAME)
mb_skippable = mb_is_skippable(&x->e_mbd, has_y2);
else
mb_skippable = uv_intra_skippable
& mby_is_skippable(&x->e_mbd, has_y2);
}
// Is Mb level skip allowed for this mb.
mb_skip_allowed =
!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
get_segdata(xd, segment_id, SEG_LVL_EOB);
if (mb_skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp8_prob skip_prob =
get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp8_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
}
// Add in the cost of the no skip flag.
else if (mb_skip_allowed) {
int prob_skip_cost = vp8_cost_bit(
get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Keep record of best intra distortion
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
#if CONFIG_PRED_FILTER
// Keep track of the best mode irrespective of prediction filter state
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter_state = mbmi->pred_filter_enabled;
}
// Ignore modes where the prediction filter state doesn't
// match the state signaled at the frame level
if ((cm->pred_filter_mode == 2) ||
(cm->pred_filter_mode ==
mbmi->pred_filter_enabled)) {
#endif
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
#if CONFIG_HYBRIDTRANSFORM16X16
best_txtype = rd_txtype;
#endif
if (this_mode <= B_PRED) {
if (cpi->common.txfm_mode == ALLOW_8X8
&& this_mode != B_PRED
&& this_mode != I8X8_PRED)
mbmi->uv_mode = uv_intra_mode_8x8;
else
mbmi->uv_mode = uv_intra_mode;
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[mbmi->ref_frame];
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost),
(distortion2 - distortion_uv));
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
if ((this_mode == B_PRED)
|| (this_mode == I8X8_PRED)
|| (this_mode == SPLITMV))
for (i = 0; i < 16; i++) {
best_bmodes[i] = x->e_mbd.block[i].bmi;
}
}
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7) *
cpi->rd_thresh_mult[mode_index];
}
// If the mode did not help improve the best error case then raise the
// threshold for testing that mode next time around.
else {
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
/* keep record of best compound/single-only prediction */
if (!disable_skip &&
mbmi->ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd;
int single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame == INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame != INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
#if CONFIG_PRED_FILTER
}
#endif
if (x->skip && !mode_excluded)
break;
}
#if CONFIG_PRED_FILTER
// Update counts for prediction filter usage
if (best_filter_state != 0)
++cpi->pred_filter_on_count;
else
++cpi->pred_filter_off_count;
#endif
#if CONFIG_SWITCHABLE_INTERP
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
best_mbmode.mode >= NEARESTMV &&
best_mbmode.mode <= SPLITMV) {
++cpi->switchable_interp_count
[get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp8_switchable_interp_map[best_mbmode.interp_filter]];
}
#endif
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >=
(MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) *
cpi->rd_thresh_mult[best_mode_index];
}
// This code force Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame or mode is enabled for this
// segment.
if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff =
(cpi->common.mb_no_coeff_skip) ? 1 : 0;
mbmi->partitioning = 0;
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
#if CONFIG_NEWBESTREFMV
mbmi->ref_mv = ref_mv[best_mbmode.ref_frame];
mbmi->second_ref_mv = ref_mv[best_mbmode.second_ref_frame];
#endif
if (best_mbmode.mode == B_PRED) {
for (i = 0; i < 16; i++) {
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
}
}
#if CONFIG_HYBRIDTRANSFORM16X16
if (best_mbmode.mode < I8X8_PRED)
xd->mode_info_context->bmi[0].as_mode.tx_type = best_txtype;
#endif
if (best_mbmode.mode == I8X8_PRED)
set_i8x8_block_modes(x, mode8x8);
if (best_mbmode.mode == SPLITMV) {
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.first.as_int = best_bmodes[i].as_mv.first.as_int;
if (mbmi->second_ref_frame)
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.second.as_int = best_bmodes[i].as_mv.second.as_int;
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
end:
