a9ae351667
Adds an optional output framestats.csv file that prints comparions per-frame instead of averaged over the entire clip. It prints per-channel and combined metrics for SSIM and PSNR. Change-Id: Id28dfade27bc5775b59a9d83cfe8b37d1d52b686
295 lines
9.3 KiB
C
295 lines
9.3 KiB
C
/*
|
|
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "vpx/vpx_integer.h"
|
|
|
|
void vp8_ssim_parms_8x8_c(unsigned char *s, int sp, unsigned char *r, int rp,
|
|
uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
|
|
uint32_t *sum_sq_r, uint32_t *sum_sxr) {
|
|
int i, j;
|
|
for (i = 0; i < 8; i++, s += sp, r += rp) {
|
|
for (j = 0; j < 8; j++) {
|
|
*sum_s += s[j];
|
|
*sum_r += r[j];
|
|
*sum_sq_s += s[j] * s[j];
|
|
*sum_sq_r += r[j] * r[j];
|
|
*sum_sxr += s[j] * r[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
|
|
static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
|
|
|
|
static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
|
|
uint32_t sum_sq_r, uint32_t sum_sxr, int count) {
|
|
int64_t ssim_n, ssim_d;
|
|
int64_t c1, c2;
|
|
|
|
// scale the constants by number of pixels
|
|
c1 = (cc1 * count * count) >> 12;
|
|
c2 = (cc2 * count * count) >> 12;
|
|
|
|
ssim_n = (2 * sum_s * sum_r + c1) *
|
|
((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
|
|
|
|
ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
|
|
((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
|
|
(int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
|
|
|
|
return ssim_n * 1.0 / ssim_d;
|
|
}
|
|
|
|
static double ssim_8x8(unsigned char *s, int sp, unsigned char *r, int rp) {
|
|
uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
|
|
vp8_ssim_parms_8x8_c(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
|
|
&sum_sxr);
|
|
return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
|
|
}
|
|
|
|
// We are using a 8x8 moving window with starting location of each 8x8 window
|
|
// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
|
|
// block boundaries to penalize blocking artifacts.
|
|
double vp8_ssim2(unsigned char *img1, unsigned char *img2, int stride_img1,
|
|
int stride_img2, int width, int height) {
|
|
int i, j;
|
|
int samples = 0;
|
|
double ssim_total = 0;
|
|
|
|
// sample point start with each 4x4 location
|
|
for (i = 0; i <= height - 8;
|
|
i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
|
|
for (j = 0; j <= width - 8; j += 4) {
|
|
double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
|
|
ssim_total += v;
|
|
samples++;
|
|
}
|
|
}
|
|
ssim_total /= samples;
|
|
return ssim_total;
|
|
}
|
|
|
|
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon,
|
|
int recon_stride, unsigned int cols,
|
|
unsigned int rows) {
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row < rows; row++) {
|
|
for (col = 0; col < cols; col++) {
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
return total_sse;
|
|
}
|
|
|
|
#define MAX_PSNR 100
|
|
|
|
double vp9_mse2psnr(double samples, double peak, double mse) {
|
|
double psnr;
|
|
|
|
if (mse > 0.0)
|
|
psnr = 10.0 * log10(peak * peak * samples / mse);
|
|
else
|
|
psnr = MAX_PSNR; // Limit to prevent / 0
|
|
|
|
if (psnr > MAX_PSNR) psnr = MAX_PSNR;
|
|
|
|
return psnr;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
FILE *f[2], *framestats = NULL;
|
|
uint8_t *buf[2];
|
|
int w, h, tl_skip = 0, tl_skips_remaining = 0;
|
|
double ssimavg = 0, ssimyavg = 0, ssimuavg = 0, ssimvavg = 0;
|
|
double psnrglb = 0, psnryglb = 0, psnruglb = 0, psnrvglb = 0;
|
|
double psnravg = 0, psnryavg = 0, psnruavg = 0, psnrvavg = 0;
|
|
double *ssimy = NULL, *ssimu = NULL, *ssimv = NULL;
|
|
uint64_t *psnry = NULL, *psnru = NULL, *psnrv = NULL;
|
|
size_t i, n_frames = 0, allocated_frames = 0;
|
|
|
|
if (argc < 4 || argc > 6) {
|
|
fprintf(stderr,
|
|
"Usage: %s file1.yuv file2.yuv WxH [tl_skip={0,1,3}] "
|
|
"[framestats.csv]\n",
|
|
argv[0]);
|
|
return 1;
|
|
}
|
|
f[0] = strcmp(argv[1], "-") ? fopen(argv[1], "rb") : stdin;
|
|
f[1] = strcmp(argv[2], "-") ? fopen(argv[2], "rb") : stdin;
|
|
sscanf(argv[3], "%dx%d", &w, &h);
|
|
// Number of frames to skip from file1.yuv for every frame used. Normal values
|
|
// 0, 1 and 3 correspond to TL2, TL1 and TL0 respectively for a 3TL encoding
|
|
// in mode 10. 7 would be reasonable for comparing TL0 of a 4-layer encoding.
