1fbab853c8
vp9_block_error_sse2 can only handle 16 bytes at a time but the function requires to handle a sequence of 32 bytes at a time so each 16 bytes is handled in a different register. With AVX2 optimization the 32 bytes can be handled in one register instead of two in the SSE2 The vp9_block_error was optimized by 85%. The user level was optimized by 1.2% Change-Id: Ia8fffe60e61eff7432a5fbd538757894f6c319fd
73 lines
2.9 KiB
C
73 lines
2.9 KiB
C
/*
|
|
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Usee of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <immintrin.h> // AVX2
|
|
#include "vpx/vpx_integer.h"
|
|
|
|
|
|
int64_t vp9_block_error_avx2(const int16_t *coeff,
|
|
const int16_t *dqcoeff,
|
|
intptr_t block_size,
|
|
int64_t *ssz) {
|
|
__m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
|
|
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
|
|
__m256i sse_reg_64hi, ssz_reg_64hi;
|
|
__m128i sse_reg128, ssz_reg128;
|
|
int64_t sse;
|
|
int i;
|
|
const __m256i zero_reg = _mm256_set1_epi16(0);
|
|
|
|
// init sse and ssz registerd to zero
|
|
sse_reg = _mm256_set1_epi16(0);
|
|
ssz_reg = _mm256_set1_epi16(0);
|
|
|
|
for (i = 0 ; i < block_size ; i+= 16) {
|
|
// load 32 bytes from coeff and dqcoeff
|
|
coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
|
|
dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
|
|
// dqcoeff - coeff
|
|
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
|
|
// madd (dqcoeff - coeff)
|
|
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
|
|
// madd coeff
|
|
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
|
|
// expand each double word of madd (dqcoeff - coeff) to quad word
|
|
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
|
|
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
|
|
// expand each double word of madd (coeff) to quad word
|
|
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
|
|
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
|
|
// add each quad word of madd (dqcoeff - coeff) and madd (coeff)
|
|
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
|
|
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
|
|
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
|
|
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
|
|
}
|
|
// save the higher 64 bit of each 128 bit lane
|
|
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
|
|
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
|
|
// add the higher 64 bit to the low 64 bit
|
|
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
|
|
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
|
|
|
|
// add each 64 bit from each of the 128 bit lane of the 256 bit
|
|
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
|
|
_mm256_extractf128_si256(sse_reg, 1));
|
|
|
|
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
|
|
_mm256_extractf128_si256(ssz_reg, 1));
|
|
|
|
// store the results
|
|
_mm_storel_epi64((__m128i*)(&sse), sse_reg128);
|
|
|
|
_mm_storel_epi64((__m128i*)(ssz), ssz_reg128);
|
|
return sse;
|
|
}
|