store_coding_context(x, &x->mb_context[xd->mb_index], best_mode_index, &best_partition,
&frame_best_ref_mv[xd->mode_info_context->mbmi.ref_frame],
&frame_best_ref_mv[xd->mode_info_context->mbmi.second_ref_frame],
best_pred_diff[0], best_pred_diff[1], best_pred_diff[2]);
}
#if CONFIG_SUPERBLOCKS
void vp8_rd_pick_intra_mode_sb(VP8_COMP *cpi, MACROBLOCK *x,
int *returnrate,
int *returndist) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y, rate_uv;
int rate_y_tokenonly, rate_uv_tokenonly;
int error_y, error_uv;
int dist_y, dist_uv;
int y_skip, uv_skip;
x->e_mbd.mode_info_context->mbmi.txfm_size = TX_8X8;
error_uv = rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip);
error_y = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip);
if (cpi->common.mb_no_coeff_skip && y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp8_cost_bit(get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
} else {
*returnrate = rate_y + rate_uv;
if (cpi->common.mb_no_coeff_skip)
*returnrate += vp8_cost_bit(get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
}
}
#endif
void vp8_rd_pick_intra_mode(VP8_COMP *cpi, MACROBLOCK *x,
int *returnrate, int *returndist) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t error4x4, error16x16;
#if CONFIG_COMP_INTRA_PRED
int64_t error4x4d;
int rate4x4d, dist4x4d;
#endif
int rate4x4, rate16x16 = 0, rateuv, rateuv8x8;
int dist4x4, dist16x16, distuv, distuv8x8;
int rate;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly = 0, rateuv8x8_tokenonly = 0;
int64_t error8x8;
int rate8x8_tokenonly=0;
int rate8x8, dist8x8;
int mode16x16;
int mode8x8[2][4];
int dist;
int modeuv, modeuv8x8, uv_intra_skippable, uv_intra_skippable_8x8;
int y_intra16x16_skippable;
#if CONFIG_HYBRIDTRANSFORM16X16
int best_txtype;
#endif
mbmi->ref_frame = INTRA_FRAME;
rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv,
&uv_intra_skippable);
modeuv = mbmi->uv_mode;
if (cpi->common.txfm_mode == ALLOW_8X8) {
rd_pick_intra_mbuv_mode_8x8(cpi, x, &rateuv8x8, &rateuv8x8_tokenonly,
&distuv8x8, &uv_intra_skippable_8x8);
modeuv8x8 = mbmi->uv_mode;
} else {
uv_intra_skippable_8x8 = uv_intra_skippable;
rateuv8x8 = rateuv;
distuv8x8 = distuv;
rateuv8x8_tokenonly = rateuv_tokenonly;
modeuv8x8 = modeuv;
}
// current macroblock under rate-distortion optimization test loop
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = DC_PRED;
#endif
error16x16 = rd_pick_intra16x16mby_mode(cpi, x, &rate16x16,
&rate16x16_tokenonly, &dist16x16,
&y_intra16x16_skippable);
mode16x16 = mbmi->mode;
#if CONFIG_HYBRIDTRANSFORM16X16
best_txtype = xd->block[0].bmi.as_mode.tx_type;
xd->mode_info_context->bmi[0].as_mode.tx_type = best_txtype;
#endif
#if CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM8X8
mbmi->mode_rdopt = I8X8_PRED;
#endif
error8x8 = rd_pick_intra8x8mby_modes(cpi, x, &rate8x8, &rate8x8_tokenonly,
&dist8x8, error16x16);
mode8x8[0][0]= xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[0][1]= xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[0][2]= xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[0][3]= xd->mode_info_context->bmi[10].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
mode8x8[1][0] = xd->mode_info_context->bmi[0].as_mode.second;
mode8x8[1][1] = xd->mode_info_context->bmi[2].as_mode.second;
mode8x8[1][2] = xd->mode_info_context->bmi[8].as_mode.second;
mode8x8[1][3] = xd->mode_info_context->bmi[10].as_mode.second;
#endif
#if CONFIG_HYBRIDTRANSFORM
mbmi->mode_rdopt = B_PRED;
#endif
error4x4 = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4, &rate4x4_tokenonly,
&dist4x4, error16x16,
#if CONFIG_COMP_INTRA_PRED
0,
#endif
0);
#if CONFIG_COMP_INTRA_PRED
error4x4d = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4d, &rate4x4_tokenonly,
&dist4x4d, error16x16, 1, 0);
#endif
if (cpi->common.mb_no_coeff_skip &&
y_intra16x16_skippable && uv_intra_skippable_8x8) {
mbmi->uv_mode = modeuv;
rate = rateuv8x8 + rate16x16 - rateuv8x8_tokenonly - rate16x16_tokenonly +
vp8_cost_bit(get_pred_prob(cm, xd, PRED_MBSKIP), 1);
dist = dist16x16 + (distuv8x8 >> 2);
} else if (error8x8 > error16x16) {
if (error4x4 < error16x16) {
rate = rateuv;
#if CONFIG_COMP_INTRA_PRED
rate += (error4x4d < error4x4) ? rate4x4d : rate4x4;
if (error4x4d >= error4x4) // FIXME save original modes etc.