|
|
if (argc > 4) {
|
|
sscanf(argv[4], "%d", &tl_skip);
|
|
if (argc > 5) {
|
|
framestats = fopen(argv[5], "w");
|
|
if (!framestats) {
|
|
fprintf(stderr, "Could not open \"%s\" for writing: %s\n", argv[5],
|
|
strerror(errno));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if (!f[0] || !f[1]) {
|
|
fprintf(stderr, "Could not open input files: %s\n", strerror(errno));
|
|
return 1;
|
|
}
|
|
if (w <= 0 || h <= 0 || w & 1 || h & 1) {
|
|
fprintf(stderr, "Invalid size %dx%d\n", w, h);
|
|
return 1;
|
|
}
|
|
buf[0] = malloc(w * h * 3 / 2);
|
|
buf[1] = malloc(w * h * 3 / 2);
|
|
while (1) {
|
|
size_t r1, r2;
|
|
r1 = fread(buf[0], w * h * 3 / 2, 1, f[0]);
|
|
if (r1) {
|
|
// Reading parts of file1.yuv that were not used in temporal layer.
|
|
if (tl_skips_remaining > 0) {
|
|
--tl_skips_remaining;
|
|
continue;
|
|
}
|
|
// Use frame, but skip |tl_skip| after it.
|
|
tl_skips_remaining = tl_skip;
|
|
}
|
|
r2 = fread(buf[1], w * h * 3 / 2, 1, f[1]);
|
|
if (r1 && r2 && r1 != r2) {
|
|
fprintf(stderr, "Failed to read data: %s [%d/%d]\n", strerror(errno),
|
|
(int)r1, (int)r2);
|
|
return 1;
|
|
} else if (r1 == 0 || r2 == 0) {
|
|
break;
|
|
}
|
|
#define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \
|
|
ssim = vp8_ssim2(buf0, buf1, w, w, w, h); \
|
|
psnr = calc_plane_error(buf0, w, buf1, w, w, h);
|
|
if (n_frames == allocated_frames) {
|
|
allocated_frames = allocated_frames == 0 ? 1024 : allocated_frames * 2;
|
|
ssimy = realloc(ssimy, allocated_frames * sizeof(*ssimy));
|
|
ssimu = realloc(ssimu, allocated_frames * sizeof(*ssimu));
|
|
ssimv = realloc(ssimv, allocated_frames * sizeof(*ssimv));
|
|
|
|
psnry = realloc(psnry, allocated_frames * sizeof(*psnry));
|
|
psnru = realloc(psnru, allocated_frames * sizeof(*psnru));
|
|
psnrv = realloc(psnrv, allocated_frames * sizeof(*psnrv));
|
|
}
|
|
psnr_and_ssim(ssimy[n_frames], psnry[n_frames], buf[0], buf[1], w, h);
|
|
psnr_and_ssim(ssimu[n_frames], psnru[n_frames], buf[0] + w * h,
|
|
buf[1] + w * h, w / 2, h / 2);
|
|
psnr_and_ssim(ssimv[n_frames], psnrv[n_frames], buf[0] + w * h * 5 / 4,
|
|
buf[1] + w * h * 5 / 4, w / 2, h / 2);
|
|
n_frames++;
|
|
}
|
|
free(buf[0]);
|
|
free(buf[1]);
|
|
|
|
if (framestats) {
|
|
fprintf(framestats,
|
|
"ssim,ssim-y,ssim-u,ssim-v,psnr,psnr-y,psnr-u,psnr-v\n");
|
|
}
|
|
|
|
for (i = 0; i < n_frames; ++i) {
|
|
double frame_ssim;
|
|
double frame_psnr, frame_psnry, frame_psnru, frame_psnrv;
