5373119713
There is a macro DEFAULT_INTERP_FILTER defined in encoder/onyx_if.c that is set as EIGHTTAP for now - so SWITCHABLE is not really used. Ideally, this should be SWITCHABLE but that would make the encoder quite a bit slower. We will change the default filter to SWITCHABLE once we find a faster way to search for switchable filters. Change-Id: Iee91832cdc07e6e14108d9b543130fdd12fc9874
1153 lines
37 KiB
C
1153 lines
37 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vpx_ports/config.h"
|
|
#include "vpx/vpx_integer.h"
|
|
#include "subpixel.h"
|
|
#include "blockd.h"
|
|
#include "reconinter.h"
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#include "onyxc_int.h"
|
|
#endif
|
|
|
|
void vp8_setup_interp_filters(MACROBLOCKD *xd,
|
|
INTERPOLATIONFILTERTYPE mcomp_filter_type,
|
|
VP8_COMMON *cm) {
|
|
if (mcomp_filter_type == SIXTAP) {
|
|
xd->subpixel_predict = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap4x4);
|
|
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap8x4);
|
|
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap8x8);
|
|
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap16x16);
|
|
xd->subpixel_predict_avg = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap_avg4x4);
|
|
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap_avg8x8);
|
|
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, sixtap_avg16x16);
|
|
} else if (mcomp_filter_type == EIGHTTAP || mcomp_filter_type == SWITCHABLE) {
|
|
xd->subpixel_predict = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap4x4);
|
|
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap8x4);
|
|
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap8x8);
|
|
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap16x16);
|
|
xd->subpixel_predict_avg = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg4x4);
|
|
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg8x8);
|
|
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg16x16);
|
|
} else if (mcomp_filter_type == EIGHTTAP_SHARP) {
|
|
xd->subpixel_predict = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap4x4_sharp);
|
|
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap8x4_sharp);
|
|
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap8x8_sharp);
|
|
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap16x16_sharp);
|
|
xd->subpixel_predict_avg = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg4x4_sharp);
|
|
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg8x8_sharp);
|
|
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, eighttap_avg16x16_sharp);
|
|
}
|
|
else {
|
|
xd->subpixel_predict = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear4x4);
|
|
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear8x4);
|
|
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear8x8);
|
|
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear16x16);
|
|
xd->subpixel_predict_avg = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear_avg4x4);
|
|
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear_avg8x8);
|
|
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
|
|
&cm->rtcd.subpix, bilinear_avg16x16);
|
|
}
|
|
}
|
|
|
|
void vp8_copy_mem16x16_c(
|
|
unsigned char *src,
|
|
int src_stride,
|
|
unsigned char *dst,
|
|
int dst_stride) {
|
|
|
|
int r;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
dst[8] = src[8];
|
|
dst[9] = src[9];
|
|
dst[10] = src[10];
|
|
dst[11] = src[11];
|
|
dst[12] = src[12];
|
|
dst[13] = src[13];
|
|
dst[14] = src[14];
|
|
dst[15] = src[15];
|
|
|
|
#else
|
|
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
|
|
((uint32_t *)dst)[2] = ((uint32_t *)src)[2];
|
|
((uint32_t *)dst)[3] = ((uint32_t *)src)[3];
|
|
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void vp8_avg_mem16x16_c(
|
|
unsigned char *src,
|
|
int src_stride,
|
|
unsigned char *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
int n;
|
|
|
|
for (n = 0; n < 16; n++) {
|
|
dst[n] = (dst[n] + src[n] + 1) >> 1;
|
|
}
|
|
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void vp8_copy_mem8x8_c(
|
|
unsigned char *src,
|
|
int src_stride,
|
|
unsigned char *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
#else
|
|
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void vp8_avg_mem8x8_c(
|
|
unsigned char *src,
|
|
int src_stride,
|
|
unsigned char *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
int n;
|
|
|
|
for (n = 0; n < 8; n++) {
|
|
dst[n] = (dst[n] + src[n] + 1) >> 1;
|
|
}
|
|
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void vp8_copy_mem8x4_c(
|
|
unsigned char *src,
|
|
int src_stride,
|
|
unsigned char *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
#else
|
|
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf) {
|
|
int r;
|
|
unsigned char *ptr_base;
|
|
unsigned char *ptr;
|
|
unsigned char *pred_ptr = d->predictor;
|
|
int_mv mv;
|
|
|
|
ptr_base = *(d->base_pre);
|
|
mv.as_int = d->bmi.as_mv.first.as_int;
|
|
|
|
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
|
|
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
|
|
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch);
|
|
} else {
|
|
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
|
|
ptr = ptr_base;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
pred_ptr[0] = ptr[0];
|
|
pred_ptr[1] = ptr[1];
|
|
pred_ptr[2] = ptr[2];
|
|
pred_ptr[3] = ptr[3];
|
|
#else
|
|
*(uint32_t *)pred_ptr = *(uint32_t *)ptr;
|
|
#endif
|
|
pred_ptr += pitch;
|
|
ptr += d->pre_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar to vp8_build_inter_predictors_b(), but instead of storing the
|
|
* results in d->predictor, we average the contents of d->predictor (which
|
|
* come from an earlier call to vp8_build_inter_predictors_b()) with the
|
|
* predictor of the second reference frame / motion vector.
