vpx/vpxenc.c
Paul Wilkins e0846c9c8c CQ Mode
The merge includes hooks to for CQ mode and other code
changes merged from the test branch.

CQ mode attempts to maintain a more stable quantizer within a clip
whilst also trying to adhere to a guidline maximum bitrate.

The existing target data rate parameter is used to specify the
guideline maximum bitrate.

A new parameter allows the user to specify a target CQ level.

For normal (non kf/gf/arf) frames, the quantizer will not drop BELOW the
user specified value (0-63). However, in some cases the encoder may
choose to impose a target CQ that is above that specified by the user,
if it estimates that consistent use of the target value is not compatible
with guideline maximum bitrate.

Change-Id: I2221f9eecae8cc3c431d36caf83503941b25e4c1
2011-01-07 18:46:29 +00:00

1708 lines
53 KiB
C
Executable File

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* This is a simple program that encodes YV12 files and generates ivf
* files using the new interface.
*/
#if defined(_WIN32)
#define USE_POSIX_MMAP 0
#else
#define USE_POSIX_MMAP 1
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#if USE_POSIX_MMAP
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#include "vpx_version.h"
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "vpx_ports/vpx_timer.h"
#include "tools_common.h"
#include "y4minput.h"
#include "libmkv/EbmlWriter.h"
#include "libmkv/EbmlIDs.h"
/* Need special handling of these functions on Windows */
#if defined(_MSC_VER)
/* MSVS doesn't define off_t, and uses _f{seek,tell}i64 */
typedef __int64 off_t;
#define fseeko _fseeki64
#define ftello _ftelli64
#elif defined(_WIN32)
/* MinGW defines off_t, and uses f{seek,tell}o64 */
#define fseeko fseeko64
#define ftello ftello64
#endif
#if defined(_MSC_VER)
#define LITERALU64(n) n
#else
#define LITERALU64(n) n##LLU
#endif
static const char *exec_name;
static const struct codec_item
{
char const *name;
const vpx_codec_iface_t *iface;
unsigned int fourcc;
} codecs[] =
{
#if CONFIG_VP8_ENCODER
{"vp8", &vpx_codec_vp8_cx_algo, 0x30385056},
#endif
};
static void usage_exit();
void die(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
usage_exit();
}
static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s)
{
if (ctx->err)
{
const char *detail = vpx_codec_error_detail(ctx);
fprintf(stderr, "%s: %s\n", s, vpx_codec_error(ctx));
if (detail)
fprintf(stderr, " %s\n", detail);
exit(EXIT_FAILURE);
}
}
/* This structure is used to abstract the different ways of handling
* first pass statistics.
*/
typedef struct
{
vpx_fixed_buf_t buf;
int pass;
FILE *file;
char *buf_ptr;
size_t buf_alloc_sz;
} stats_io_t;
int stats_open_file(stats_io_t *stats, const char *fpf, int pass)
{
int res;
stats->pass = pass;
if (pass == 0)
{
stats->file = fopen(fpf, "wb");
stats->buf.sz = 0;
stats->buf.buf = NULL,
res = (stats->file != NULL);
}
else
{
#if 0
#elif USE_POSIX_MMAP
struct stat stat_buf;
int fd;
fd = open(fpf, O_RDONLY);
stats->file = fdopen(fd, "rb");
fstat(fd, &stat_buf);
stats->buf.sz = stat_buf.st_size;
stats->buf.buf = mmap(NULL, stats->buf.sz, PROT_READ, MAP_PRIVATE,
fd, 0);
res = (stats->buf.buf != NULL);
#else
size_t nbytes;
stats->file = fopen(fpf, "rb");
if (fseek(stats->file, 0, SEEK_END))
{
fprintf(stderr, "First-pass stats file must be seekable!\n");
exit(EXIT_FAILURE);
}
stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file);
