vpx/vp8/encoder/encodemb.c
Yaowu Xu dcd29e369f enable trellis quantization for 2nd order blocks
Experimented with different value for Y2_RD_MULT ranging f[1, 32],
without adapting the value to MB coding mode/frame type/Q value,
4 works out best among all values, providing overall 0.1% coding
gain on the test set.

Change-Id: I6b2583a8aa5db5e7e5c65c646301909c0c58f876
2010-10-02 06:20:33 -07:00

721 lines
19 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "reconinter.h"
#include "quantize.h"
#include "tokenize.h"
#include "invtrans.h"
#include "recon.h"
#include "reconintra.h"
#include "dct.h"
#include "vpx_mem/vpx_mem.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch)
{
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc, unsigned char *pred, int stride)
{
short *udiff = diff + 256;
short *vdiff = diff + 320;
unsigned char *upred = pred + 256;
unsigned char *vpred = pred + 320;
int r, c;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += 8;
usrc += stride;
}
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += 8;
vsrc += stride;
}
}
void vp8_subtract_mby_c(short *diff, unsigned char *src, unsigned char *pred, int stride)
{
int r, c;
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += 16;
src += stride;
}
}
static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, x->src.y_buffer, x->e_mbd.predictor, x->src.y_stride);
ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
}
void vp8_build_dcblock(MACROBLOCK *x)
{
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++)
{
src_diff_ptr[i] = x->coeff[i * 16];
}
}
void vp8_transform_mbuv(MACROBLOCK *x)
{
int i;
for (i = 16; i < 24; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp8_transform_intra_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
vp8_build_dcblock(x);
// do 2nd order transform on the dc block
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
void vp8_transform_mb(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
vp8_build_dcblock(x);
for (i = 16; i < 24; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
// do 2nd order transform on the dc block
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
void vp8_transform_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
// build dc block from 16 y dc values
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
vp8_build_dcblock(x);
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
void vp8_stuff_inter16x16(MACROBLOCK *x)
{
vp8_build_inter_predictors_mb_s(&x->e_mbd);
/*
// recon = copy from predictors to destination
{
BLOCKD *b = &x->e_mbd.block[0];
unsigned char *pred_ptr = b->predictor;
unsigned char *dst_ptr = *(b->base_dst) + b->dst;
int stride = b->dst_stride;
int i;
for(i=0;i<16;i++)
vpx_memcpy(dst_ptr+i*stride,pred_ptr+16*i,16);
b = &x->e_mbd.block[16];
pred_ptr = b->predictor;
dst_ptr = *(b->base_dst) + b->dst;
stride = b->dst_stride;
for(i=0;i<8;i++)
vpx_memcpy(dst_ptr+i*stride,pred_ptr+8*i,8);
b = &x->e_mbd.block[20];
pred_ptr = b->predictor;
dst_ptr = *(b->base_dst) + b->dst;
stride = b->dst_stride;
for(i=0;i<8;i++)
vpx_memcpy(dst_ptr+i*stride,pred_ptr+8*i,8);
}
*/
}
#if !(CONFIG_REALTIME_ONLY)
#define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp8_token_state vp8_token_state;
struct vp8_token_state{
int rate;
int error;
signed char next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 1
#define UV_RD_MULT 1
#define Y2_RD_MULT 4
static const int plane_rd_mult[4]=
{
Y1_RD_MULT,
Y2_RD_MULT,
UV_RD_MULT,
Y1_RD_MULT
};
void vp8_optimize_b(MACROBLOCK *mb, int ib, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
const VP8_ENCODER_RTCD *rtcd)
{
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[17][2];
unsigned best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz;
int next;
int path;
int rdmult;
int rddiv;
int final_eob;
int rd_cost0;
int rd_cost1;
int rate0;
int rate1;
int error0;
int error1;
int t0;
int t1;
int best;
int band;
int pt;
int i;
int err_mult = plane_rd_mult[type];
b = &mb->block[ib];
d = &mb->e_mbd.block[ib];
/* Enable this to test the effect of RDO as a replacement for the dynamic
* zero bin instead of an augmentation of it.
