vpx/vp9/encoder/vp9_rdopt.c

2943 lines
105 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, NONE},
{DC_PRED, INTRA_FRAME, NONE},
{NEARESTMV, LAST_FRAME, NONE},
{NEARMV, LAST_FRAME, NONE},
{ZEROMV, GOLDEN_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, NONE},
{ZEROMV, ALTREF_FRAME, NONE},
{NEARESTMV, ALTREF_FRAME, NONE},
{NEARMV, GOLDEN_FRAME, NONE},
{NEARMV, ALTREF_FRAME, NONE},
{V_PRED, INTRA_FRAME, NONE},
{H_PRED, INTRA_FRAME, NONE},
{D45_PRED, INTRA_FRAME, NONE},
{D135_PRED, INTRA_FRAME, NONE},
{D117_PRED, INTRA_FRAME, NONE},
{D153_PRED, INTRA_FRAME, NONE},
{D27_PRED, INTRA_FRAME, NONE},
{D63_PRED, INTRA_FRAME, NONE},
{TM_PRED, INTRA_FRAME, NONE},
{NEWMV, LAST_FRAME, NONE},
{NEWMV, GOLDEN_FRAME, NONE},
{NEWMV, ALTREF_FRAME, NONE},
{SPLITMV, LAST_FRAME, NONE},
{SPLITMV, GOLDEN_FRAME, NONE},
{SPLITMV, ALTREF_FRAME, NONE},
{I4X4_PRED, INTRA_FRAME, NONE},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME},
{NEARMV, LAST_FRAME, GOLDEN_FRAME},
{ZEROMV, ALTREF_FRAME, LAST_FRAME},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME},
{NEARMV, ALTREF_FRAME, LAST_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, GOLDEN_FRAME},
{NEWMV, ALTREF_FRAME, LAST_FRAME },
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME},
{SPLITMV, ALTREF_FRAME, LAST_FRAME },
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
};
static void fill_token_costs(vp9_coeff_count *c,
vp9_coeff_probs *p,
TX_SIZE tx_size) {
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < REF_TYPES; j++)
for (k = 0; k < COEF_BANDS; k++)
for (l = 0; l < PREV_COEF_CONTEXTS; l++)
vp9_cost_tokens_skip((int *)c[i][j][k][l], p[i][j][k][l],
vp9_coef_tree);
}
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, };
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp9_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742);
}
}
static int compute_rd_mult(int qindex) {
const int q = vp9_dc_quant(qindex, 0);
return (11 * q * q) >> 2;
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[qindex];
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
}
void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) {
int q, i;
vp9_clear_system_state(); // __asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
qindex = clamp(qindex, 0, MAXQ);
cpi->RDMULT = compute_rd_mult(qindex);
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
cpi->mb.errorperbit = cpi->RDMULT >> 6;
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp9_set_speed_features(cpi);
q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25);
q <<= 2;
if (q < 8)
q = 8;
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < INT_MAX) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
} else {
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(cpi->mb.token_costs[TX_4X4],
cpi->common.fc.coef_probs_4x4, TX_4X4);
fill_token_costs(cpi->mb.token_costs[TX_8X8],
cpi->common.fc.coef_probs_8x8, TX_8X8);
fill_token_costs(cpi->mb.token_costs[TX_16X16],
cpi->common.fc.coef_probs_16x16, TX_16X16);
fill_token_costs(cpi->mb.token_costs[TX_32X32],
cpi->common.fc.coef_probs_32x32, TX_32X32);
for (i = 0; i < NUM_PARTITION_CONTEXTS; i++)
vp9_cost_tokens(cpi->mb.partition_cost[i],
cpi->common.fc.partition_prob[i],
vp9_partition_tree);
/*rough estimate for costing*/
cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4;
vp9_init_mode_costs(cpi);
if (cpi->common.frame_type != KEY_FRAME) {
vp9_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
}
}
int vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, int block_size) {
int i, error = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb,
int plane, int block, PLANE_TYPE type,
ENTROPY_CONTEXT *A,
ENTROPY_CONTEXT *L,
TX_SIZE tx_size,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int pt;
int c = 0;
int cost = 0, pad;
const int *scan, *nb;
const int eob = xd->plane[plane].eobs[block];
const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff,
block, 16);
const int ref = mbmi->ref_frame != INTRA_FRAME;
unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
mb->token_costs[tx_size][type][ref];
ENTROPY_CONTEXT above_ec, left_ec;
TX_TYPE tx_type = DCT_DCT;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
vp9_prob (*coef_probs)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS]
[ENTROPY_NODES];
int seg_eob, default_eob;
uint8_t token_cache[1024];
// Check for consistency of tx_size with mode info
assert((!type && !plane) || (type && plane));
if (type == PLANE_TYPE_Y_WITH_DC) {
assert(xd->mode_info_context->mbmi.txfm_size == tx_size);
} else {
TX_SIZE tx_size_uv = get_uv_tx_size(xd);
assert(tx_size == tx_size_uv);
}
switch (tx_size) {
case TX_4X4: {
tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_4x4(xd, block) : DCT_DCT;
above_ec = A[0] != 0;
left_ec = L[0] != 0;
coef_probs = cm->fc.coef_probs_4x4;
seg_eob = 16;
scan = get_scan_4x4(tx_type);
break;
}
case TX_8X8: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 1 + b_width_log2(sb_type);
const int x = block & ((1 << sz) - 1), y = block - x;
TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_8x8(xd, y + (x >> 1)) : DCT_DCT;
above_ec = (A[0] + A[1]) != 0;
left_ec = (L[0] + L[1]) != 0;
scan = get_scan_8x8(tx_type);
coef_probs = cm->fc.coef_probs_8x8;
seg_eob = 64;
break;
}
case TX_16X16: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 2 + b_width_log2(sb_type);
const int x = block & ((1 << sz) - 1), y = block - x;
TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_16x16(xd, y + (x >> 2)) : DCT_DCT;
scan = get_scan_16x16(tx_type);
coef_probs = cm->fc.coef_probs_16x16;
seg_eob = 256;
above_ec = (A[0] + A[1] + A[2] + A[3]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3]) != 0;
break;
}
case TX_32X32:
scan = vp9_default_zig_zag1d_32x32;
coef_probs = cm->fc.coef_probs_32x32;
seg_eob = 1024;
above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0;
break;
default:
abort();
break;
}
assert(eob <= seg_eob);
pt = combine_entropy_contexts(above_ec, left_ec);
nb = vp9_get_coef_neighbors_handle(scan, &pad);
default_eob = seg_eob;
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))
seg_eob = 0;
/* sanity check to ensure that we do not have spurious non-zero q values */
if (eob < seg_eob)
assert(qcoeff_ptr[scan[eob]] == 0);
{
for (c = 0; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp9_dct_value_tokens_ptr[v].token;
int band = get_coef_band(scan, tx_size, c);
if (c)
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v];
if (!c || token_cache[scan[c - 1]])
cost += vp9_cost_bit(coef_probs[type][ref][band][pt][0], 1);
token_cache[scan[c]] = t;
}
if (c < seg_eob) {
if (c)
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
cost += mb->token_costs[tx_size][type][ref]
[get_coef_band(scan, tx_size, c)]
[pt][DCT_EOB_TOKEN];
}
}
// is eob first coefficient;
for (pt = 0; pt < (1 << tx_size); pt++) {
A[pt] = L[pt] = c > 0;
}
return cost;
}
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
int (*r)[2], int *rate,
int *d, int *distortion,
int *s, int *skip,
int64_t txfm_cache[NB_TXFM_MODES],
TX_SIZE max_txfm_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
int s0, s1;
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(cm->prob_tx[m]);
else
r[n][1] += vp9_cost_one(cm->prob_tx[m]);
}
}
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
if (max_txfm_size == TX_32X32 &&
(cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if (max_txfm_size >= TX_16X16 &&
(cm->txfm_mode == ALLOW_16X16 ||
cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode == ALLOW_8X8 ||
cm->txfm_mode == ALLOW_16X16 ||
cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
*distortion = d[mbmi->txfm_size];
*rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
else if (max_txfm_size >= TX_16X16 &&
rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
else
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
rd[TX_4X4][1] : rd[TX_8X8][1];
}
static int block_error(int16_t *coeff, int16_t *dqcoeff,
int block_size, int shift) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += (unsigned)this_diff * this_diff;
}
error >>= shift;
return error > INT_MAX ? INT_MAX : (int)error;
}
static int block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) {
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