rewind(stats->file);
stats->buf.buf = malloc(stats->buf_alloc_sz);
if (!stats->buf.buf)
{
fprintf(stderr, "Failed to allocate first-pass stats buffer (%d bytes)\n",
stats->buf_alloc_sz);
exit(EXIT_FAILURE);
}
nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file);
res = (nbytes == stats->buf.sz);
#endif
}
return res;
}
int stats_open_mem(stats_io_t *stats, int pass)
{
int res;
stats->pass = pass;
if (!pass)
{
stats->buf.sz = 0;
stats->buf_alloc_sz = 64 * 1024;
stats->buf.buf = malloc(stats->buf_alloc_sz);
}
stats->buf_ptr = stats->buf.buf;
res = (stats->buf.buf != NULL);
return res;
}
void stats_close(stats_io_t *stats, int last_pass)
{
if (stats->file)
{
if (stats->pass == last_pass)
{
#if 0
#elif USE_POSIX_MMAP
munmap(stats->buf.buf, stats->buf.sz);
#else
free(stats->buf.buf);
#endif
}
fclose(stats->file);
stats->file = NULL;
}
else
{
if (stats->pass == last_pass)
free(stats->buf.buf);
}
}
void stats_write(stats_io_t *stats, const void *pkt, size_t len)
{
if (stats->file)
{
if(fwrite(pkt, 1, len, stats->file));
}
else
{
if (stats->buf.sz + len > stats->buf_alloc_sz)
{
size_t new_sz = stats->buf_alloc_sz + 64 * 1024;
char *new_ptr = realloc(stats->buf.buf, new_sz);
if (new_ptr)
{
stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf);
stats->buf.buf = new_ptr;
stats->buf_alloc_sz = new_sz;
} /* else ... */
}
memcpy(stats->buf_ptr, pkt, len);
stats->buf.sz += len;
stats->buf_ptr += len;
}
}
vpx_fixed_buf_t stats_get(stats_io_t *stats)
{
return stats->buf;
}
enum video_file_type
{
FILE_TYPE_RAW,
FILE_TYPE_IVF,
FILE_TYPE_Y4M
};
struct detect_buffer {
char buf[4];
size_t buf_read;
size_t position;
};
#define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */
static int read_frame(FILE *f, vpx_image_t *img, unsigned int file_type,
y4m_input *y4m, struct detect_buffer *detect)
{
int plane = 0;
int shortread = 0;
if (file_type == FILE_TYPE_Y4M)
{
if (y4m_input_fetch_frame(y4m, f, img) < 1)
return 0;
}
else
{
if (file_type == FILE_TYPE_IVF)
{
char junk[IVF_FRAME_HDR_SZ];
/* Skip the frame header. We know how big the frame should be. See
* write_ivf_frame_header() for documentation on the frame header
* layout.
*/
if(fread(junk, 1, IVF_FRAME_HDR_SZ, f));
}
for (plane = 0; plane < 3; plane++)
{
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane)
{
case 1:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V];
break;
default:
ptr = img->planes[plane];
}
for (r = 0; r < h; r++)
{
size_t needed = w;
size_t buf_position = 0;
const size_t left = detect->buf_read - detect->position;
if (left > 0)
{
const size_t more = (left < needed) ? left : needed;
memcpy(ptr, detect->buf + detect->position, more);
buf_position = more;
needed -= more;
detect->position += more;
}
if (needed > 0)
{
shortread |= (fread(ptr + buf_position, 1, needed, f) < needed);
}
ptr += img->stride[plane];
}
}
}
return !shortread;
}
unsigned int file_is_y4m(FILE *infile,
y4m_input *y4m,
char detect[4])
{
if(memcmp(detect, "YUV4", 4) == 0)
{
return 1;
}
return 0;
}
#define IVF_FILE_HDR_SZ (32)
unsigned int file_is_ivf(FILE *infile,
unsigned int *fourcc,
unsigned int *width,
unsigned int *height,
struct detect_buffer *detect)
{
char raw_hdr[IVF_FILE_HDR_SZ];
int is_ivf = 0;
if(memcmp(detect->buf, "DKIF", 4) != 0)
return 0;
/* See write_ivf_file_header() for more documentation on the file header
* layout.