error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4,
&rate4x4_tokenonly,
&dist4x4, error16x16, 0,
cpi->update_context);
#else
rate += rate4x4;
#endif
mbmi->mode = B_PRED;
dist = dist4x4 + (distuv >> 2);
} else {
mbmi->mode = mode16x16;
rate = rate16x16 + rateuv8x8;
dist = dist16x16 + (distuv8x8 >> 2);
#if CONFIG_HYBRIDTRANSFORM16X16
// save this into supermacroblock coding decision buffer
xd->mode_info_context->bmi[0].as_mode.tx_type = best_txtype;
#endif
}
if (cpi->common.mb_no_coeff_skip)
rate += vp8_cost_bit(get_pred_prob(cm, xd, PRED_MBSKIP), 0);
} else {
if (error4x4 < error8x8) {
rate = rateuv;
#if CONFIG_COMP_INTRA_PRED
rate += (error4x4d < error4x4) ? rate4x4d : rate4x4;
if (error4x4d >= error4x4) // FIXME save original modes etc.
error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4,
&rate4x4_tokenonly,
&dist4x4, error16x16, 0,
cpi->update_context);
#else
rate += rate4x4;
#endif
mbmi->mode = B_PRED;
dist = dist4x4 + (distuv >> 2);
} else {
mbmi->mode = I8X8_PRED;
set_i8x8_block_modes(x, mode8x8);
rate = rate8x8 + rateuv;
dist = dist8x8 + (distuv >> 2);
}
if (cpi->common.mb_no_coeff_skip)
rate += vp8_cost_bit(get_pred_prob(cm, xd, PRED_MBSKIP), 0);
}
*returnrate = rate;
*returndist = dist;
}
#if CONFIG_SUPERBLOCKS
int64_t vp8_rd_pick_inter_mode_sb(VP8_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate, int *returndistortion) {
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &xd->block[0];
MB_PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred;
int_mv best_ref_mv, second_best_ref_mv;
int_mv mode_mv[MB_MODE_COUNT];
int_mv frame_nearest_mv[4];
int_mv frame_near_mv[4];
int_mv frame_best_ref_mv[4];
int_mv mc_search_result[4];
int frame_mdcounts[4][4];
unsigned char *y_buffer[4];
unsigned char *u_buffer[4];
unsigned char *v_buffer[4];
static const int flag_list[4] = { 0, VP8_LAST_FLAG, VP8_GOLD_FLAG, VP8_ALT_FLAG };
int idx_list[4] = { 0, cpi->common.lst_fb_idx, cpi->common.gld_fb_idx, cpi->common.alt_fb_idx };
int mdcounts[4];
int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int saddone = 0;
int sr = 0; // search range got from mv_pred(). It uses step_param levels. (0-7)
int64_t best_rd = INT64_MAX;
int64_t best_comp_rd = INT64_MAX;
int64_t best_single_rd = INT64_MAX;
int64_t best_hybrid_rd = INT64_MAX;
int64_t best_yrd = INT64_MAX;
MB_MODE_INFO best_mbmode;
int mode_index = 0;
unsigned int ref_costs[MAX_REF_FRAMES];
xd->mode_info_context->mbmi.segment_id = segment_id;
vp8_estimate_ref_frame_costs(cpi, segment_id, ref_costs);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
YV12_BUFFER_CONFIG *ref_buf = &cpi->common.yv12_fb[idx_list[ref_frame]];
vp8_find_near_mvs(xd, xd->mode_info_context,
xd->prev_mode_info_context,
&frame_nearest_mv[ref_frame], &frame_near_mv[ref_frame],
&frame_best_ref_mv[ref_frame], frame_mdcounts[ref_frame],
ref_frame, cpi->common.ref_frame_sign_bias);
y_buffer[ref_frame] = ref_buf->y_buffer + recon_yoffset;
u_buffer[ref_frame] = ref_buf->u_buffer + recon_uvoffset;
v_buffer[ref_frame] = ref_buf->v_buffer + recon_uvoffset;
}
mc_search_result[ref_frame].as_int = INVALID_MV;
}
for (mode_index = 0; mode_index < MAX_MODES; mode_index++) {
int_mv mvp;
int mode_excluded;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int rate2 = 0;
int distortion2 = 0;
int rate_y = 0;
int rate_uv = 0;
int distortion_uv;
int distortion;
int skippable_y, skippable_uv;
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index]) {
continue;
}