|
|
*/
|
|
void vp8_build_2nd_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf) {
|
|
int r;
|
|
unsigned char *ptr_base;
|
|
unsigned char *ptr;
|
|
unsigned char *pred_ptr = d->predictor;
|
|
int_mv mv;
|
|
|
|
ptr_base = *(d->base_second_pre);
|
|
mv.as_int = d->bmi.as_mv.second.as_int;
|
|
|
|
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
|
|
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
|
|
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch);
|
|
} else {
|
|
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
|
|
ptr = ptr_base;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
pred_ptr[0] = (pred_ptr[0] + ptr[0] + 1) >> 1;
|
|
pred_ptr[1] = (pred_ptr[1] + ptr[1] + 1) >> 1;
|
|
pred_ptr[2] = (pred_ptr[2] + ptr[2] + 1) >> 1;
|
|
pred_ptr[3] = (pred_ptr[3] + ptr[3] + 1) >> 1;
|
|
pred_ptr += pitch;
|
|
ptr += d->pre_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_build_inter_predictors4b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
|
|
unsigned char *ptr_base;
|
|
unsigned char *ptr;
|
|
unsigned char *pred_ptr = d->predictor;
|
|
int_mv mv;
|
|
|
|
ptr_base = *(d->base_pre);
|
|
mv.as_int = d->bmi.as_mv.first.as_int;
|
|
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
|
|
(mv.as_mv.col >> 3);
|
|
|
|
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
|
|
xd->subpixel_predict8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
|
|
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
|
|
} else {
|
|
vp8_copy_mem8x8(ptr, d->pre_stride, pred_ptr, pitch);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar to build_inter_predictors_4b(), but instead of storing the
|
|
* results in d->predictor, we average the contents of d->predictor (which
|
|
* come from an earlier call to build_inter_predictors_4b()) with the
|
|
* predictor of the second reference frame / motion vector.
|
|
*/
|
|
void vp8_build_2nd_inter_predictors4b(MACROBLOCKD *xd,
|
|
BLOCKD *d, int pitch) {
|
|
unsigned char *ptr_base;
|
|
unsigned char *ptr;
|
|
unsigned char *pred_ptr = d->predictor;
|
|
int_mv mv;
|
|
|
|
ptr_base = *(d->base_second_pre);
|
|
mv.as_int = d->bmi.as_mv.second.as_int;
|
|
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
|
|
(mv.as_mv.col >> 3);
|
|
|
|
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
|
|
xd->subpixel_predict_avg8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
|
|
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
|
|
} else {
|
|
vp8_avg_mem8x8(ptr, d->pre_stride, pred_ptr, pitch);
|
|
}
|
|
}
|
|
|
|
static void build_inter_predictors2b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
|
|
unsigned char *ptr_base;
|
|
unsigned char *ptr;
|
|
unsigned char *pred_ptr = d->predictor;
|
|
int_mv mv;
|
|
|
|
ptr_base = *(d->base_pre);
|
|
mv.as_int = d->bmi.as_mv.first.as_int;
|
|
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
|
|
(mv.as_mv.col >> 3);
|
|
|
|
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
|
|
xd->subpixel_predict8x4(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
|
|
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
|
|
} else {
|
|
vp8_copy_mem8x4(ptr, d->pre_stride, pred_ptr, pitch);
|
|
}
|
|
}
|
|
|
|
|
|
/*encoder only*/
|
|
#if CONFIG_PRED_FILTER
|
|
|
|
// Select the thresholded or non-thresholded filter
|
|
#define USE_THRESH_FILTER 0
|
|
|
|
#define PRED_FILT_LEN 5
|
|
|
|
static const int filt_shift = 4;
|
|
static const int pred_filter[PRED_FILT_LEN] = {1, 2, 10, 2, 1};
|
|
// Alternative filter {1, 1, 4, 1, 1}
|
|
|
|