*/
if (fread(raw_hdr + 4, 1, IVF_FILE_HDR_SZ - 4, infile)
== IVF_FILE_HDR_SZ - 4)
{
{
is_ivf = 1;
if (mem_get_le16(raw_hdr + 4) != 0)
fprintf(stderr, "Error: Unrecognized IVF version! This file may not"
" decode properly.");
*fourcc = mem_get_le32(raw_hdr + 8);
}
}
if (is_ivf)
{
*width = mem_get_le16(raw_hdr + 12);
*height = mem_get_le16(raw_hdr + 14);
detect->position = 4;
}
return is_ivf;
}
static void write_ivf_file_header(FILE *outfile,
const vpx_codec_enc_cfg_t *cfg,
unsigned int fourcc,
int frame_cnt)
{
char header[32];
if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS)
return;
header[0] = 'D';
header[1] = 'K';
header[2] = 'I';
header[3] = 'F';
mem_put_le16(header + 4, 0); /* version */
mem_put_le16(header + 6, 32); /* headersize */
mem_put_le32(header + 8, fourcc); /* headersize */
mem_put_le16(header + 12, cfg->g_w); /* width */
mem_put_le16(header + 14, cfg->g_h); /* height */
mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
mem_put_le32(header + 24, frame_cnt); /* length */
mem_put_le32(header + 28, 0); /* unused */
if(fwrite(header, 1, 32, outfile));
}
static void write_ivf_frame_header(FILE *outfile,
const vpx_codec_cx_pkt_t *pkt)
{
char header[12];
vpx_codec_pts_t pts;
if (pkt->kind != VPX_CODEC_CX_FRAME_PKT)
return;
pts = pkt->data.frame.pts;
mem_put_le32(header, pkt->data.frame.sz);
mem_put_le32(header + 4, pts & 0xFFFFFFFF);
mem_put_le32(header + 8, pts >> 32);
if(fwrite(header, 1, 12, outfile));
}
typedef off_t EbmlLoc;
struct cue_entry
{
unsigned int time;
uint64_t loc;
};
struct EbmlGlobal
{
int debug;
FILE *stream;
int64_t last_pts_ms;
vpx_rational_t framerate;
/* These pointers are to the start of an element */
off_t position_reference;
off_t seek_info_pos;
off_t segment_info_pos;
off_t track_pos;
off_t cue_pos;
off_t cluster_pos;
/* This pointer is to a specific element to be serialized */
off_t track_id_pos;
/* These pointers are to the size field of the element */
EbmlLoc startSegment;
EbmlLoc startCluster;
uint32_t cluster_timecode;
int cluster_open;
struct cue_entry *cue_list;
unsigned int cues;
};
void Ebml_Write(EbmlGlobal *glob, const void *buffer_in, unsigned long len)
{
if(fwrite(buffer_in, 1, len, glob->stream));
}
void Ebml_Serialize(EbmlGlobal *glob, const void *buffer_in, unsigned long len)
{
const unsigned char *q = (const unsigned char *)buffer_in + len - 1;
for(; len; len--)
Ebml_Write(glob, q--, 1);
}
/* Need a fixed size serializer for the track ID. libmkv provdes a 64 bit
* one, but not a 32 bit one.
*/
static void Ebml_SerializeUnsigned32(EbmlGlobal *glob, unsigned long class_id, uint64_t ui)
{
unsigned char sizeSerialized = 4 | 0x80;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &sizeSerialized, 1);
Ebml_Serialize(glob, &ui, 4);
}
static void
Ebml_StartSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc,
unsigned long class_id)
{
//todo this is always taking 8 bytes, this may need later optimization
//this is a key that says lenght unknown
unsigned long long unknownLen = LITERALU64(0x01FFFFFFFFFFFFFF);
Ebml_WriteID(glob, class_id);
*ebmlLoc = ftello(glob->stream);
Ebml_Serialize(glob, &unknownLen, 8);
}
static void
Ebml_EndSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc)
{
off_t pos;
uint64_t size;
/* Save the current stream pointer */
pos = ftello(glob->stream);
/* Calculate the size of this element */
size = pos - *ebmlLoc - 8;
size |= LITERALU64(0x0100000000000000);
/* Seek back to the beginning of the element and write the new size */
fseeko(glob->stream, *ebmlLoc, SEEK_SET);
Ebml_Serialize(glob, &size, 8);
/* Reset the stream pointer */
fseeko(glob->stream, pos, SEEK_SET);
}
static void
write_webm_seek_element(EbmlGlobal *ebml, unsigned long id, off_t pos)
{
uint64_t offset = pos - ebml->position_reference;
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, Seek);
Ebml_SerializeBinary(ebml, SeekID, id);
Ebml_SerializeUnsigned64(ebml, SeekPosition, offset);
Ebml_EndSubElement(ebml, &start);
}
static void