this_mode = vp8_mode_order[mode_index].mode;
ref_frame = vp8_mode_order[mode_index].ref_frame;
xd->mode_info_context->mbmi.ref_frame = ref_frame;
comp_pred = vp8_mode_order[mode_index].second_ref_frame != INTRA_FRAME;
xd->mode_info_context->mbmi.mode = this_mode;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
#if 0 && CONFIG_PRED_FILTER
xd->mode_info_context->mbmi.pred_filter_enabled = 0;
#endif
#if 0 && CONFIG_COMP_INTRA_PRED
xd->mode_info_context->mbmi.second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
xd->mode_info_context->mbmi.second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
continue;
// not yet supported or not superblocky
// TODO(rbultje): support intra coding
if (ref_frame == INTRA_FRAME || this_mode == SPLITMV)
continue;
if (comp_pred) {
int second_ref;
if (ref_frame == ALTREF_FRAME) {
second_ref = LAST_FRAME;
} else {
second_ref = ref_frame + 1;
}
if (!(cpi->ref_frame_flags & flag_list[second_ref]))
continue;
xd->mode_info_context->mbmi.second_ref_frame = second_ref;
xd->second_pre.y_buffer = y_buffer[second_ref];
xd->second_pre.u_buffer = u_buffer[second_ref];
xd->second_pre.v_buffer = v_buffer[second_ref];
second_best_ref_mv = frame_best_ref_mv[second_ref];
mode_excluded = cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
xd->mode_info_context->mbmi.second_ref_frame = INTRA_FRAME;
mode_excluded = cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
xd->pre.y_buffer = y_buffer[ref_frame];
xd->pre.u_buffer = u_buffer[ref_frame];
xd->pre.v_buffer = v_buffer[ref_frame];
mode_mv[ZEROMV].as_int = 0;
mode_mv[NEARESTMV] = frame_nearest_mv[ref_frame];
mode_mv[NEARMV] = frame_near_mv[ref_frame];
best_ref_mv = frame_best_ref_mv[ref_frame];
vpx_memcpy(mdcounts, frame_mdcounts[ref_frame], sizeof(mdcounts));
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!check_segref(xd, segment_id, ref_frame)) {
continue;
}
// If the segment mode feature is enabled....
// then do nothing if the current mode is not allowed..
else if (segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
(this_mode != get_segdata(xd, segment_id, SEG_LVL_MODE))) {
continue;
}
// Disable this drop out case if either the mode or ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
else if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
continue;
}
}
}
if (!comp_pred) {
switch (this_mode) {
case NEWMV: {
int thissme;
int bestsme = INT_MAX;
int step_param = cpi->sf.first_step;
int further_steps;
int n;
int do_refine = 1; /* If last step (1-away) of n-step search doesn't pick the center point as the best match,
we will do a final 1-away diamond refining search */
int num00;
int sadpb = x->sadperbit16;
int_mv mvp_full;
int col_min = (best_ref_mv.as_mv.col >> 3) - MAX_FULL_PEL_VAL + ((best_ref_mv.as_mv.col & 7) ? 1 : 0);
int row_min = (best_ref_mv.as_mv.row >> 3) - MAX_FULL_PEL_VAL + ((best_ref_mv.as_mv.row & 7) ? 1 : 0);
int col_max = (best_ref_mv.as_mv.col >> 3) + MAX_FULL_PEL_VAL;
int row_max = (best_ref_mv.as_mv.row >> 3) + MAX_FULL_PEL_VAL;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
if (!saddone) {
vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]);
saddone = 1;
}
vp8_mv_pred(cpi, xd, xd->mode_info_context, &mvp,
xd->mode_info_context->mbmi.ref_frame,
cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]);
mvp_full.as_mv.col = mvp.as_mv.col >> 3;
mvp_full.as_mv.row = mvp.as_mv.row >> 3;
// Get intersection of UMV window and valid MV window to reduce # of checks in diamond search.
