vpx/vp9/common/vp9_scale.c
Dmitry Kovalev 3c42657207 Checking scale factors on access.
It is possible to have invalid scale factors and not access them
during decoding. Error is reported if we really try to use invalid scale
factors.

Change-Id: Ie532d3ea7325ee0c7a6ada08269f804350c80fdf
2013-08-22 15:19:05 -07:00

147 lines
5.5 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_scale.h"
static INLINE int scaled_x(int val, const struct scale_factors *scale) {
return val * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT;
}
static INLINE int scaled_y(int val, const struct scale_factors *scale) {
return val * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT;
}
static int unscaled_value(int val, const struct scale_factors *scale) {
(void) scale;
return val;
}
static MV32 scaled_mv(const MV *mv, const struct scale_factors *scale) {
const MV32 res = {
scaled_y(mv->row, scale) + scale->y_offset_q4,
scaled_x(mv->col, scale) + scale->x_offset_q4
};
return res;
}
static MV32 unscaled_mv(const MV *mv, const struct scale_factors *scale) {
const MV32 res = {
mv->row,
mv->col
};
return res;
}
static void set_offsets_with_scaling(struct scale_factors *scale,
int row, int col) {
scale->x_offset_q4 = scaled_x(col << SUBPEL_BITS, scale) & SUBPEL_MASK;
scale->y_offset_q4 = scaled_y(row << SUBPEL_BITS, scale) & SUBPEL_MASK;
}
static void set_offsets_without_scaling(struct scale_factors *scale,
int row, int col) {
scale->x_offset_q4 = 0;
scale->y_offset_q4 = 0;
}
static int get_fixed_point_scale_factor(int other_size, int this_size) {
// Calculate scaling factor once for each reference frame
// and use fixed point scaling factors in decoding and encoding routines.
// Hardware implementations can calculate scale factor in device driver
// and use multiplication and shifting on hardware instead of division.
return (other_size << VP9_REF_SCALE_SHIFT) / this_size;
}
static int check_scale_factors(int other_w, int other_h,
int this_w, int this_h) {
return 2 * this_w >= other_w &&
2 * this_h >= other_h &&
this_w <= 16 * other_w &&
this_h <= 16 * other_h;
}
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
int other_w, int other_h,
int this_w, int this_h) {
if (!check_scale_factors(other_w, other_h, this_w, this_h)) {
scale->x_scale_fp = VP9_REF_INVALID_SCALE;
scale->y_scale_fp = VP9_REF_INVALID_SCALE;
return;
}
scale->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
scale->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
scale->x_step_q4 = scaled_x(16, scale);
scale->y_step_q4 = scaled_y(16, scale);
scale->x_offset_q4 = 0; // calculated per block
scale->y_offset_q4 = 0; // calculated per block
if (vp9_is_scaled(scale)) {
scale->scale_value_x = scaled_x;
scale->scale_value_y = scaled_y;
scale->set_scaled_offsets = set_offsets_with_scaling;
scale->scale_mv = scaled_mv;
} else {
scale->scale_value_x = unscaled_value;
scale->scale_value_y = unscaled_value;
scale->set_scaled_offsets = set_offsets_without_scaling;
scale->scale_mv = unscaled_mv;
}
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_avg;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_avg;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_avg;
}