write_webm_seek_info(EbmlGlobal *ebml)
{
off_t pos;
/* Save the current stream pointer */
pos = ftello(ebml->stream);
if(ebml->seek_info_pos)
fseeko(ebml->stream, ebml->seek_info_pos, SEEK_SET);
else
ebml->seek_info_pos = pos;
{
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, SeekHead);
write_webm_seek_element(ebml, Tracks, ebml->track_pos);
write_webm_seek_element(ebml, Cues, ebml->cue_pos);
write_webm_seek_element(ebml, Info, ebml->segment_info_pos);
Ebml_EndSubElement(ebml, &start);
}
{
//segment info
EbmlLoc startInfo;
uint64_t frame_time;
frame_time = (uint64_t)1000 * ebml->framerate.den
/ ebml->framerate.num;
ebml->segment_info_pos = ftello(ebml->stream);
Ebml_StartSubElement(ebml, &startInfo, Info);
Ebml_SerializeUnsigned(ebml, TimecodeScale, 1000000);
Ebml_SerializeFloat(ebml, Segment_Duration,
ebml->last_pts_ms + frame_time);
Ebml_SerializeString(ebml, 0x4D80,
ebml->debug ? "vpxenc" : "vpxenc" VERSION_STRING);
Ebml_SerializeString(ebml, 0x5741,
ebml->debug ? "vpxenc" : "vpxenc" VERSION_STRING);
Ebml_EndSubElement(ebml, &startInfo);
}
}
static void
write_webm_file_header(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const struct vpx_rational *fps)
{
{
EbmlLoc start;
Ebml_StartSubElement(glob, &start, EBML);
Ebml_SerializeUnsigned(glob, EBMLVersion, 1);
Ebml_SerializeUnsigned(glob, EBMLReadVersion, 1); //EBML Read Version
Ebml_SerializeUnsigned(glob, EBMLMaxIDLength, 4); //EBML Max ID Length
Ebml_SerializeUnsigned(glob, EBMLMaxSizeLength, 8); //EBML Max Size Length
Ebml_SerializeString(glob, DocType, "webm"); //Doc Type
Ebml_SerializeUnsigned(glob, DocTypeVersion, 2); //Doc Type Version
Ebml_SerializeUnsigned(glob, DocTypeReadVersion, 2); //Doc Type Read Version
Ebml_EndSubElement(glob, &start);
}
{
Ebml_StartSubElement(glob, &glob->startSegment, Segment); //segment
glob->position_reference = ftello(glob->stream);
glob->framerate = *fps;
write_webm_seek_info(glob);
{
EbmlLoc trackStart;
glob->track_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &trackStart, Tracks);
{
unsigned int trackNumber = 1;
uint64_t trackID = 0;
EbmlLoc start;
Ebml_StartSubElement(glob, &start, TrackEntry);
Ebml_SerializeUnsigned(glob, TrackNumber, trackNumber);
glob->track_id_pos = ftello(glob->stream);
Ebml_SerializeUnsigned32(glob, TrackUID, trackID);
Ebml_SerializeUnsigned(glob, TrackType, 1); //video is always 1
Ebml_SerializeString(glob, CodecID, "V_VP8");
{
unsigned int pixelWidth = cfg->g_w;
unsigned int pixelHeight = cfg->g_h;
float frameRate = (float)fps->num/(float)fps->den;
EbmlLoc videoStart;
Ebml_StartSubElement(glob, &videoStart, Video);
Ebml_SerializeUnsigned(glob, PixelWidth, pixelWidth);
Ebml_SerializeUnsigned(glob, PixelHeight, pixelHeight);
Ebml_SerializeFloat(glob, FrameRate, frameRate);
Ebml_EndSubElement(glob, &videoStart); //Video
}
Ebml_EndSubElement(glob, &start); //Track Entry
}
Ebml_EndSubElement(glob, &trackStart);
}
// segment element is open
}
}
static void
write_webm_block(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const vpx_codec_cx_pkt_t *pkt)
{
unsigned long block_length;
unsigned char track_number;
unsigned short block_timecode = 0;
unsigned char flags;
int64_t pts_ms;
int start_cluster = 0, is_keyframe;
/* Calculate the PTS of this frame in milliseconds */
pts_ms = pkt->data.frame.pts * 1000
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
if(pts_ms <= glob->last_pts_ms)
pts_ms = glob->last_pts_ms + 1;
glob->last_pts_ms = pts_ms;
/* Calculate the relative time of this block */
if(pts_ms - glob->cluster_timecode > SHRT_MAX)
start_cluster = 1;
else
block_timecode = pts_ms - glob->cluster_timecode;
is_keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY);
if(start_cluster || is_keyframe)
{
if(glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
/* Open the new cluster */
block_timecode = 0;
glob->cluster_open = 1;
glob->cluster_timecode = pts_ms;
glob->cluster_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &glob->startCluster, Cluster); //cluster