#if !USE_THRESH_FILTER
|
|
void filter_mb(unsigned char *src, int src_stride,
|
|
unsigned char *dst, int dst_stride,
|
|
int width, int height) {
|
|
int i, j, k;
|
|
unsigned int Temp[32 * 32];
|
|
unsigned int *pTmp = Temp;
|
|
unsigned char *pSrc = src - (1 + src_stride) * (PRED_FILT_LEN / 2);
|
|
|
|
// Horizontal
|
|
for (i = 0; i < height + PRED_FILT_LEN - 1; i++) {
|
|
for (j = 0; j < width; j++) {
|
|
int sum = 0;
|
|
for (k = 0; k < PRED_FILT_LEN; k++)
|
|
sum += pSrc[j + k] * pred_filter[k];
|
|
pTmp[j] = sum;
|
|
}
|
|
|
|
pSrc += src_stride;
|
|
pTmp += width;
|
|
}
|
|
|
|
// Vertical
|
|
pTmp = Temp;
|
|
for (i = 0; i < width; i++) {
|
|
unsigned char *pDst = dst + i;
|
|
for (j = 0; j < height; j++) {
|
|
int sum = 0;
|
|
for (k = 0; k < PRED_FILT_LEN; k++)
|
|
sum += pTmp[(j + k) * width] * pred_filter[k];
|
|
// Round
|
|
sum = (sum + ((1 << (filt_shift << 1)) >> 1)) >> (filt_shift << 1);
|
|
pDst[j * dst_stride] = (sum < 0 ? 0 : sum > 255 ? 255 : sum);
|
|
}
|
|
++pTmp;
|
|
}
|
|
}
|
|
#else
|
|
// Based on vp8_post_proc_down_and_across_c (postproc.c)
|
|
void filter_mb(unsigned char *src, int src_stride,
|
|
unsigned char *dst, int dst_stride,
|
|
int width, int height) {
|
|
unsigned char *pSrc, *pDst;
|
|
int row;
|
|
int col;
|
|
int i;
|
|
int v;
|
|
unsigned char d[8];
|
|
|
|
/* TODO flimit should be linked to the quantizer value */
|
|
int flimit = 7;
|
|
|
|
for (row = 0; row < height; row++) {
|
|
/* post_proc_down for one row */
|
|
pSrc = src;
|
|
pDst = dst;
|
|
|
|
for (col = 0; col < width; col++) {
|
|
int kernel = (1 << (filt_shift - 1));
|
|
int v = pSrc[col];
|
|
|
|
for (i = -2; i <= 2; i++) {
|
|
if (abs(v - pSrc[col + i * src_stride]) > flimit)
|
|
goto down_skip_convolve;
|
|
|
|
kernel += pred_filter[2 + i] * pSrc[col + i * src_stride];
|
|
}
|
|
|
|
v = (kernel >> filt_shift);
|
|
down_skip_convolve:
|
|
pDst[col] = v;
|
|
}
|
|
|
|
/* now post_proc_across */
|
|
pSrc = dst;
|
|
pDst = dst;
|
|
|
|
for (i = 0; i < 8; i++)
|
|
d[i] = pSrc[i];
|
|
|
|
for (col = 0; col < width; col++) {
|
|
int kernel = (1 << (filt_shift - 1));
|
|
v = pSrc[col];
|
|
|
|
d[col & 7] = v;
|
|
|
|
for (i = -2; i <= 2; i++) {
|
|
if (abs(v - pSrc[col + i]) > flimit)
|
|
goto across_skip_convolve;
|
|
|
|
kernel += pred_filter[2 + i] * pSrc[col + i];
|
|
}
|
|
|
|
d[col & 7] = (kernel >> filt_shift);
|
|
across_skip_convolve:
|
|
|
|
if (col >= 2)
|
|
pDst[col - 2] = d[(col - 2) & 7];
|
|
}
|
|
|
|
/* handle the last two pixels */
|
|
pDst[col - 2] = d[(col - 2) & 7];
|
|
pDst[col - 1] = d[(col - 1) & 7];
|
|
|
|
/* next row */
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
#endif // !USE_THRESH_FILTER
|
|
|
|
#endif // CONFIG_PRED_FILTER
|
|
|
|
/*encoder only*/
|
|
void vp8_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd) {
|
|
int i, j;
|
|
BLOCKD *blockd = xd->block;
|
|
|
|
/* build uv mvs */
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++) {
|
|
int yoffset = i * 8 + j * 2;
|
|
int uoffset = 16 + i * 2 + j;
|
|
int voffset = 20 + i * 2 + j;
|
|
int temp;
|
|
|
|
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.row
|
|
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.row
|
|
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.row
|
|
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.row;
|
|
|
|
if (temp < 0) temp -= 4;
|
|
else temp += 4;
|
|
|
|
xd->block[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.col
|
|
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.col
|
|
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.col