*/
#if 0
vp8_strict_quantize_b(b, d);
#endif
dequant_ptr = &d->dequant[0][0];
coeff_ptr = &b->coeff[0];
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = !type;
eob = d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* TODO: These should vary with the block type, since the quantizer does. */
rdmult = (mb->rdmult << 2)*err_mult;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 16;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;)
{
int base_bits;
int d2;
int dx;
rc = vp8_default_zig_zag1d[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x)
{
int shortcut=0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 16)
{
band = vp8_coef_bands[i + 1];
pt = vp8_prev_token_class[t0];
rate0 +=
mb->token_costs[type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[type][band][pt][tokens[next][1].token];
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc]<abs(coeff_ptr[rc])+dequant_ptr[rc]))
shortcut = 1;
else
shortcut = 0;
if(shortcut)
{
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x)
{
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
{
t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < 16)
{
band = vp8_coef_bands[i + 1];
if(t0!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][
tokens[next][0].token];
}
if(t1!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[type][band][pt][
tokens[next][1].token];
}
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if(shortcut)
{
dx -= (dequant_ptr[rc] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token =best?t1:t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else
{
band = vp8_coef_bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN)
{
tokens[next][0].rate += mb->token_costs[type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN)
{
tokens[next][1].rate += mb->token_costs[type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[type][band][pt][t0];
rate1 += mb->token_costs[type][band][pt][t1];
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next)
{
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp8_default_zig_zag1d[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = x * dequant_ptr[rc];
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob != !type);
}
void vp8_optimize_mb(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? 0 : 3;
for (b = 0; b < 16; b++)
{
vp8_optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
for (b = 16; b < 20; b++)
{
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
for (b = 20; b < 24; b++)
{
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
if (has_2nd_order)
{
b=24;
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
}
static void vp8_find_mb_skip_coef(MACROBLOCK *x)
{
int i;
x->e_mbd.mode_info_context->mbmi.mb_skip_coeff = 1;
if (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
for (i = 0; i < 16; i++)
{
x->e_mbd.mode_info_context->mbmi.mb_skip_coeff &= (x->e_mbd.block[i].eob < 2);
}
for (i = 16; i < 25; i++)
{
x->e_mbd.mode_info_context->mbmi.mb_skip_coeff &= (!x->e_mbd.block[i].eob);
}
}
else
{
for (i = 0; i < 24; i++)
{
x->e_mbd.mode_info_context->mbmi.mb_skip_coeff &= (!x->e_mbd.block[i].eob);
}
}
}
void vp8_optimize_mby(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? 0 : 3;
for (b = 0; b < 16; b++)
{
vp8_optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
if (has_2nd_order)
{
b=24;
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
}
void vp8_optimize_mbuv(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd)
{
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 20; b++)
{
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
for (b = 20; b < 24; b++)
{
vp8_optimize_b(x, b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd);
}
}
#endif
void vp8_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
vp8_build_inter_predictors_mb(&x->e_mbd);
vp8_subtract_mb(rtcd, x);
vp8_transform_mb(x);
vp8_quantize_mb(x);
#if !(CONFIG_REALTIME_ONLY)
if (x->optimize && x->rddiv > 1)
{
vp8_optimize_mb(x, rtcd);
vp8_find_mb_skip_coef(x);
}
#endif
vp8_inverse_transform_mb(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
vp8_recon16x16mb(IF_RTCD(&rtcd->common->recon), &x->e_mbd);
}
/* this funciton is used by first pass only */
void vp8_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
vp8_build_inter_predictors_mby(&x->e_mbd);
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, x->src.y_buffer, x->e_mbd.predictor, x->src.y_stride);
vp8_transform_mby(x);
vp8_quantize_mby(x);
vp8_inverse_transform_mby(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
vp8_recon16x16mby(IF_RTCD(&rtcd->common->recon), &x->e_mbd);
}
void vp8_encode_inter16x16uv(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
vp8_build_inter_predictors_mbuv(&x->e_mbd);
ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
vp8_inverse_transform_mbuv(IF_RTCD(&rtcd->common->idct), &x->e_mbd);
vp8_recon_intra_mbuv(IF_RTCD(&rtcd->common->recon), &x->e_mbd);
}
void vp8_encode_inter16x16uvrd(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x)
{
vp8_build_inter_predictors_mbuv(&x->e_mbd);
ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
vp8_transform_mbuv(x);
vp8_quantize_mbuv(x);
}