Ebml_SerializeUnsigned(glob, Timecode, glob->cluster_timecode);
/* Save a cue point if this is a keyframe. */
if(is_keyframe)
{
struct cue_entry *cue;
glob->cue_list = realloc(glob->cue_list,
(glob->cues+1) * sizeof(struct cue_entry));
cue = &glob->cue_list[glob->cues];
cue->time = glob->cluster_timecode;
cue->loc = glob->cluster_pos;
glob->cues++;
}
}
/* Write the Simple Block */
Ebml_WriteID(glob, SimpleBlock);
block_length = pkt->data.frame.sz + 4;
block_length |= 0x10000000;
Ebml_Serialize(glob, &block_length, 4);
track_number = 1;
track_number |= 0x80;
Ebml_Write(glob, &track_number, 1);
Ebml_Serialize(glob, &block_timecode, 2);
flags = 0;
if(is_keyframe)
flags |= 0x80;
if(pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE)
flags |= 0x08;
Ebml_Write(glob, &flags, 1);
Ebml_Write(glob, pkt->data.frame.buf, pkt->data.frame.sz);
}
static void
write_webm_file_footer(EbmlGlobal *glob, long hash)
{
if(glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
{
EbmlLoc start;
int i;
glob->cue_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &start, Cues);
for(i=0; i<glob->cues; i++)
{
struct cue_entry *cue = &glob->cue_list[i];
EbmlLoc start;
Ebml_StartSubElement(glob, &start, CuePoint);
{
EbmlLoc start;
Ebml_SerializeUnsigned(glob, CueTime, cue->time);
Ebml_StartSubElement(glob, &start, CueTrackPositions);
Ebml_SerializeUnsigned(glob, CueTrack, 1);
Ebml_SerializeUnsigned64(glob, CueClusterPosition,
cue->loc - glob->position_reference);
//Ebml_SerializeUnsigned(glob, CueBlockNumber, cue->blockNumber);
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &glob->startSegment);
/* Patch up the seek info block */
write_webm_seek_info(glob);
/* Patch up the track id */
fseeko(glob->stream, glob->track_id_pos, SEEK_SET);
Ebml_SerializeUnsigned32(glob, TrackUID, glob->debug ? 0xDEADBEEF : hash);
fseeko(glob->stream, 0, SEEK_END);
}
/* Murmur hash derived from public domain reference implementation at
* http://sites.google.com/site/murmurhash/
*/
static unsigned int murmur ( const void * key, int len, unsigned int seed )
{
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = seed ^ len;
const unsigned char * data = (const unsigned char *)key;
while(len >= 4)
{
unsigned int k;
k = data[0];
k |= data[1] << 8;
k |= data[2] << 16;
k |= data[3] << 24;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
switch(len)
{
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0];
h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#include "math.h"
static double vp8_mse2psnr(double Samples, double Peak, double Mse)
{
double psnr;
if ((double)Mse > 0.0)
psnr = 10.0 * log10(Peak * Peak * Samples / Mse);
else
psnr = 60; // Limit to prevent / 0
if (psnr > 60)
psnr = 60;
return psnr;
}
#include "args.h"
static const arg_def_t debugmode = ARG_DEF("D", "debug", 0,
"Debug mode (makes output deterministic)");
static const arg_def_t outputfile = ARG_DEF("o", "output", 1,
"Output filename");
static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0,
"Input file is YV12 ");
static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0,
"Input file is I420 (default)");
static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1,
"Codec to use");
static const arg_def_t passes = ARG_DEF("p", "passes", 1,
"Number of passes (1/2)");
static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1,
"Pass to execute (1/2)");
static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1,
"First pass statistics file name");
static const arg_def_t limit = ARG_DEF(NULL, "limit", 1,
"Stop encoding after n input frames");
static const arg_def_t deadline = ARG_DEF("d", "deadline", 1,
"Deadline per frame (usec)");
static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0,
"Use Best Quality Deadline");
static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0,
"Use Good Quality Deadline");
static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0,
"Use Realtime Quality Deadline");
static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0,