return block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff,
16 << (bwl + bhl), shift);
}
static int block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) {
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
int64_t sum = 0;
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
const int subsampling = x->e_mbd.plane[plane].subsampling_x +
x->e_mbd.plane[plane].subsampling_y;
sum += block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
16 << (bwl + bhl - subsampling), 0);
}
sum >>= shift;
return sum > INT_MAX ? INT_MAX : (int)sum;
}
static int rdcost_plane(VP9_COMMON *const cm, MACROBLOCK *x,
int plane, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bw = 1 << bwl, bh = 1 << bhl;
ENTROPY_CONTEXT t_above[16], t_left[16];
int block, cost;
vpx_memcpy(&t_above, xd->plane[plane].above_context,
sizeof(ENTROPY_CONTEXT) * bw);
vpx_memcpy(&t_left, xd->plane[plane].left_context,
sizeof(ENTROPY_CONTEXT) * bh);
cost = 0;
for (block = 0; block < bw * bh; block += 1 << (tx_size * 2)) {
int x_idx, y_idx;
txfrm_block_to_raster_xy(xd, bsize, plane, block, tx_size * 2,
&x_idx, &y_idx);
cost += cost_coeffs(cm, x, plane, block, xd->plane[plane].plane_type,
t_above + x_idx, t_left + y_idx,
tx_size, bw * bh);
}
return cost;
}
static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
int cost = 0, plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
cost += rdcost_plane(cm, x, plane, bsize, tx_size);
}
return cost;
}
static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = tx_size;
vp9_xform_quant_sby(cm, x, bsize);
*distortion = block_error_sby(x, bsize, tx_size == TX_32X32 ? 0 : 2);
*rate = rdcost_plane(cm, x, 0, bsize, tx_size);
*skippable = vp9_sby_is_skippable(xd, bsize);
}
static void super_block_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int *distortion,
int *skip, BLOCK_SIZE_TYPE bs,
int64_t txfm_cache[NB_TXFM_MODES]) {
VP9_COMMON *const cm = &cpi->common;
int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB];
vp9_subtract_sby(x, bs);
if (bs >= BLOCK_SIZE_SB32X32)
super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32],
bs, TX_32X32);
if (bs >= BLOCK_SIZE_MB16X16)
super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16],
bs, TX_16X16);
super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs,
TX_8X8);
super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs,
TX_4X4);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache,
TX_32X32 - (bs < BLOCK_SIZE_SB32X32)
- (bs < BLOCK_SIZE_MB16X16));
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
B_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int rate = 0;
int distortion;
VP9_COMMON *const cm = &cpi->common;
const int src_stride = x->plane[0].src.stride;
uint8_t* const src =
raster_block_offset_uint8(xd,
BLOCK_SIZE_SB8X8,
0, ib,
x->plane[0].src.buf, src_stride);
int16_t* const src_diff =
raster_block_offset_int16(xd,
BLOCK_SIZE_SB8X8,
0, ib,
x->plane[0].src_diff);
int16_t* const diff =
raster_block_offset_int16(xd,
BLOCK_SIZE_SB8X8,
0, ib,
xd->plane[0].diff);
int16_t* const coeff = BLOCK_OFFSET(x->plane[0].coeff, ib, 16);
uint8_t* const dst =
raster_block_offset_uint8(xd,
BLOCK_SIZE_SB8X8,
0, ib,
xd->plane[0].dst.buf, xd->plane[0].dst.stride);
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
TX_TYPE tx_type = DCT_DCT;
TX_TYPE best_tx_type = DCT_DCT;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 4x4 block
* */
DECLARE_ALIGNED_ARRAY(16, int16_t, best_dqcoeff, 16);
assert(ib < 4);
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (mode = B_DC_PRED; mode < LEFT4X4; mode++) {
int64_t this_rd;
int ratey;
xd->mode_info_context->bmi[ib].as_mode.first = mode;
rate = bmode_costs[mode];
vp9_intra4x4_predict(xd, ib,
BLOCK_SIZE_SB8X8,
mode, dst, xd->plane[0].dst.stride);
vp9_subtract_block(4, 4, src_diff, 8,
src, src_stride,
dst, xd->plane[0].dst.stride);
xd->mode_info_context->bmi[ib].as_mode.first = mode;
tx_type = get_tx_type_4x4(xd, ib);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(src_diff, coeff, 8, tx_type);
x->quantize_b_4x4(x, ib, tx_type, 16);
} else {
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, ib, tx_type, 16);
}
tempa = ta;
templ = tl;
ratey = cost_coeffs(cm, x, 0, ib,
PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4, 16);
rate += ratey;
distortion = vp9_block_error(coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16),
16) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
best_tx_type = tx_type;
*a = tempa;
*l = templ;
vpx_memcpy(best_dqcoeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16), 32);
}
}
xd->mode_info_context->bmi[ib].as_mode.first =
(B_PREDICTION_MODE)(*best_mode);
// inverse transform
if (best_tx_type != DCT_DCT)
vp9_short_iht4x4(best_dqcoeff, diff, 8, best_tx_type);
else
xd->inv_txm4x4(best_dqcoeff, diff, 16);
vp9_intra4x4_predict(xd, ib,
BLOCK_SIZE_SB8X8,
*best_mode,
dst, xd->plane[0].dst.stride);
vp9_recon_b(dst, diff, 8,
dst, xd->plane[0].dst.stride);
return best_rd;
}
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
int i;
MACROBLOCKD *const xd = &mb->e_mbd;
int cost = mb->mbmode_cost[xd->frame_type][I4X4_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT t_above[2], t_left[2];
int *bmode_costs;
vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
xd->mode_info_context->mbmi.mode = I4X4_PRED;
bmode_costs = mb->inter_bmode_costs;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
if (xd->frame_type == KEY_FRAME) {
const B_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const B_PREDICTION_MODE L = left_block_mode(mic, i);
bmode_costs = mb->bmode_costs[A][L];
}
total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
t_above + x_idx, t_left + y_idx,
&r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
if (total_rd >= best_rd)
break;
}
if (total_rd >= best_rd)
return INT64_MAX;
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int this_rate, this_rate_tokenonly;
int this_distortion, s;
int64_t best_rd = INT64_MAX, this_rd;
TX_SIZE UNINITIALIZED_IS_SAFE(best_tx);
int i;
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_txfm_cache[NB_TXFM_MODES];
x->e_mbd.mode_info_context->mbmi.mode = mode;
vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize);
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
bsize, local_txfm_cache);
this_rate = this_rate_tokenonly + x->mbmode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = this_rd + local_txfm_cache[i] -
local_txfm_cache[cpi->common.txfm_mode];
if (adj_rd < txfm_cache[i]) {
txfm_cache[i] = adj_rd;
}
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx;
return best_rd;
}
static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion,
int *skippable, BLOCK_SIZE_TYPE bsize,
TX_SIZE uv_tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
vp9_xform_quant_sbuv(cm, x, bsize);
*distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2);
*rate = rdcost_uv(cm, x, bsize, uv_tx_size);
*skippable = vp9_sbuv_is_skippable(xd, bsize);
}
static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_subtract_sbuv(x, bsize);
if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_32X32);
} else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_16X16);
} else if (mbmi->txfm_size >= TX_8X8 && bsize >= BLOCK_SIZE_MB16X16) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_8X8);
} else {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_4X4);
}
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate;
int this_distortion, s;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
super_block_uvrd(&cpi->common, x, &this_rate_tokenonly,
&this_distortion, &s, bsize);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
int vp9_cost_mv_ref(VP9_COMP *cpi,
MB_PREDICTION_MODE m,
const int mode_context) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Dont account for mode here if segment skip is enabled.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
VP9_COMMON *pc = &cpi->common;
vp9_prob p [VP9_MVREFS - 1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp9_mv_ref_probs(pc, p, mode_context);
return cost_token(vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
}