|
|
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.col;
|
|
|
|
if (temp < 0) temp -= 4;
|
|
else temp += 4;
|
|
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
blockd[voffset].bmi.as_mv.first.as_mv.row =
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.row;
|
|
blockd[voffset].bmi.as_mv.first.as_mv.col =
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.col;
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame) {
|
|
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.row
|
|
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.row
|
|
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.row
|
|
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.row;
|
|
|
|
if (temp < 0) {
|
|
temp -= 4;
|
|
} else {
|
|
temp += 4;
|
|
}
|
|
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.col
|
|
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.col
|
|
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.col
|
|
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.col;
|
|
|
|
if (temp < 0) {
|
|
temp -= 4;
|
|
} else {
|
|
temp += 4;
|
|
}
|
|
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
blockd[voffset].bmi.as_mv.second.as_mv.row =
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.row;
|
|
blockd[voffset].bmi.as_mv.second.as_mv.col =
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.col;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 16; i < 24; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
|
|
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
|
|
build_inter_predictors2b(xd, d0, 8);
|
|
else {
|
|
vp8_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
|
|
vp8_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
|
|
}
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame) {
|
|
vp8_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
|
|
vp8_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
|
|
/* If the MV points so far into the UMV border that no visible pixels
|
|
* are used for reconstruction, the subpel part of the MV can be
|
|
* discarded and the MV limited to 16 pixels with equivalent results.
|
|
*
|
|
* This limit kicks in at 19 pixels for the top and left edges, for
|
|
* the 16 pixels plus 3 taps right of the central pixel when subpel
|
|
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
|
|
* left of the central pixel when filtering.
|
|
*/
|
|
if (mv->col < (xd->mb_to_left_edge - ((16 + INTERP_EXTEND) << 3)))
|
|
mv->col = xd->mb_to_left_edge - (16 << 3);
|
|
else if (mv->col > xd->mb_to_right_edge + ((15 + INTERP_EXTEND) << 3))
|
|
mv->col = xd->mb_to_right_edge + (16 << 3);
|
|
|
|
if (mv->row < (xd->mb_to_top_edge - ((16 + INTERP_EXTEND) << 3)))
|
|
mv->row = xd->mb_to_top_edge - (16 << 3);
|
|
else if (mv->row > xd->mb_to_bottom_edge + ((15 + INTERP_EXTEND) << 3))
|
|
mv->row = xd->mb_to_bottom_edge + (16 << 3);
|
|
}
|
|
|
|
/* A version of the above function for chroma block MVs.*/
|
|
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
|
|
mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + INTERP_EXTEND) << 3))) ?
|
|
(xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
|
|
mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + INTERP_EXTEND) << 3)) ?
|
|
(xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
|
|
|
|
mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + INTERP_EXTEND) << 3))) ?
|
|
(xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
|
|
mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + INTERP_EXTEND) << 3)) ?