"Show encoder parameters");
static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0,
"Show PSNR in status line");
static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1,
"Stream frame rate (rate/scale)");
static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0,
"Output IVF (default is WebM)");
static const arg_def_t *main_args[] =
{
&debugmode,
&outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &deadline,
&best_dl, &good_dl, &rt_dl,
&verbosearg, &psnrarg, &use_ivf, &framerate,
NULL
};
static const arg_def_t usage = ARG_DEF("u", "usage", 1,
"Usage profile number to use");
static const arg_def_t threads = ARG_DEF("t", "threads", 1,
"Max number of threads to use");
static const arg_def_t profile = ARG_DEF(NULL, "profile", 1,
"Bitstream profile number to use");
static const arg_def_t width = ARG_DEF("w", "width", 1,
"Frame width");
static const arg_def_t height = ARG_DEF("h", "height", 1,
"Frame height");
static const arg_def_t timebase = ARG_DEF(NULL, "timebase", 1,
"Stream timebase (frame duration)");
static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1,
"Enable error resiliency features");
static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1,
"Max number of frames to lag");
static const arg_def_t *global_args[] =
{
&use_yv12, &use_i420, &usage, &threads, &profile,
&width, &height, &timebase, &framerate, &error_resilient,
&lag_in_frames, NULL
};
static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1,
"Temporal resampling threshold (buf %)");
static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1,
"Spatial resampling enabled (bool)");
static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1,
"Upscale threshold (buf %)");
static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1,
"Downscale threshold (buf %)");
static const arg_def_t end_usage = ARG_DEF(NULL, "end-usage", 1,
"VBR=0 | CBR=1 | CQ=2");
static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1,
"Bitrate (kbps)");
static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1,
"Minimum (best) quantizer");
static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1,
"Maximum (worst) quantizer");
static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1,
"Datarate undershoot (min) target (%)");
static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1,
"Datarate overshoot (max) target (%)");
static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1,
"Client buffer size (ms)");
static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1,
"Client initial buffer size (ms)");
static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1,
"Client optimal buffer size (ms)");
static const arg_def_t *rc_args[] =
{
&dropframe_thresh, &resize_allowed, &resize_up_thresh, &resize_down_thresh,
&end_usage, &target_bitrate, &min_quantizer, &max_quantizer,
&undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz,
NULL
};
static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1,
"CBR/VBR bias (0=CBR, 100=VBR)");
static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1,
"GOP min bitrate (% of target)");
static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1,
"GOP max bitrate (% of target)");
static const arg_def_t *rc_twopass_args[] =
{
&bias_pct, &minsection_pct, &maxsection_pct, NULL
};
static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1,
"Minimum keyframe interval (frames)");
static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1,
"Maximum keyframe interval (frames)");
static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0,
"Disable keyframe placement");
static const arg_def_t *kf_args[] =
{
&kf_min_dist, &kf_max_dist, &kf_disabled, NULL
};
#if CONFIG_VP8_ENCODER
static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1,
"Noise sensitivity (frames to blur)");
static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1,
"Filter sharpness (0-7)");
static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1,
"Motion detection threshold");