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static int labels2mode(MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv seg_mvs[MAX_REF_FRAMES - 1],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int *mvjcost, int *mvcost[2], VP9_COMP *cpi) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
const int mis = xd->mode_info_stride;
int i, cost = 0, thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
for (i = 0; i < 4; ++i) {
const int row = i >> 1, col = i & 1;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i - 1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i - 2])
m = ABOVE4X4;
else {
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEW4X4 :
if (mbmi->second_ref_frame > 0) {
this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int;
this_second_mv->as_int =
seg_mvs[mbmi->second_ref_frame - 1].as_int;
}
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame > 0) {
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvjcost, mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case LEFT4X4:
this_mv->as_int = col ? mic->bmi[i - 1].as_mv[0].as_int :
left_block_mv(xd, mic, i);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = col ? mic->bmi[i - 1].as_mv[1].as_int :
left_block_second_mv(xd, mic, i);
break;
case ABOVE4X4:
this_mv->as_int = row ? mic->bmi[i - 2].as_mv[0].as_int :
above_block_mv(mic, i, mis);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = row ? mic->bmi[i - 2].as_mv[1].as_int :
above_block_second_mv(mic, i, mis);
break;
case ZERO4X4:
this_mv->as_int = 0;
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = 0;
break;
default:
break;
}
if (m == ABOVE4X4) { // replace above with left if same
int_mv left_mv, left_second_mv;
left_second_mv.as_int = 0;
left_mv.as_int = col ? mic->bmi[i - 1].as_mv[0].as_int :
left_block_mv(xd, mic, i);
if (mbmi->second_ref_frame > 0)
left_second_mv.as_int = col ? mic->bmi[i - 1].as_mv[1].as_int :
left_block_second_mv(xd, mic, i);
if (left_mv.as_int == this_mv->as_int &&
(mbmi->second_ref_frame <= 0 ||
left_second_mv.as_int == this_second_mv->as_int))
m = LEFT4X4;
}
cost = x->inter_bmode_costs[m];
}
mic->bmi[i].as_mv[0].as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
}
cost += thismvcost;
return cost;
}
static int64_t encode_inter_mb_segment(VP9_COMMON *const cm,
MACROBLOCK *x,
int const *labels,
int which_label,
int *labelyrate,
int *distortion,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
*labelyrate = 0;
*distortion = 0;
for (i = 0; i < 4; i++) {
if (labels[i] == which_label) {
const int src_stride = x->plane[0].src.stride;
uint8_t* const src =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src.buf, src_stride);
int16_t* const src_diff =
raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src_diff);
int16_t* const coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i);
uint8_t* const pre =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
uint8_t* const dst =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
int thisdistortion;
vp9_build_inter_predictor(pre,
xd->plane[0].pre[0].stride,
dst,
xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[0],
&xd->scale_factor[0],
4, 4, 0 /* no avg */, &xd->subpix);
// TODO(debargha): Make this work properly with the
// implicit-compoundinter-weight experiment when implicit
// weighting for splitmv modes is turned on.
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
uint8_t* const second_pre =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[1].buf,
xd->plane[0].pre[1].stride);
vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride,
dst, xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[1],
&xd->scale_factor[1], 4, 4, 1,
&xd->subpix);
}
vp9_subtract_block(4, 4, src_diff, 8,
src, src_stride,
dst, xd->plane[0].dst.stride);
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, i, DCT_DCT, 16);
thisdistortion = vp9_block_error(coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff,
i, 16), 16);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(cm, x, 0, i, PLANE_TYPE_Y_WITH_DC,
ta + (i & 1),
tl + (i >> 1), TX_4X4, 16);
}
}
*distortion >>= 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[4];
int_mv mvs[4], second_mvs[4];
int eobs[4];
int mvthresh;
int *mdcounts;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) {
int i, j;
static const int labels[4] = { 0, 1, 2, 3 };
int br = 0, bd = 0;
B_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
const int label_count = 4;
int64_t this_segment_rd = 0, other_segment_rd;
int label_mv_thresh;
int rate = 0;
int sbr = 0, sbd = 0;
int segmentyrate = 0;
int best_eobs[4] = { 0 };
vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT t_above[2], t_left[2];
ENTROPY_CONTEXT t_above_b[2], t_left_b[2];
vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left));
v_fn_ptr = &cpi->fn_ptr[BLOCK_4X4];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
rate += vp9_cost_mv_ref(cpi, SPLITMV,
mbmi->mb_mode_context[mbmi->ref_frame]);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
other_segment_rd = this_segment_rd;
for (i = 0; i < label_count && this_segment_rd < bsi->segment_rd; i++) {
int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT];
int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) {
int64_t this_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT t_above_s[2], t_left_s[2];
vpx_memcpy(t_above_s, t_above, sizeof(t_above_s));
vpx_memcpy(t_left_s, t_left, sizeof(t_left_s));
// motion search for newmv (single predictor case only)
if (mbmi->second_ref_frame <= 0 && this_mode == NEW4X4) {
int sseshift, n;
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
const struct buf_2d orig_src = x->plane[0].src;
const struct buf_2d orig_pre = x->e_mbd.plane[0].pre[0];
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int;
if (i == 2)
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
{
int sadpb = x->sadperbit4;
int_mv mvp_full;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// find first label
n = i;
// adjust src pointer for this segment
x->plane[0].src.buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n,
x->plane[0].src.buf,
x->plane[0].src.stride);
assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0);
x->e_mbd.plane[0].pre[0].buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n,
x->e_mbd.plane[0].pre[0].buf,
x->e_mbd.plane[0].pre[0].stride);
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEW4X4]);
sseshift = 0;
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) {
/* Check if mvp_full is within the range. */
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, &mvp_full,
sadpb, 16, v_fn_ptr,
x->nmvjointcost, x->mvcost,
bsi->ref_mv,
n);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEW4X4].as_int =
x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int;
} else {
/* The full search result is actually worse so re-instate the
* previous best vector */
x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int =
mode_mv[NEW4X4].as_int;
}
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr,
x->nmvjointcost, x->mvcost,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int;
}
// restore src pointers
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre;
} else if (mbmi->second_ref_frame > 0 && this_mode == NEW4X4) {
/* NEW4X4 */
/* motion search not completed? Then skip newmv for this block with
* comppred */
if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) {
continue;
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->second_ref_frame > 0 &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
this_rd = encode_inter_mb_segment(&cpi->common,
x, labels, i, &labelyrate,
&distortion, t_above_s, t_left_s);
this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
rate += labelyrate;
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
for (j = 0; j < 4; j++)
if (labels[j] == i)
best_eobs[j] = x->e_mbd.plane[0].eobs[j];
vpx_memcpy(t_above_b, t_above_s, sizeof(t_above_s));
vpx_memcpy(t_left_b, t_left_s, sizeof(t_left_s));
}
} /*for each 4x4 mode*/
vpx_memcpy(t_above, t_above_b, sizeof(t_above));
vpx_memcpy(t_left, t_left_b, sizeof(t_left));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
other_segment_rd += best_other_rd;
} /* for each label */
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
// store everything needed to come back to this!!