if (x->mv_col_min < col_min)
x->mv_col_min = col_min;
if (x->mv_col_max > col_max)
x->mv_col_max = col_max;
if (x->mv_row_min < row_min)
x->mv_row_min = row_min;
if (x->mv_row_max > row_max)
x->mv_row_max = row_max;
// adjust search range according to sr from mv prediction
if (sr > step_param)
step_param = sr;
// Initial step/diamond search
{
bestsme = cpi->diamond_search_sad(x, b, d, &mvp_full, &d->bmi.as_mv.first,
step_param, sadpb, &num00,
&cpi->fn_ptr[BLOCK_32X32],
XMVCOST, &best_ref_mv);
mode_mv[NEWMV].as_int = d->bmi.as_mv.first.as_int;
// Further step/diamond searches as necessary
n = 0;
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
n = num00;
num00 = 0;
/* If there won't be more n-step search, check to see if refining search is needed. */
if (n > further_steps)
do_refine = 0;
while (n < further_steps) {
n++;
if (num00)
num00--;
else {
thissme = cpi->diamond_search_sad(x, b, d, &mvp_full,
&d->bmi.as_mv.first, step_param + n, sadpb, &num00,
&cpi->fn_ptr[BLOCK_32X32],
XMVCOST, &best_ref_mv);
/* check to see if refining search is needed. */
if (num00 > (further_steps - n))
do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEWMV].as_int = d->bmi.as_mv.first.as_int;
} else {
d->bmi.as_mv.first.as_int = mode_mv[NEWMV].as_int;
}
}
}
}
/* final 1-away diamond refining search */
if (do_refine == 1) {
int search_range;
// It seems not a good way to set search_range. Need further investigation.
// search_range = MAXF(abs((mvp.row>>3) - d->bmi.mv.as_mv.row), abs((mvp.col>>3) - d->bmi.mv.as_mv.col));
search_range = 8;
thissme = cpi->refining_search_sad(x, b, d, &d->bmi.as_mv.first, sadpb,
search_range, &cpi->fn_ptr[BLOCK_32X32],
XMVCOST, &best_ref_mv);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEWMV].as_int = d->bmi.as_mv.first.as_int;
} else {
d->bmi.as_mv.first.as_int = mode_mv[NEWMV].as_int;
}
}
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, b, d, &d->bmi.as_mv.first, &best_ref_mv,
x->errorperbit,
&cpi->fn_ptr[BLOCK_32X32],
XMVCOST, &dis, &sse);
}
mc_search_result[xd->mode_info_context->mbmi.ref_frame].as_int =
d->bmi.as_mv.first.as_int;
mode_mv[NEWMV].as_int = d->bmi.as_mv.first.as_int;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv,
XMVCOST, 96,
xd->allow_high_precision_mv);
}
case NEARESTMV:
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
vp8_clamp_mv2(&mode_mv[this_mode], xd);
// Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode.
if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) && (mode_mv[this_mode].as_int == 0)) {
continue;
}
case ZEROMV:
// Trap vectors that reach beyond the UMV borders
// Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point
// because of the lack of break statements in the previous two cases.
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]);
#if CONFIG_PRED_FILTER
// Filtered prediction:
xd->mode_info_context->mbmi.pred_filter_enabled =
vp8_mode_order[mode_index].pred_filter_flag;
rate2 += vp8_cost_bit(cpi->common.prob_pred_filter_off,
xd->mode_info_context->mbmi.pred_filter_enabled);
#endif
vp8_build_inter32x32_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
compmode_cost =
vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), 0);
if (cpi->active_map_enabled && x->active_ptr[0] == 0) {
x->skip = 1;
} else if (x->encode_breakout) {
unsigned int sse;
unsigned int var;
int threshold = (xd->block[0].dequant[1] *
xd->block[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = VARIANCE_INVOKE(&cpi->rtcd.variance, var32x32)(*(b->base_src),
b->src_stride, xd->dst.y_buffer, xd->dst.y_stride, &sse);
if (sse < threshold) {
unsigned int q2dc = xd->block[24].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc *q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
unsigned int sse2, sse3;
var += VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)
(x->src.u_buffer, x->src.uv_stride,
xd->dst.u_buffer, xd->dst.uv_stride, &sse2);
var += VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)
(x->src.v_buffer, x->src.uv_stride,
xd->dst.v_buffer, xd->dst.uv_stride, &sse3);