|
|
(xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
|
|
}
|
|
|
|
/*encoder only*/
|
|
void vp8_build_1st_inter16x16_predictors_mby(MACROBLOCKD *xd,
|
|
unsigned char *dst_y,
|
|
int dst_ystride,
|
|
int clamp_mvs) {
|
|
unsigned char *ptr_base = xd->pre.y_buffer;
|
|
unsigned char *ptr;
|
|
int pre_stride = xd->block[0].pre_stride;
|
|
int_mv ymv;
|
|
|
|
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
|
|
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
|
|
ptr = ptr_base + (ymv.as_mv.row >> 3) * pre_stride + (ymv.as_mv.col >> 3);
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
|
|
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
|
|
// Sub-pel filter needs extended input
|
|
int len = 15 + (INTERP_EXTEND << 1);
|
|
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
|
|
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
|
|
|
|
// Copy extended MB into Temp array, applying the spatial filter
|
|
filter_mb(ptr - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
|
|
Temp, len, len, len);
|
|
|
|
// Sub-pel interpolation
|
|
xd->subpixel_predict16x16(pTemp, len,
|
|
(ymv.as_mv.col & 7) << 1,
|
|
(ymv.as_mv.row & 7) << 1,
|
|
dst_y, dst_ystride);
|
|
} else {
|
|
// Apply spatial filter to create the prediction directly
|
|
filter_mb(ptr, pre_stride, dst_y, dst_ystride, 16, 16);
|
|
}
|
|
} else
|
|
#endif
|
|
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
|
|
xd->subpixel_predict16x16(ptr, pre_stride,
|
|
(ymv.as_mv.col & 7) << 1,
|
|
(ymv.as_mv.row & 7) << 1,
|
|
dst_y, dst_ystride);
|
|
} else {
|
|
vp8_copy_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
|
|
}
|
|
}
|
|
|
|
void vp8_build_1st_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
|
|
unsigned char *dst_u,
|
|
unsigned char *dst_v,
|
|
int dst_uvstride) {
|
|
int offset;
|
|
unsigned char *uptr, *vptr;
|
|
int pre_stride = xd->block[0].pre_stride;
|
|
int_mv _o16x16mv;
|
|
int_mv _16x16mv;
|
|
|
|
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
|
|
|
|
if (xd->mode_info_context->mbmi.need_to_clamp_mvs)
|
|
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
|
|
|
|
_o16x16mv = _16x16mv;
|
|
/* calc uv motion vectors */
|
|
if (_16x16mv.as_mv.row < 0)
|
|
_16x16mv.as_mv.row -= 1;
|
|
else
|
|
_16x16mv.as_mv.row += 1;
|
|
|
|
if (_16x16mv.as_mv.col < 0)
|
|
_16x16mv.as_mv.col -= 1;
|
|
else
|
|
_16x16mv.as_mv.col += 1;
|
|
|
|
_16x16mv.as_mv.row /= 2;
|
|
_16x16mv.as_mv.col /= 2;
|
|
|
|
_16x16mv.as_mv.row &= xd->fullpixel_mask;
|
|
_16x16mv.as_mv.col &= xd->fullpixel_mask;
|
|
|
|
pre_stride >>= 1;
|
|
offset = (_16x16mv.as_mv.row >> 3) * pre_stride + (_16x16mv.as_mv.col >> 3);
|
|
uptr = xd->pre.u_buffer + offset;
|
|
vptr = xd->pre.v_buffer + offset;
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
|
|
int i;
|
|
unsigned char *pSrc = uptr;
|
|
unsigned char *pDst = dst_u;
|
|
int len = 7 + (INTERP_EXTEND << 1);
|
|
unsigned char Temp[32 * 32]; // Data required by the sub-pel filter
|
|
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
|
|
|
|
// U & V
|
|
for (i = 0; i < 2; i++) {
|
|
if (_o16x16mv.as_int & 0x000f000f) {
|
|
// Copy extended MB into Temp array, applying the spatial filter
|
|
filter_mb(pSrc - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
|
|
Temp, len, len, len);
|
|
|
|
// Sub-pel filter
|
|
xd->subpixel_predict8x8(pTemp, len,
|
|
_o16x16mv.as_mv.col & 15,
|
|
_o16x16mv.as_mv.row & 15,
|
|
pDst, dst_uvstride);
|
|
} else {
|
|
filter_mb(pSrc, pre_stride, pDst, dst_uvstride, 8, 8);
|
|
}
|
|
|
|
// V
|
|
pSrc = vptr;
|
|
pDst = dst_v;
|
|
}
|
|
} else
|
|
#endif
|
|
if (_o16x16mv.as_int & 0x000f000f) {
|
|
xd->subpixel_predict8x8(uptr, pre_stride, _o16x16mv.as_mv.col & 15,
|
|
_o16x16mv.as_mv.row & 15, dst_u, dst_uvstride);
|
|
xd->subpixel_predict8x8(vptr, pre_stride, _o16x16mv.as_mv.col & 15,
|
|
_o16x16mv.as_mv.row & 15, dst_v, dst_uvstride);
|
|
} else {
|
|
vp8_copy_mem8x8(uptr, pre_stride, dst_u, dst_uvstride);
|
|
vp8_copy_mem8x8(vptr, pre_stride, dst_v, dst_uvstride);
|
|
}
|
|
}
|
|
|
|
|
|