for (i = 0; i < 4; i++) {
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->second_ref_frame > 0)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = best_eobs[i];
}
}
}
static void rd_check_segment(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) {
rd_check_segment_txsize(cpi, x, bsi, seg_mvs);
}
static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd,
int *mdcounts,
int *returntotrate,
int *returnyrate,
int *returndistortion,
int *skippable, int mvthresh,
int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
for (i = 0; i < 4; i++)
bsi.modes[i] = ZERO4X4;
rd_check_segment(cpi, x, &bsi, seg_mvs);
/* set it to the best */
for (i = 0; i < 4; i++) {
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int = bsi.mvs[i].as_int;
if (mbmi->second_ref_frame > 0)
x->e_mbd.mode_info_context->bmi[i].as_mv[1].as_int =
bsi.second_mvs[i].as_int;
x->e_mbd.plane[0].eobs[i] = bsi.eobs[i];
}
/* save partitions */
x->partition_info->count = 4;
for (i = 0; i < x->partition_info->count; i++) {
x->partition_info->bmi[i].mode = bsi.modes[i];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[i].as_mv;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[i].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[3].mv.as_int = bsi.mvs[3].as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[3].second_mv.as_int = bsi.second_mvs[3].as_int;
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
*skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_SB8X8);
return (int)(bsi.segment_rd);
}
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, enum BlockSize block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int_mv this_mv;
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
int row_offset, col_offset;
// Get the sad for each candidate reference mv
for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) {
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
// The list is at an end if we see 0 for a second time.
if (!this_mv.as_int && zero_seen)
break;
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
col_offset = this_mv.as_mv.col >> 3;
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride,
0x7fffffff);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
}
extern void vp9_calc_ref_probs(int *count, vp9_prob *probs);
static void estimate_curframe_refprobs(VP9_COMP *cpi,
vp9_prob mod_refprobs[3],
int pred_ref) {
int norm_cnt[MAX_REF_FRAMES];
const int *const rfct = cpi->count_mb_ref_frame_usage;
int intra_count = rfct[INTRA_FRAME];
int last_count = rfct[LAST_FRAME];
int gf_count = rfct[GOLDEN_FRAME];
int arf_count = rfct[ALTREF_FRAME];
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
if (pred_ref == INTRA_FRAME) {
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[0] = 0; // This branch implicit
} else if (pred_ref == LAST_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[1] = 0; // This branch implicit
} else if (pred_ref == GOLDEN_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
} else {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
}
}
static INLINE unsigned weighted_cost(vp9_prob *tab0, vp9_prob *tab1,
int idx, int val, int weight) {
unsigned cost0 = tab0[idx] ? vp9_cost_bit(tab0[idx], val) : 0;
unsigned cost1 = tab1[idx] ? vp9_cost_bit(tab1[idx], val) : 0;
// weight is 16-bit fixed point, so this basically calculates:
// 0.5 + weight * cost1 + (1.0 - weight) * cost0
return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16;
}
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
unsigned int *ref_costs) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
vp9_prob *mod_refprobs;
unsigned int cost;
int pred_ref;
int pred_flag;
int pred_ctx;
int i;
vp9_prob pred_prob, new_pred_prob;
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Get the predicted reference for this mb
pred_ref = vp9_get_pred_ref(cm, xd);
// Get the context probability for the prediction flag (based on last frame)
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Predict probability for current frame based on stats so far
pred_ctx = vp9_get_pred_context(cm, xd, PRED_REF);
new_pred_prob = get_binary_prob(cpi->ref_pred_count[pred_ctx][0],
cpi->ref_pred_count[pred_ctx][1]);
// Get the set of probabilities to use if prediction fails
mod_refprobs = cm->mod_refprobs[pred_ref];
// For each possible selected reference frame work out a cost.
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (seg_ref_active && seg_ref_count == 1) {
cost = 0;
} else {
pred_flag = (i == pred_ref);
// Get the prediction for the current mb
cost = weighted_cost(&pred_prob, &new_pred_prob, 0,
pred_flag, cpi->seg0_progress);
if (cost > 1024) cost = 768; // i.e. account for 4 bits max.
