Johnny Klonaris
76108b4269
Allows sub-second frame rates in vp9
This is the identical change submitted for vp8 here: https://chromium-review.googlesource.com/#/c/274107/ Tested this change on Mac OSX (10.10) and Linux (Linux Mint 17 / Ubuntu 14.04) and in both cases: - downloaded and compiled latest source for libvpx and ffmpeg - confirmed ffmpeg would build sub-second frame rate webm files via the previous patch - confirmed ffmpeg would *not* build fps < 1 for vp9 - made this change, recompiled libvpn and ffmpeg - confirmed ffmpeg would now create the same webm with fps < 1 - confirmed the resulting file would play and was vp9 (e.g. would not play in Firefox (Linux version complained it was VP9 but mostly could play it) or older vlc, etc., but does play just fine in Google Chrome and a newer version of vlc. Sorry I didn't catch this last time - but this seems a solid change and it's handy to be able to create frame rates less than one second. -jk Change-Id: I38fa32148de8c4c359f228cf08b9a4b83b5a52fb
README - 23 March 2015 Welcome to the WebM VP8/VP9 Codec SDK! COMPILING THE APPLICATIONS/LIBRARIES: The build system used is similar to autotools. Building generally consists of "configuring" with your desired build options, then using GNU make to build the application. 1. Prerequisites * All x86 targets require the Yasm[1] assembler be installed. * All Windows builds require that Cygwin[2] be installed. * Building the documentation requires Doxygen[3]. If you do not have this package, the install-docs option will be disabled. * Downloading the data for the unit tests requires curl[4] and sha1sum. sha1sum is provided via the GNU coreutils, installed by default on many *nix platforms, as well as MinGW and Cygwin. If coreutils is not available, a compatible version of sha1sum can be built from source[5]. These requirements are optional if not running the unit tests. [1]: http://www.tortall.net/projects/yasm [2]: http://www.cygwin.com [3]: http://www.doxygen.org [4]: http://curl.haxx.se [5]: http://www.microbrew.org/tools/md5sha1sum/ 2. Out-of-tree builds Out of tree builds are a supported method of building the application. For an out of tree build, the source tree is kept separate from the object files produced during compilation. For instance: $ mkdir build $ cd build $ ../libvpx/configure <options> $ make 3. Configuration options The 'configure' script supports a number of options. The --help option can be used to get a list of supported options: $ ../libvpx/configure --help 4. Cross development For cross development, the most notable option is the --target option. The most up-to-date list of supported targets can be found at the bottom of the --help output of the configure script. As of this writing, the list of available targets is: armv6-darwin-gcc armv6-linux-rvct armv6-linux-gcc armv6-none-rvct arm64-darwin-gcc armv7-android-gcc armv7-darwin-gcc armv7-linux-rvct armv7-linux-gcc armv7-none-rvct armv7-win32-vs11 armv7-win32-vs12 armv7-win32-vs14 armv7s-darwin-gcc mips32-linux-gcc mips64-linux-gcc sparc-solaris-gcc x86-android-gcc x86-darwin8-gcc x86-darwin8-icc x86-darwin9-gcc x86-darwin9-icc x86-darwin10-gcc x86-darwin11-gcc x86-darwin12-gcc x86-darwin13-gcc x86-darwin14-gcc x86-iphonesimulator-gcc x86-linux-gcc x86-linux-icc x86-os2-gcc x86-solaris-gcc x86-win32-gcc x86-win32-vs7 x86-win32-vs8 x86-win32-vs9 x86-win32-vs10 x86-win32-vs11 x86-win32-vs12 x86-win32-vs14 x86_64-android-gcc x86_64-darwin9-gcc x86_64-darwin10-gcc x86_64-darwin11-gcc x86_64-darwin12-gcc x86_64-darwin13-gcc x86_64-darwin14-gcc x86_64-iphonesimulator-gcc x86_64-linux-gcc x86_64-linux-icc x86_64-solaris-gcc x86_64-win64-gcc x86_64-win64-vs8 x86_64-win64-vs9 x86_64-win64-vs10 x86_64-win64-vs11 x86_64-win64-vs12 x86_64-win64-vs14 generic-gnu The generic-gnu target, in conjunction with the CROSS environment variable, can be used to cross compile architectures that aren't explicitly listed, if the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains will likely work as well. For instance, to build using the mipsel-linux-uclibc toolchain, the following command could be used (note, POSIX SH syntax, adapt to your shell as necessary): $ CROSS=mipsel-linux-uclibc- ../libvpx/configure In addition, the executables to be invoked can be overridden by specifying the environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS. 5. Configuration errors If the configuration step fails, the first step is to look in the error log. This defaults to config.log. This should give a good indication of what went wrong. If not, contact us for support. VP8/VP9 TEST VECTORS: The test vectors can be downloaded and verified using the build system after running configure. To specify an alternate directory the LIBVPX_TEST_DATA_PATH environment variable can be used. $ ./configure --enable-unit-tests $ LIBVPX_TEST_DATA_PATH=../libvpx-test-data make testdata SUPPORT This library is an open source project supported by its community. Please please email webm-discuss@webmproject.org for help.
Description
Languages
C
80%
C++
9%
Assembly
6.7%
Makefile
1.5%
Shell
1.3%
Other
1.5%