void vp8_build_1st_inter16x16_predictors_mb(MACROBLOCKD *xd,
|
|
unsigned char *dst_y,
|
|
unsigned char *dst_u,
|
|
unsigned char *dst_v,
|
|
int dst_ystride, int dst_uvstride) {
|
|
vp8_build_1st_inter16x16_predictors_mby(xd, dst_y, dst_ystride,
|
|
xd->mode_info_context->mbmi.need_to_clamp_mvs);
|
|
vp8_build_1st_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
|
|
}
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
void vp8_build_inter32x32_predictors_sb(MACROBLOCKD *x,
|
|
unsigned char *dst_y,
|
|
unsigned char *dst_u,
|
|
unsigned char *dst_v,
|
|
int dst_ystride,
|
|
int dst_uvstride) {
|
|
uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
|
|
uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer,
|
|
*v2 = x->second_pre.v_buffer;
|
|
int n;
|
|
|
|
for (n = 0; n < 4; n++)
|
|
{
|
|
const int x_idx = n & 1, y_idx = n >> 1;
|
|
|
|
x->pre.y_buffer = y1 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
|
|
x->pre.u_buffer = u1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
|
|
x->pre.v_buffer = v1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
|
|
|
|
vp8_build_1st_inter16x16_predictors_mb(x,
|
|
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
|
|
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_ystride, dst_uvstride);
|
|
if (x->mode_info_context->mbmi.second_ref_frame) {
|
|
x->second_pre.y_buffer = y2 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
|
|
x->second_pre.u_buffer = u2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
|
|
x->second_pre.v_buffer = v2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
|
|
|
|
vp8_build_2nd_inter16x16_predictors_mb(x,
|
|
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
|
|
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_ystride, dst_uvstride);
|
|
}
|
|
}
|
|
|
|
x->pre.y_buffer = y1;
|
|
x->pre.u_buffer = u1;
|
|
x->pre.v_buffer = v1;
|
|
|
|
if (x->mode_info_context->mbmi.second_ref_frame) {
|
|
x->second_pre.y_buffer = y2;
|
|
x->second_pre.u_buffer = u2;
|
|
x->second_pre.v_buffer = v2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The following functions should be called after an initial
|
|
* call to vp8_build_inter16x16_predictors_mb() or _mby()/_mbuv().
|
|
* It will run a second sixtap filter on a (different) ref
|
|
* frame and average the result with the output of the
|
|
* first sixtap filter. The second reference frame is stored
|
|
* in x->second_pre (the reference frame index is in
|
|
* x->mode_info_context->mbmi.second_ref_frame). The second
|
|
* motion vector is x->mode_info_context->mbmi.second_mv.
|
|
*
|
|
* This allows blending prediction from two reference frames
|
|
* which sometimes leads to better prediction than from a
|
|
* single reference framer.
|
|
*/
|
|
void vp8_build_2nd_inter16x16_predictors_mby(MACROBLOCKD *xd,
|
|
unsigned char *dst_y,
|
|
int dst_ystride) {
|
|
unsigned char *ptr;
|
|
|
|
int_mv _16x16mv;
|
|
int mv_row;
|
|
int mv_col;
|
|
|
|
unsigned char *ptr_base = xd->second_pre.y_buffer;
|
|
int pre_stride = xd->block[0].pre_stride;
|
|
|
|
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
|
|
|
|
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
|
|
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
|
|
|
|
mv_row = _16x16mv.as_mv.row;
|
|
mv_col = _16x16mv.as_mv.col;
|
|
|
|
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
|
|
if ((mv_row | mv_col) & 7) {
|
|
// Sub-pel filter needs extended input
|
|
int len = 15 + (INTERP_EXTEND << 1);
|
|
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
|
|
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
|
|
|
|
// Copy extended MB into Temp array, applying the spatial filter
|
|
filter_mb(ptr - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
|
|
Temp, len, len, len);
|
|
|
|
// Sub-pel filter
|
|
xd->subpixel_predict_avg16x16(pTemp, len, (mv_col & 7) << 1,
|
|
(mv_row & 7) << 1, dst_y, dst_ystride);
|
|
} else {
|
|
// TODO Needs to AVERAGE with the dst_y
|
|
// For now, do not apply the prediction filter in these cases!