// for incorrectly predicted cases
if (!pred_flag) {
vp9_prob curframe_mod_refprobs[3];
if (cpi->seg0_progress) {
estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref);
} else {
vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs));
}
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0,
(i != INTRA_FRAME), cpi->seg0_progress);
if (i != INTRA_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1,
(i != LAST_FRAME), cpi->seg0_progress);
if (i != LAST_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2,
(i != GOLDEN_FRAME), cpi->seg0_progress);
}
}
}
}
ref_costs[i] = cost;
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
int64_t txfm_size_diff[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
vpx_memcpy(&ctx->mic, xd->mode_info_context,
sizeof(MODE_INFO));
if (partition)
vpx_memcpy(&ctx->partition_info, partition,
sizeof(PARTITION_INFO));
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int idx, MV_REFERENCE_FRAME frame_type,
enum BlockSize block_size,
int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
int frame_mdcounts[4][4],
YV12_BUFFER_CONFIG yv12_mb[4],
struct scale_factors scale[MAX_REF_FRAMES]) {
VP9_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int use_prev_in_find_mv_refs;
// set up scaling factors
scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
scale[frame_type].x_offset_q4 =
(mi_col * MI_SIZE * scale[frame_type].x_num /
scale[frame_type].x_den) & 0xf;
scale[frame_type].y_offset_q4 =
(mi_row * MI_SIZE * scale[frame_type].y_num /
scale[frame_type].y_den) & 0xf;
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
setup_pred_block(&yv12_mb[frame_type], yv12, mi_row, mi_col,
&scale[frame_type], &scale[frame_type]);
// Gets an initial list of candidate vectors from neighbours and orders them
use_prev_in_find_mv_refs = cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cpi->common.error_resilient_mode;
vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context,
use_prev_in_find_mv_refs ? xd->prev_mode_info_context : NULL,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (scale[frame_type].x_num == scale[frame_type].x_den &&
scale[frame_type].y_num == scale[frame_type].y_den)
mv_pred(cpi, x, yv12_mb[frame_type].y_buffer, yv12->y_stride,
frame_type, block_size);
}
static enum BlockSize get_block_size(int bw, int bh) {
if (bw == 4 && bh == 4)
return BLOCK_4X4;
if (bw == 4 && bh == 8)
return BLOCK_4X8;
if (bw == 8 && bh == 4)
return BLOCK_8X4;
if (bw == 8 && bh == 8)
return BLOCK_8X8;
if (bw == 8 && bh == 16)
return BLOCK_8X16;
if (bw == 16 && bh == 8)
return BLOCK_16X8;
if (bw == 16 && bh == 16)
return BLOCK_16X16;
if (bw == 32 && bh == 32)
return BLOCK_32X32;
if (bw == 32 && bh == 16)
return BLOCK_32X16;
if (bw == 16 && bh == 32)
return BLOCK_16X32;
if (bw == 64 && bh == 32)
return BLOCK_64X32;
if (bw == 32 && bh == 64)
return BLOCK_32X64;
if (bw == 64 && bh == 64)
return BLOCK_64X64;
assert(0);
return -1;
}
static void model_rd_from_var_lapndz(int var, int n, int qstep,
int *rate, int *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
// The function is implemented as piecewise approximation to the
// exact computation.
// TODO(debargha): Implement the functions by interpolating from a
// look-up table
vp9_clear_system_state();
{
double D, R;
double s2 = (double) var / n;
double s = sqrt(s2);
double x = qstep / s;
if (x > 1.0) {
double y = exp(-x / 2);
double y2 = y * y;
D = 2.069981728764738 * y2 - 2.764286806516079 * y + 1.003956960819275;
R = 0.924056758535089 * y2 + 2.738636469814024 * y - 0.005169662030017;
} else {
double x2 = x * x;
D = 0.075303187668830 * x2 + 0.004296954321112 * x - 0.000413209252807;
if (x > 0.125)
R = 1 / (-0.03459733614226 * x2 + 0.36561675733603 * x +
0.1626989668625);
else
R = -1.442252874826093 * log(x) + 1.944647760719664;
}
if (R < 0) {
*rate = 0;
*dist = var;
} else {
*rate = (n * R * 256 + 0.5);
*dist = (n * D * s2 + 0.5);
}
}
vp9_clear_system_state();
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse, var;
int i, rate_sum = 0, dist_sum = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const int bwl = b_width_log2(bsize) - pd->subsampling_x;
const int bhl = b_height_log2(bsize) - pd->subsampling_y;
const enum BlockSize bs = get_block_size(4 << bwl, 4 << bhl);
int rate, dist;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
model_rd_from_var_lapndz(var, 16 << (bwl + bhl),
pd->dequant[1] >> 3, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*out_rate_sum = rate_sum;
*out_dist_sum = dist_sum;
}
static enum BlockSize y_to_uv_block_size(enum BlockSize bs) {
switch (bs) {
case BLOCK_64X64: return BLOCK_32X32;
case BLOCK_64X32: return BLOCK_32X16;
case BLOCK_32X64: return BLOCK_16X32;
case BLOCK_32X32: return BLOCK_16X16;
case BLOCK_32X16: return BLOCK_16X8;
case BLOCK_16X32: return BLOCK_8X16;
case BLOCK_16X16: return BLOCK_8X8;
case BLOCK_16X8: return BLOCK_8X4;
case BLOCK_8X16: return BLOCK_4X8;
case BLOCK_8X8: return BLOCK_4X4;
default:
assert(0);
return -1;
}
}
static enum BlockSize y_bsizet_to_block_size(BLOCK_SIZE_TYPE bs) {
switch (bs) {
case BLOCK_SIZE_SB64X64: return BLOCK_64X64;
case BLOCK_SIZE_SB64X32: return BLOCK_64X32;
case BLOCK_SIZE_SB32X64: return BLOCK_32X64;
case BLOCK_SIZE_SB32X32: return BLOCK_32X32;
case BLOCK_SIZE_SB32X16: return BLOCK_32X16;
case BLOCK_SIZE_SB16X32: return BLOCK_16X32;
case BLOCK_SIZE_MB16X16: return BLOCK_16X16;
case BLOCK_SIZE_SB16X8: return BLOCK_16X8;
case BLOCK_SIZE_SB8X16: return BLOCK_8X16;
case BLOCK_SIZE_SB8X8: return BLOCK_8X8;
default:
assert(0);
return -1;
}
}
static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mdcounts[4], int64_t txfm_cache[],
int *rate2, int *distortion, int *skippable,
int *compmode_cost,
int *rate_y, int *distortion_y,
int *rate_uv, int *distortion_uv,
int *mode_excluded, int *disable_skip,
int mode_index,
INTERPOLATIONFILTERTYPE *best_filter,
int_mv frame_mv[MB_MODE_COUNT]
[MAX_REF_FRAMES],
YV12_BUFFER_CONFIG *scaled_ref_frame,
int mi_row, int mi_col) {
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
const enum BlockSize block_size = y_bsizet_to_block_size(bsize);
const enum BlockSize uv_block_size = y_to_uv_block_size(block_size);
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const int is_comp_pred = (mbmi->second_ref_frame > 0);
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
int i;
int refs[2] = { mbmi->ref_frame,
(mbmi->second_ref_frame < 0 ? 0 : mbmi->second_ref_frame) };
int_mv cur_mv[2];
int_mv ref_mv[2];
int64_t this_rd = 0;
unsigned char tmp_ybuf[64 * 64];
unsigned char tmp_ubuf[32 * 32];
unsigned char tmp_vbuf[32 * 32];
int pred_exists = 0;
int interpolating_intpel_seen = 0;
int intpel_mv;
int64_t rd, best_rd = INT64_MAX;
switch (this_mode) {
case NEWMV:
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
if (is_comp_pred) {
if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV ||
frame_mv[NEWMV][refs[1]].as_int == INVALID_MV)
return INT64_MAX;
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[0]],
&ref_mv[0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[1]],
&ref_mv[1],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
} else {
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
int bestsme = INT_MAX;
int further_steps, step_param = cpi->sf.first_step;
int sadpb = x->sadperbit16;
int_mv mvp_full, tmp_mv;
int sr = 0;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
setup_pre_planes(xd, scaled_ref_frame, NULL, mi_row, mi_col,
NULL, NULL);
}
vp9_clamp_mv_min_max(x, &ref_mv[0]);
sr = vp9_init_search_range(cpi->common.width, cpi->common.height);
// mvp_full.as_int = ref_mv[0].as_int;
mvp_full.as_int =
mbmi->ref_mvs[refs[0]][x->mv_best_ref_index[refs[0]]].as_int;
mvp_full.as_mv.col >>= 3;
mvp_full.as_mv.row >>= 3;
// adjust search range according to sr from mv prediction
step_param = MAX(step_param, sr);
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[block_size],
&ref_mv[0], &tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, &tmp_mv,
&ref_mv[0],
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse);
}
frame_mv[NEWMV][refs[0]].as_int =
xd->mode_info_context->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