sse2 += sse3;
if (sse2 * 2 < threshold) {
x->skip = 1;
distortion2 = sse + sse2;
rate2 = 500;
/* for best_yrd calculation */
rate_uv = 0;
distortion_uv = sse2;
disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
break;
}
}
}
}
// Add in the Mv/mode cost
rate2 += vp8_cost_mv_ref(cpi, this_mode, mdcounts);
// Y cost and distortion - FIXME support other transform sizes
super_block_yrd_8x8(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd), &skippable_y);
rate2 += rate_y;
distortion2 += distortion;
rd_inter32x32_uv_8x8(cpi, x, &rate_uv, &distortion_uv,
cpi->common.full_pixel, &skippable_uv);
rate2 += rate_uv;
distortion2 += distortion_uv;
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
break;
default:
break;
}
} else { /* xd->mode_info_context->mbmi.second_ref_frame != 0 */
int ref1 = xd->mode_info_context->mbmi.ref_frame;
int ref2 = xd->mode_info_context->mbmi.second_ref_frame;
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
switch (this_mode) {
case NEWMV:
if (mc_search_result[ref1].as_int == INVALID_MV ||
mc_search_result[ref2].as_int == INVALID_MV)
continue;
xd->mode_info_context->mbmi.mv[0].as_int = mc_search_result[ref1].as_int;
xd->mode_info_context->mbmi.mv[1].as_int = mc_search_result[ref2].as_int;
rate2 += vp8_mv_bit_cost(&mc_search_result[ref1],
&frame_best_ref_mv[ref1],
XMVCOST, 96,
xd->allow_high_precision_mv);
rate2 += vp8_mv_bit_cost(&mc_search_result[ref2],
&frame_best_ref_mv[ref2],
XMVCOST, 96,
xd->allow_high_precision_mv);
break;
case ZEROMV:
xd->mode_info_context->mbmi.mv[0].as_int = 0;
xd->mode_info_context->mbmi.mv[1].as_int = 0;
break;
case NEARMV:
if (frame_near_mv[ref1].as_int == 0 || frame_near_mv[ref2].as_int == 0) {
continue;
}
xd->mode_info_context->mbmi.mv[0].as_int = frame_near_mv[ref1].as_int;
xd->mode_info_context->mbmi.mv[1].as_int = frame_near_mv[ref2].as_int;
break;
case NEARESTMV:
if (frame_nearest_mv[ref1].as_int == 0 || frame_nearest_mv[ref2].as_int == 0) {
continue;
}
xd->mode_info_context->mbmi.mv[0].as_int = frame_nearest_mv[ref1].as_int;
xd->mode_info_context->mbmi.mv[1].as_int = frame_nearest_mv[ref2].as_int;
break;
default:
break;
}
/* Add in the Mv/mode cost */
rate2 += vp8_cost_mv_ref(cpi, this_mode, mdcounts);
vp8_clamp_mv2(&xd->mode_info_context->mbmi.mv[0], xd);
vp8_clamp_mv2(&xd->mode_info_context->mbmi.mv[1], xd);
if (((xd->mode_info_context->mbmi.mv[0].as_mv.row >> 3) < x->mv_row_min) ||
((xd->mode_info_context->mbmi.mv[0].as_mv.row >> 3) > x->mv_row_max) ||
((xd->mode_info_context->mbmi.mv[0].as_mv.col >> 3) < x->mv_col_min) ||
((xd->mode_info_context->mbmi.mv[0].as_mv.col >> 3) > x->mv_col_max) ||
((xd->mode_info_context->mbmi.mv[1].as_mv.row >> 3) < x->mv_row_min) ||
((xd->mode_info_context->mbmi.mv[1].as_mv.row >> 3) > x->mv_row_max) ||
((xd->mode_info_context->mbmi.mv[1].as_mv.col >> 3) < x->mv_col_min) ||
((xd->mode_info_context->mbmi.mv[1].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
/* build first and second prediction */
vp8_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
/* Y cost and distortion - TODO(rbultje) support other transform sizes */
super_block_yrd_8x8(x, &rate_y, &distortion,
IF_RTCD(&cpi->rtcd), &skippable_y);
rate2 += rate_y;
distortion2 += distortion;
/* UV cost and distortion */
rd_inter32x32_uv_8x8(cpi, x, &rate_uv, &distortion_uv,
cpi->common.full_pixel, &skippable_uv);
rate2 += rate_uv;
distortion2 += distortion_uv;
/* don't bother w/ skip, we would never have come here if skip were
* enabled */
xd->mode_info_context->mbmi.mode = this_mode;
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in
* other words if you present them in that order, the second one is
* always known if the first is known */
compmode_cost = vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), 1);
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[xd->mode_info_context->mbmi.ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
if (cpi->common.mb_no_coeff_skip) {
int mb_skippable = skippable_y && skippable_uv;
int mb_skip_allowed;
// Is Mb level skip allowed for this mb.