|
|
vp8_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
|
|
}
|
|
} else
|
|
#endif // CONFIG_PRED_FILTER
|
|
{
|
|
if ((mv_row | mv_col) & 7) {
|
|
xd->subpixel_predict_avg16x16(ptr, pre_stride, (mv_col & 7) << 1,
|
|
(mv_row & 7) << 1, dst_y, dst_ystride);
|
|
} else {
|
|
vp8_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_build_2nd_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
|
|
unsigned char *dst_u,
|
|
unsigned char *dst_v,
|
|
int dst_uvstride) {
|
|
int offset;
|
|
unsigned char *uptr, *vptr;
|
|
|
|
int_mv _16x16mv;
|
|
int mv_row;
|
|
int mv_col;
|
|
int omv_row, omv_col;
|
|
|
|
int pre_stride = xd->block[0].pre_stride;
|
|
|
|
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
|
|
|
|
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
|
|
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
|
|
|
|
mv_row = _16x16mv.as_mv.row;
|
|
mv_col = _16x16mv.as_mv.col;
|
|
|
|
/* calc uv motion vectors */
|
|
omv_row = mv_row;
|
|
omv_col = mv_col;
|
|
mv_row = (mv_row + (mv_row > 0)) >> 1;
|
|
mv_col = (mv_col + (mv_col > 0)) >> 1;
|
|
|
|
mv_row &= xd->fullpixel_mask;
|
|
mv_col &= xd->fullpixel_mask;
|
|
|
|
pre_stride >>= 1;
|
|
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
|
|
uptr = xd->second_pre.u_buffer + offset;
|
|
vptr = xd->second_pre.v_buffer + offset;
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
|
|
int i;
|
|
int len = 7 + (INTERP_EXTEND << 1);
|
|
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
|
|
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
|
|
unsigned char *pSrc = uptr;
|
|
unsigned char *pDst = dst_u;
|
|
|
|
// U & V
|
|
for (i = 0; i < 2; i++) {
|
|
if ((omv_row | omv_col) & 15) {
|
|
// Copy extended MB into Temp array, applying the spatial filter
|
|
filter_mb(pSrc - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
|
|
Temp, len, len, len);
|
|
|
|
// Sub-pel filter
|
|
xd->subpixel_predict_avg8x8(pTemp, len, omv_col & 15,
|
|
omv_row & 15, pDst, dst_uvstride);
|
|
} else {
|
|
// TODO Needs to AVERAGE with the dst_[u|v]
|
|
// For now, do not apply the prediction filter here!
|
|
vp8_avg_mem8x8(pSrc, pre_stride, pDst, dst_uvstride);
|
|
}
|
|
|
|
// V
|
|
pSrc = vptr;
|
|
pDst = dst_v;
|
|
}
|
|
} else
|
|
#endif // CONFIG_PRED_FILTER
|
|
if ((omv_row | omv_col) & 15) {
|
|
xd->subpixel_predict_avg8x8(uptr, pre_stride, omv_col & 15,
|
|
omv_row & 15, dst_u, dst_uvstride);
|
|
xd->subpixel_predict_avg8x8(vptr, pre_stride, omv_col & 15,
|
|
omv_row & 15, dst_v, dst_uvstride);
|
|
} else {
|
|
vp8_avg_mem8x8(uptr, pre_stride, dst_u, dst_uvstride);
|
|
vp8_avg_mem8x8(vptr, pre_stride, dst_v, dst_uvstride);
|
|
}
|
|
}
|
|
|
|
void vp8_build_2nd_inter16x16_predictors_mb(MACROBLOCKD *xd,
|
|
unsigned char *dst_y,
|
|
unsigned char *dst_u,
|
|
unsigned char *dst_v,
|
|
int dst_ystride,
|
|
int dst_uvstride) {
|
|
vp8_build_2nd_inter16x16_predictors_mby(xd, dst_y, dst_ystride);
|
|
vp8_build_2nd_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
|
|
}
|
|
|
|
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd) {
|
|
int i;
|
|
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
|
|
BLOCKD *blockd = xd->block;
|
|
|
|
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
|
|
blockd[ 0].bmi = xd->mode_info_context->bmi[ 0];
|
|
blockd[ 2].bmi = xd->mode_info_context->bmi[ 2];
|
|
blockd[ 8].bmi = xd->mode_info_context->bmi[ 8];
|
|
blockd[10].bmi = xd->mode_info_context->bmi[10];
|
|
|
|
if (mbmi->need_to_clamp_mvs) {
|
|
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.first.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.first.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.first.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.first.as_mv, xd);
|
|
if (mbmi->second_ref_frame) {
|
|
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.second.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.second.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.second.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.second.as_mv, xd);
|
|
}
|
|
}
|
|
|
|
|
|
vp8_build_inter_predictors4b(xd, &blockd[ 0], 16);
|
|
vp8_build_inter_predictors4b(xd, &blockd[ 2], 16);
|
|
vp8_build_inter_predictors4b(xd, &blockd[ 8], 16);
|
|