// Add the new motion vector cost to our rolling cost variable
*rate2 += vp9_mv_bit_cost(&tmp_mv, &ref_mv[0],
x->nmvjointcost, x->mvcost,
96, xd->allow_high_precision_mv);
// restore the predictor, if required
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
}
break;
case NEARMV:
case NEARESTMV:
case ZEROMV:
default:
break;
}
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[this_mode][refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode == NEWMV)
assert(!clamp_mv2(&cur_mv[i], xd));
else
clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
*compmode_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP),
is_comp_pred);
*rate2 += vp9_cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame]);
pred_exists = 0;
interpolating_intpel_seen = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
(mbmi->mv[0].as_mv.col & 15) == 0;
if (is_comp_pred)
intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
(mbmi->mv[1].as_mv.col & 15) == 0;
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
if (1) {
int i, newbest;
int tmp_rate_sum = 0, tmp_dist_sum = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
int rs = 0;
const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i];
const int is_intpel_interp = intpel_mv &&
vp9_is_interpolating_filter[filter];
mbmi->interp_filter = filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cm->mcomp_filter_type == SWITCHABLE)
rs = get_switchable_rate(cm, x);
if (interpolating_intpel_seen && is_intpel_interp) {
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_sum, tmp_dist_sum);
} else {
int rate_sum = 0, dist_sum = 0;
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_sum, dist_sum);
if (!interpolating_intpel_seen && is_intpel_interp) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
newbest = i == 0 || rd < best_rd;
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
int i;
for (i = 0; i < MI_SIZE * bh; ++i)
vpx_memcpy(tmp_ybuf + i * MI_SIZE * bw,
xd->plane[0].dst.buf + i * xd->plane[0].dst.stride,
sizeof(unsigned char) * MI_SIZE * bw);
for (i = 0; i < MI_UV_SIZE * bh; ++i)
vpx_memcpy(tmp_ubuf + i * MI_UV_SIZE * bw,
xd->plane[1].dst.buf + i * xd->plane[1].dst.stride,
sizeof(unsigned char) * MI_UV_SIZE * bw);
for (i = 0; i < MI_UV_SIZE * bh; ++i)
vpx_memcpy(tmp_vbuf + i * MI_UV_SIZE * bw,
xd->plane[2].dst.buf + i * xd->plane[2].dst.stride,
sizeof(unsigned char) * MI_UV_SIZE * bw);
pred_exists = 1;
}
interpolating_intpel_seen |= is_intpel_interp;
}
}
// Set the appripriate filter
mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
cm->mcomp_filter_type : *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (pred_exists) {
for (i = 0; i < bh * MI_SIZE; ++i)
vpx_memcpy(xd->plane[0].dst.buf + i * xd->plane[0].dst.stride,
tmp_ybuf + i * bw * MI_SIZE,
sizeof(unsigned char) * bw * MI_SIZE);
for (i = 0; i < bh * MI_UV_SIZE; ++i)
vpx_memcpy(xd->plane[1].dst.buf + i * xd->plane[1].dst.stride,
tmp_ubuf + i * bw * MI_UV_SIZE,
sizeof(unsigned char) * bw * MI_UV_SIZE);
for (i = 0; i < bh * MI_UV_SIZE; ++i)
vpx_memcpy(xd->plane[2].dst.buf + i * xd->plane[2].dst.stride,
tmp_vbuf + i * bw * MI_UV_SIZE,
sizeof(unsigned char) * bw * MI_UV_SIZE);
} else {
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear, 6-tap) is indicated at the frame level
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
if (cpi->common.mcomp_filter_type == SWITCHABLE)
*rate2 += get_switchable_rate(cm, x);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int var, sse;
int threshold = (xd->plane[0].dequant[1]
* xd->plane[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = cpi->fn_ptr[block_size].vf(x->plane[0].src.buf,
x->plane[0].src.stride,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
&sse);
if ((int)sse < threshold) {
unsigned int q2dc = xd->plane[0].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc * q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2;
unsigned int sse2u, sse2v;
var = cpi->fn_ptr[uv_block_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse2u);
var = cpi->fn_ptr[uv_block_size].vf(x->plane[2].src.buf,
x->plane[1].src.stride,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride, &sse2v);
sse2 = sse2u + sse2v;
if (sse2 * 2 < threshold) {
x->skip = 1;
*distortion = sse + sse2;
*rate2 = 500;
/* for best_yrd calculation */
*rate_uv = 0;
*distortion_uv = sse2;
*disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
}
}
}
}
if (!x->skip) {
int skippable_y, skippable_uv;
// Y cost and distortion
super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y,
bsize, txfm_cache);
*rate2 += *rate_y;
*distortion += *distortion_y;
super_block_uvrd(cm, x, rate_uv, distortion_uv,
&skippable_uv, bsize);
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
}
if (!(*mode_excluded)) {
if (is_comp_pred) {
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
} else {
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
}
}
return this_rd; // if 0, this will be re-calculated by caller
}
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int *returndist,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y = 0, rate_uv;
int rate_y_tokenonly = 0, rate_uv_tokenonly;
int dist_y = 0, dist_uv;
int y_skip = 0, uv_skip;
int64_t txfm_cache[NB_TXFM_MODES], err;
MB_PREDICTION_MODE mode;
TX_SIZE txfm_size;
int rate4x4_y, rate4x4_y_tokenonly, dist4x4_y;
int64_t err4x4 = INT64_MAX;
int i;
ctx->skip = 0;
xd->mode_info_context->mbmi.mode = DC_PRED;
err = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize, txfm_cache);
mode = xd->mode_info_context->mbmi.mode;
txfm_size = xd->mode_info_context->mbmi.txfm_size;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip, bsize);
if (bsize == BLOCK_SIZE_SB8X8)
err4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4_y,
&rate4x4_y_tokenonly,
&dist4x4_y, err);
if (y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
memset(ctx->txfm_rd_diff, 0,
sizeof(x->sb32_context[xd->sb_index].txfm_rd_diff));
xd->mode_info_context->mbmi.mode = mode;
xd->mode_info_context->mbmi.txfm_size = txfm_size;
} else if (bsize == BLOCK_SIZE_SB8X8 && err4x4 < err) {
*returnrate = rate4x4_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist4x4_y + (dist_uv >> 2);
for (i = 0; i < NB_TXFM_MODES; i++) {
ctx->txfm_rd_diff[i] = MIN(err4x4, err - txfm_cache[i]);
}
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
} else {
*returnrate = rate_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
for (i = 0; i < NB_TXFM_MODES; i++) {
ctx->txfm_rd_diff[i] = MIN(err4x4, err - txfm_cache[i]);
}
xd->mode_info_context->mbmi.txfm_size = txfm_size;
xd->mode_info_context->mbmi.mode = mode;
}
vpx_memcpy(&ctx->mic, xd->mode_info_context, sizeof(MODE_INFO));
}
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
int *returnrate,
int *returndistortion,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
const enum BlockSize block_size = y_bsizet_to_block_size(bsize);
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MV_REFERENCE_FRAME ref_frame, second_ref;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int frame_mdcounts[4][4];
YV12_BUFFER_CONFIG yv12_mb[4];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int idx_list[4] = {0,
cpi->lst_fb_idx,
cpi->gld_fb_idx,
cpi->alt_fb_idx};
int mdcounts[4];
int64_t best_rd = INT64_MAX;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
MB_MODE_INFO best_mbmode;
int j;
int mode_index, best_mode_index = 0;
unsigned int ref_costs[MAX_REF_FRAMES];
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB];
int dist_uv[TX_SIZE_MAX_SB], skip_uv[TX_SIZE_MAX_SB];
MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB];
struct scale_factors scale_factor[4];
unsigned int ref_frame_mask = 0;
unsigned int mode_mask = 0;
int64_t mode_distortions[MB_MODE_COUNT] = {-1};
int64_t frame_distortions[MAX_REF_FRAMES] = {-1};
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
cpi->common.y_dc_delta_q);
int_mv seg_mvs[4][MAX_REF_FRAMES - 1];
union b_mode_info best_bmodes[4];
PARTITION_INFO best_partition;
for (i = 0; i < 4; i++) {
int j;
for (j = 0; j < MAX_REF_FRAMES - 1; j++)
seg_mvs[i][j].as_int = INVALID_MV;
}
// Everywhere the flag is set the error is much higher than its neighbors.