mb_skip_allowed =
!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
get_segdata(xd, segment_id, SEG_LVL_EOB);
if (mb_skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp8_prob skip_prob =
get_pred_prob(cm, xd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp8_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
}
// Add in the cost of the no skip flag.
else if (mb_skip_allowed) {
int prob_skip_cost = vp8_cost_bit(get_pred_prob(cm, xd,
PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
#if 0
// Keep record of best intra distortion
if ((xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#endif
if (!disable_skip && xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (this_rd < best_comp_rd)
best_comp_rd = this_rd;
if (this_rd < best_single_rd)
best_single_rd = this_rd;
if (this_rd < best_hybrid_rd)
best_hybrid_rd = this_rd;
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
#if 0
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= B_PRED) {
xd->mode_info_context->mbmi.uv_mode = uv_intra_mode_8x8;
/* required for left and above block mv */
xd->mode_info_context->mbmi.mv.as_int = 0;
}
#endif
other_cost += ref_costs[xd->mode_info_context->mbmi.ref_frame];
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost),
(distortion2 - distortion_uv));
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, &xd->mode_info_context->mbmi, sizeof(MB_MODE_INFO));
}
#if 0
// Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
#endif
}
// If the mode did not help improve the best error case then raise the threshold for testing that mode next time around.
else {
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME &&
single_rd < best_single_rd) {
best_single_rd = single_rd;
} else if (xd->mode_info_context->mbmi.second_ref_frame != INTRA_FRAME &&
single_rd < best_comp_rd) {
best_comp_rd = single_rd;
}
if (hybrid_rd < best_hybrid_rd) {
best_hybrid_rd = hybrid_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
// TODO(rbultje) integrate with RD thresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame or mode is enabled for this
// segment.
if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
xd->mode_info_context->mbmi.mode = ZEROMV;
xd->mode_info_context->mbmi.ref_frame = ALTREF_FRAME;
xd->mode_info_context->mbmi.mv[0].as_int = 0;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
xd->mode_info_context->mbmi.mb_skip_coeff =
(cpi->common.mb_no_coeff_skip) ? 1 : 0;
xd->mode_info_context->mbmi.partitioning = 0;
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
if (best_rd != INT64_MAX)
store_coding_context(x, &x->sb_context[0], mode_index, NULL,
&frame_best_ref_mv[xd->mode_info_context->mbmi.ref_frame],
&frame_best_ref_mv[xd->mode_info_context->mbmi.second_ref_frame],
0, 0, 0);
return best_rd;
}
// macroblock modes
vpx_memcpy(&xd->mode_info_context->mbmi, &best_mbmode,
sizeof(MB_MODE_INFO));
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
if (best_rd != INT64_MAX)
store_coding_context(x, &x->sb_context[0], mode_index, NULL,
&frame_best_ref_mv[xd->mode_info_context->mbmi.ref_frame],
&frame_best_ref_mv[xd->mode_info_context->mbmi.second_ref_frame],
(best_single_rd == INT64_MAX) ? INT_MIN : (best_rd - best_single_rd),
(best_comp_rd == INT64_MAX) ? INT_MIN : (best_rd - best_comp_rd),
(best_hybrid_rd == INT64_MAX) ? INT_MIN : (best_rd - best_hybrid_rd));
return best_rd;
}
#endif
void vp8cx_pick_mode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x,
int recon_yoffset,
int recon_uvoffset,
int *totalrate, int *totaldist) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, distortion;
int64_t intra_error = 0;
unsigned char *segment_id = &mbmi->segment_id;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[*segment_id];
else
x->encode_breakout = cpi->oxcf.encode_breakout;
// if (cpi->sf.RD)
// For now this codebase is limited to a single rd encode path
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
}
// else
// The non rd encode path has been deleted from this code base
// to simplify development
// vp8_pick_inter_mode
// Store metrics so they can be added in to totals if this mode is picked
x->mb_context[xd->mb_index].distortion = distortion;
x->mb_context[xd->mb_index].intra_error = intra_error;
*totalrate = rate;
*totaldist = distortion;
}