|
|
|
|
frame_ssim = 0.8 * ssimy[i] + 0.1 * (ssimu[i] + ssimv[i]);
|
|
ssimavg += frame_ssim;
|
|
ssimyavg += ssimy[i];
|
|
ssimuavg += ssimu[i];
|
|
ssimvavg += ssimv[i];
|
|
|
|
frame_psnr = vp9_mse2psnr(w * h * 6 / 4, 255.0,
|
|
(double)psnry[i] + psnru[i] + psnrv[i]);
|
|
frame_psnry = vp9_mse2psnr(w * h * 4 / 4, 255.0, (double)psnry[i]);
|
|
frame_psnru = vp9_mse2psnr(w * h * 1 / 4, 255.0, (double)psnru[i]);
|
|
frame_psnrv = vp9_mse2psnr(w * h * 1 / 4, 255.0, (double)psnrv[i]);
|
|
|
|
psnravg += frame_psnr;
|
|
psnryavg += frame_psnry;
|
|
psnruavg += frame_psnru;
|
|
psnrvavg += frame_psnrv;
|
|
|
|
psnryglb += psnry[i];
|
|
psnruglb += psnru[i];
|
|
psnrvglb += psnrv[i];
|
|
|
|
if (framestats) {
|
|
fprintf(framestats, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\n", frame_ssim,
|
|
ssimy[i], ssimu[i], ssimv[i], frame_psnr, frame_psnry,
|
|
frame_psnru, frame_psnrv);
|
|
}
|
|
}
|
|
|
|
ssimavg /= n_frames;
|
|
ssimyavg /= n_frames;
|
|
ssimuavg /= n_frames;
|
|
ssimvavg /= n_frames;
|
|
|
|
printf("VpxSSIM: %lf\n", 100 * pow(ssimavg, 8.0));
|
|
printf("SSIM: %lf\n", ssimavg);
|
|
printf("SSIM-Y: %lf\n", ssimyavg);
|
|
printf("SSIM-U: %lf\n", ssimuavg);
|
|
printf("SSIM-V: %lf\n", ssimvavg);
|
|
puts("");
|
|
|
|
psnravg /= n_frames;
|
|
psnryavg /= n_frames;
|
|
psnruavg /= n_frames;
|
|
psnrvavg /= n_frames;
|
|
|
|
printf("AvgPSNR: %lf\n", psnravg);
|
|
printf("AvgPSNR-Y: %lf\n", psnryavg);
|
|
printf("AvgPSNR-U: %lf\n", psnruavg);
|
|
printf("AvgPSNR-V: %lf\n", psnrvavg);
|
|
puts("");
|
|
|
|
psnrglb = psnryglb + psnruglb + psnrvglb;
|
|
psnrglb = vp9_mse2psnr((double)n_frames * w * h * 6 / 4, 255.0, psnrglb);
|
|
psnryglb = vp9_mse2psnr((double)n_frames * w * h * 4 / 4, 255.0, psnryglb);
|
|
psnruglb = vp9_mse2psnr((double)n_frames * w * h * 1 / 4, 255.0, psnruglb);
|
|
psnrvglb = vp9_mse2psnr((double)n_frames * w * h * 1 / 4, 255.0, psnrvglb);
|
|
|
|
printf("GlbPSNR: %lf\n", psnrglb);
|
|
printf("GlbPSNR-Y: %lf\n", psnryglb);
|
|
printf("GlbPSNR-U: %lf\n", psnruglb);
|
|
printf("GlbPSNR-V: %lf\n", psnrvglb);
|
|
puts("");
|
|
|
|
printf("Nframes: %d\n", (int)n_frames);
|
|
|
|
if (strcmp(argv[1], "-")) fclose(f[0]);
|
|
if (strcmp(argv[2], "-")) fclose(f[1]);
|
|
if (framestats) fclose(framestats);
|
|
|
|
free(ssimy);
|
|
free(ssimu);
|
|
free(ssimv);
|
|
|
|
free(psnry);
|
|
free(psnru);
|
|
free(psnrv);
|
|
|
|
return 0;
|
|
}
|