ctx->frames_with_high_error = 0;
ctx->modes_with_high_error = 0;
xd->mode_info_context->mbmi.segment_id = segment_id;
estimate_ref_frame_costs(cpi, segment_id, ref_costs);
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
// Create a mask set to 1 for each frame used by a smaller resolution.
if (cpi->Speed > 0) {
switch (block_size) {
case BLOCK_64X64:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
ref_frame_mask |= x->mb_context[i][j].frames_with_high_error;
mode_mask |= x->mb_context[i][j].modes_with_high_error;
}
}
for (i = 0; i < 4; i++) {
ref_frame_mask |= x->sb32_context[i].frames_with_high_error;
mode_mask |= x->sb32_context[i].modes_with_high_error;
}
break;
case BLOCK_32X32:
for (i = 0; i < 4; i++) {
ref_frame_mask |=
x->mb_context[xd->sb_index][i].frames_with_high_error;
mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error;
}
break;
default:
// Until we handle all block sizes set it to present;
ref_frame_mask = 0;
mode_mask = 0;
break;
}
ref_frame_mask = ~ref_frame_mask;
mode_mask = ~mode_mask;
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, yv12_mb, scale_factor);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
if (cpi->Speed == 0
|| (cpi->Speed > 0 && (ref_frame_mask & (1 << INTRA_FRAME)))) {
mbmi->mode = DC_PRED;
for (i = 0; i <= (bsize < BLOCK_SIZE_MB16X16 ? TX_4X4 :
(bsize < BLOCK_SIZE_SB32X32 ? TX_8X8 :
(bsize < BLOCK_SIZE_SB64X64 ? TX_16X16 : TX_32X32)));
i++) {
mbmi->txfm_size = i;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[i], &rate_uv_tokenonly[i],
&dist_uv[i], &skip_uv[i], bsize);
mode_uv[i] = mbmi->uv_mode;
}
}
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable;
int64_t txfm_cache[NB_TXFM_MODES];
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index] ||
cpi->rd_threshes[mode_index] == INT_MAX) {
continue;
}
x->skip = 0;
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame;
if (!(ref_frame == INTRA_FRAME
|| (cpi->ref_frame_flags & flag_list[ref_frame]))) {
continue;
}
if (cpi->Speed > 0) {
if (!(ref_frame_mask & (1 << ref_frame))) {
continue;
}
if (!(mode_mask & (1 << this_mode))) {
continue;
}
if (vp9_mode_order[mode_index].second_ref_frame != NONE
&& !(ref_frame_mask
& (1 << vp9_mode_order[mode_index].second_ref_frame))) {
continue;
}
}
mbmi->ref_frame = ref_frame;
mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// SPLITMV.
if (mbmi->ref_frame > 0 &&
(yv12_mb[mbmi->ref_frame].y_width != cm->mb_cols * 16 ||
yv12_mb[mbmi->ref_frame].y_height != cm->mb_rows * 16) &&
this_mode == SPLITMV)
continue;
if (mbmi->second_ref_frame > 0 &&
(yv12_mb[mbmi->second_ref_frame].y_width != cm->mb_cols * 16 ||
yv12_mb[mbmi->second_ref_frame].y_height != cm->mb_rows * 16) &&
this_mode == SPLITMV)
continue;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
comp_pred = mbmi->second_ref_frame > INTRA_FRAME;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter = cm->mcomp_filter_type;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (bsize != BLOCK_SIZE_SB8X8 &&
(this_mode == I4X4_PRED || this_mode == SPLITMV))
continue;
if (comp_pred) {
if (ref_frame == ALTREF_FRAME) {
second_ref = LAST_FRAME;
} else {
second_ref = ref_frame + 1;
}
if (!(cpi->ref_frame_flags & flag_list[second_ref]))
continue;
mbmi->second_ref_frame = second_ref;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
// mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
if (ref_frame != INTRA_FRAME) {
if (mbmi->second_ref_frame != INTRA_FRAME)
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
}
setup_pre_planes(xd, &yv12_mb[ref_frame],
comp_pred ? &yv12_mb[second_ref] : NULL, 0, 0, NULL, NULL);
vpx_memcpy(mdcounts, frame_mdcounts[ref_frame], sizeof(mdcounts));
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_check_segref(xd, segment_id, ref_frame)) {
continue;
// If the segment skip feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) &&
(this_mode != ZEROMV)) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
continue;
}
}
}
if (this_mode == I4X4_PRED) {
int rate;
// Note the rate value returned here includes the cost of coding
// the I4X4_PRED mode : x->mbmode_cost[xd->frame_type][I4X4_PRED];
assert(bsize == BLOCK_SIZE_SB8X8);
mbmi->txfm_size = TX_4X4;
rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
&distortion_y, INT64_MAX);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
rate2 += rate_uv_intra[TX_4X4];
rate_uv = rate_uv_intra[TX_4X4];
distortion2 += dist_uv[TX_4X4];
distortion_uv = dist_uv[TX_4X4];
mbmi->uv_mode = mode_uv[TX_4X4];
} else if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
vp9_build_intra_predictors_sby_s(xd, bsize);
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
bsize, txfm_cache);
uv_tx = mbmi->txfm_size;
if (bsize < BLOCK_SIZE_MB16X16 && uv_tx == TX_8X8)
uv_tx = TX_4X4;
if (bsize < BLOCK_SIZE_SB32X32 && uv_tx == TX_16X16)
uv_tx = TX_8X8;
else if (bsize < BLOCK_SIZE_SB64X64 && uv_tx == TX_32X32)
uv_tx = TX_16X16;
rate_uv = rate_uv_intra[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
rate2 = rate_y + x->mbmode_cost[cm->frame_type][mbmi->mode] + rate_uv;
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
} else if (this_mode == SPLITMV) {
const int is_comp_pred = mbmi->second_ref_frame > 0;
int rate, distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int tmp_best_distortion = INT_MAX, tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref = is_comp_pred ?