vp8_build_inter_predictors4b(xd, &blockd[10], 16);
|
|
|
|
if (mbmi->second_ref_frame) {
|
|
vp8_build_2nd_inter_predictors4b(xd, &blockd[ 0], 16);
|
|
vp8_build_2nd_inter_predictors4b(xd, &blockd[ 2], 16);
|
|
vp8_build_2nd_inter_predictors4b(xd, &blockd[ 8], 16);
|
|
vp8_build_2nd_inter_predictors4b(xd, &blockd[10], 16);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
|
|
|
|
if (mbmi->need_to_clamp_mvs) {
|
|
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.first.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.first.as_mv, xd);
|
|
if (mbmi->second_ref_frame) {
|
|
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.second.as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.second.as_mv, xd);
|
|
}
|
|
}
|
|
|
|
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
|
|
build_inter_predictors2b(xd, d0, 16);
|
|
else {
|
|
vp8_build_inter_predictors_b(d0, 16, xd->subpixel_predict);
|
|
vp8_build_inter_predictors_b(d1, 16, xd->subpixel_predict);
|
|
}
|
|
|
|
if (mbmi->second_ref_frame) {
|
|
vp8_build_2nd_inter_predictors_b(d0, 16, xd->subpixel_predict_avg);
|
|
vp8_build_2nd_inter_predictors_b(d1, 16, xd->subpixel_predict_avg);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 16; i < 24; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
|
|
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
|
|
build_inter_predictors2b(xd, d0, 8);
|
|
else {
|
|
vp8_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
|
|
vp8_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
|
|
}
|
|
|
|
if (mbmi->second_ref_frame) {
|
|
vp8_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
|
|
vp8_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static
|
|
void build_4x4uvmvs(MACROBLOCKD *xd) {
|
|
int i, j;
|
|
BLOCKD *blockd = xd->block;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++) {
|
|
int yoffset = i * 8 + j * 2;
|
|
int uoffset = 16 + i * 2 + j;
|
|
int voffset = 20 + i * 2 + j;
|
|
|
|
int temp;
|
|
|
|
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.row;
|
|
|
|
if (temp < 0) temp -= 4;
|
|
else temp += 4;
|
|
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.col;
|
|
|
|
if (temp < 0) temp -= 4;
|
|
else temp += 4;
|
|
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
|
|
|
|
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
|
|
|
|
blockd[voffset].bmi.as_mv.first.as_mv.row =
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.row;
|
|
blockd[voffset].bmi.as_mv.first.as_mv.col =
|
|
blockd[uoffset].bmi.as_mv.first.as_mv.col;
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame) {
|
|
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.row
|
|
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.row;
|
|
|
|
if (temp < 0) {
|
|
temp -= 4;
|
|
} else {
|
|
temp += 4;
|
|
}
|
|
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.col
|
|
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.col;
|
|
|
|
if (temp < 0) {
|
|
temp -= 4;
|
|
} else {
|
|
temp += 4;
|
|
}
|
|
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
|
|
xd->fullpixel_mask;
|
|
|
|
// if (mbmi->need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(
|
|
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
|
|
|
|
// if (mbmi->need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(
|
|
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
|
|
|
|
blockd[voffset].bmi.as_mv.second.as_mv.row =
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.row;
|
|
blockd[voffset].bmi.as_mv.second.as_mv.col =
|
|
blockd[uoffset].bmi.as_mv.second.as_mv.col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_build_inter_predictors_mb(MACROBLOCKD *xd) {
|
|
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
|
|
vp8_build_1st_inter16x16_predictors_mb(xd, xd->predictor,
|
|
&xd->predictor[256],
|
|
&xd->predictor[320], 16, 8);
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame) {
|
|
/* 256 = offset of U plane in Y+U+V buffer;
|
|
* 320 = offset of V plane in Y+U+V buffer.
|
|
* (256=16x16, 320=16x16+8x8). */
|
|
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->predictor,
|
|
&xd->predictor[256],
|
|
&xd->predictor[320], 16, 8);
|
|
}
|
|
} else {
|
|
build_4x4uvmvs(xd);
|
|
build_inter4x4_predictors_mb(xd);
|
|
}
|
|
}
|