&mbmi->ref_mvs[mbmi->second_ref_frame][0] : NULL;
union b_mode_info tmp_best_bmodes[16];
MB_MODE_INFO tmp_best_mbmode;
PARTITION_INFO tmp_best_partition;
int pred_exists = 0;
int uv_skippable;
this_rd_thresh = (mbmi->ref_frame == LAST_FRAME) ?
cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh = (mbmi->ref_frame == GOLDEN_FRAME) ?
cpi->rd_threshes[THR_NEWG] : this_rd_thresh;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest;
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame][0],
second_ref, INT64_MAX, mdcounts,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int rs = get_switchable_rate(cm, x);
tmp_rd += RDCOST(x->rdmult, x->rddiv, rs, 0);
}
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
(mbmi->interp_filter == cm->mcomp_filter_type &&
cm->mcomp_filter_type != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_skippable = skippable;
vpx_memcpy(&tmp_best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&tmp_best_partition, x->partition_info,
sizeof(PARTITION_INFO));
for (i = 0; i < 4; i++) {
tmp_best_bmodes[i] = xd->mode_info_context->bmi[i];
}
pred_exists = 1;
}
} // switchable_filter_index loop
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
tmp_best_filter : cm->mcomp_filter_type);
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame][0],
second_ref, INT64_MAX, mdcounts,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs);
} else {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
int rs = get_switchable_rate(cm, x);
tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
}
tmp_rd = tmp_best_rdu;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
vpx_memcpy(mbmi, &tmp_best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &tmp_best_partition,
sizeof(PARTITION_INFO));
for (i = 0; i < 4; i++) {
xd->mode_info_context->bmi[i] = tmp_best_bmodes[i];
}
}
rate2 += rate;
distortion2 += distortion;
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += get_switchable_rate(cm, x);
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
bsize);
vp9_subtract_sbuv(x, bsize);
super_block_uvrd_for_txfm(cm, x, &rate_uv, &distortion_uv,
&uv_skippable, bsize, TX_4X4);
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
if (!mode_excluded) {
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
compmode_cost =
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP), is_comp_pred);
mbmi->mode = this_mode;
} else {
YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
int fb;
if (mbmi->ref_frame == LAST_FRAME) {
fb = cpi->lst_fb_idx;
} else if (mbmi->ref_frame == GOLDEN_FRAME) {
fb = cpi->gld_fb_idx;
} else {
fb = cpi->alt_fb_idx;
}
if (cpi->scaled_ref_idx[fb] != cm->ref_frame_map[fb])
scaled_ref_frame = &cm->yv12_fb[cpi->scaled_ref_idx[fb]];
this_rd = handle_inter_mode(cpi, x, bsize,
mdcounts, txfm_cache,
&rate2, &distortion2, &skippable,
&compmode_cost,
&rate_y, &distortion_y,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip,
mode_index, &tmp_best_filter, frame_mv,
scaled_ref_frame, mi_row, mi_col);
if (this_rd == INT64_MAX)
continue;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[xd->mode_info_context->mbmi.ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
int mb_skip_allowed;
// Is Mb level skip allowed (i.e. not coded at segment level).
mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd,
PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
#if 0
// Keep record of best intra distortion
if ((xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#endif
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = tmp_best_filter;
best_mode = this_mode;
}
// Store the respective mode distortions for later use.
if (mode_distortions[this_mode] == -1
|| distortion2 < mode_distortions[this_mode]) {
mode_distortions[this_mode] = distortion2;
}
if (frame_distortions[mbmi->ref_frame] == -1
|| distortion2 < frame_distortions[mbmi->ref_frame]) {
frame_distortions[mbmi->ref_frame] = distortion2;
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= I4X4_PRED) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[xd->mode_info_context->mbmi.ref_frame];
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
if (this_mode == I4X4_PRED || this_mode == SPLITMV) {
for (i = 0; i < 4; i++) {
best_bmodes[i] = xd->mode_info_context->bmi[i];
}
}
}
#if 0
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
} else {
// If the mode did not help improve the best error case then
// raise the threshold for testing that mode next time around.
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (bsize < BLOCK_SIZE_SB32X32) {
if (bsize < BLOCK_SIZE_MB16X16) {
if (this_mode == SPLITMV || this_mode == I4X4_PRED)
txfm_cache[ALLOW_8X8] = txfm_cache[ONLY_4X4];
txfm_cache[ALLOW_16X16] = txfm_cache[ALLOW_8X8];
}
txfm_cache[ALLOW_32X32] = txfm_cache[ALLOW_16X16];
}
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd;
if (this_mode != I4X4_PRED) {
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode];
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
// Flag all modes that have a distortion thats > 2x the best we found at
// this level.
for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) {
if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV
|| mode_index == SPLITMV)
continue;
if (mode_distortions[mode_index] > 2 * *returndistortion) {
ctx->modes_with_high_error |= (1 << mode_index);
}
}
// Flag all ref frames that have a distortion thats > 2x the best we found at
// this level.
for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (frame_distortions[ref_frame] > 2 * *returndistortion) {
ctx->frames_with_high_error |= (1 << ref_frame);
}
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.mode <= I4X4_PRED));
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if (is_inter_mode(best_mode))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// TODO(rbultje) integrate with RD thresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame is enabled for this segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->second_ref_frame = NONE;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff = 1;
if (cm->txfm_mode == TX_MODE_SELECT) {
if (bsize >= BLOCK_SIZE_SB32X32)
mbmi->txfm_size = TX_32X32;
else if (bsize >= BLOCK_SIZE_MB16X16)
mbmi->txfm_size = TX_16X16;
else
mbmi->txfm_size = TX_8X8;
}
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
if (best_mbmode.mode == I4X4_PRED) {
for (i = 0; i < 4; i++) {
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
}
}
if (best_mbmode.mode == SPLITMV) {
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[0].as_int =
best_bmodes[i].as_mv[0].as_int;
if (mbmi->second_ref_frame > 0)
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[1].as_int =
best_bmodes[i].as_mv[1].as_int;
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[3].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[3].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = 0;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
store_coding_context(x, ctx, best_mode_index,
&best_partition,
&mbmi->ref_mvs[mbmi->ref_frame][0],
&mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 :
mbmi->second_ref_frame][0],
best_pred_diff, best_txfm_diff);
return best_rd;
}