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t cpu_used = ARG_DEF(NULL, "cpu-used", 1,
"CPU Used (-16..16)");
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t token_parts = ARG_DEF(NULL, "token-parts", 1,
"Number of token partitions to use, log2");
static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1,
"Enable automatic alt reference frames");
static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1,
"AltRef Max Frames");
static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1,
"AltRef Strength");
static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1,
"AltRef Type");
static const struct arg_enum_list tuning_enum[] = {
{"psnr", VP8_TUNE_PSNR},
{"ssim", VP8_TUNE_SSIM},
{NULL, 0}
};
static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1,
"Material to favor", tuning_enum);
static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1,
"Constrained Quality Level");
static const arg_def_t *vp8_args[] =
{
&cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh,
&token_parts, &arnr_maxframes, &arnr_strength, &arnr_type,
&tune_ssim, &cq_level, NULL
};
static const int vp8_arg_ctrl_map[] =
{
VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF,
VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD,
VP8E_SET_TOKEN_PARTITIONS,
VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH , VP8E_SET_ARNR_TYPE,
VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, 0
};
#endif
static const arg_def_t *no_args[] = { NULL };
static void usage_exit()
{
int i;
fprintf(stderr, "Usage: %s <options> -o dst_filename src_filename \n",
exec_name);
fprintf(stderr, "\nOptions:\n");
arg_show_usage(stdout, main_args);
fprintf(stderr, "\nEncoder Global Options:\n");
arg_show_usage(stdout, global_args);
fprintf(stderr, "\nRate Control Options:\n");
arg_show_usage(stdout, rc_args);
fprintf(stderr, "\nTwopass Rate Control Options:\n");
arg_show_usage(stdout, rc_twopass_args);
fprintf(stderr, "\nKeyframe Placement Options:\n");
arg_show_usage(stdout, kf_args);
#if CONFIG_VP8_ENCODER
fprintf(stderr, "\nVP8 Specific Options:\n");
arg_show_usage(stdout, vp8_args);
#endif
fprintf(stderr, "\n"
"Included encoders:\n"
"\n");
for (i = 0; i < sizeof(codecs) / sizeof(codecs[0]); i++)
fprintf(stderr, " %-6s - %s\n",
codecs[i].name,
vpx_codec_iface_name(codecs[i].iface));
exit(EXIT_FAILURE);
}
#define ARG_CTRL_CNT_MAX 10
int main(int argc, const char **argv_)
{
vpx_codec_ctx_t encoder;
const char *in_fn = NULL, *out_fn = NULL, *stats_fn = NULL;
int i;
FILE *infile, *outfile;
vpx_codec_enc_cfg_t cfg;
vpx_codec_err_t res;
int pass, one_pass_only = 0;
stats_io_t stats;
vpx_image_t raw;
const struct codec_item *codec = codecs;
int frame_avail, got_data;
struct arg arg;
char **argv, **argi, **argj;
int arg_usage = 0, arg_passes = 1, arg_deadline = 0;
int arg_ctrls[ARG_CTRL_CNT_MAX][2], arg_ctrl_cnt = 0;
int arg_limit = 0;
static const arg_def_t **ctrl_args = no_args;
static const int *ctrl_args_map = NULL;
int verbose = 0, show_psnr = 0;
int arg_use_i420 = 1;
unsigned long cx_time = 0;
unsigned int file_type, fourcc;
y4m_input y4m;
struct vpx_rational arg_framerate = {30, 1};
int arg_have_framerate = 0;
int write_webm = 1;
EbmlGlobal ebml = {0};
uint32_t hash = 0;
uint64_t psnr_sse_total = 0;
uint64_t psnr_samples_total = 0;
double psnr_totals[4] = {0, 0, 0, 0};
int psnr_count = 0;
exec_name = argv_[0];
ebml.last_pts_ms = -1;
if (argc < 3)
usage_exit();
/* First parse the codec and usage values, because we want to apply other
* parameters on top of the default configuration provided by the codec.
*/
argv = argv_dup(argc - 1, argv_ + 1);
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step)
{
arg.argv_step = 1;
if (arg_match(&arg, &codecarg, argi))
{
int j, k = -1;
for (j = 0; j < sizeof(codecs) / sizeof(codecs[0]); j++)
if (!strcmp(codecs[j].name, arg.val))
k = j;
if (k >= 0)
codec = codecs + k;
else
die("Error: Unrecognized argument (%s) to --codec\n",
arg.val);
}
else if (arg_match(&arg, &passes, argi))
{
arg_passes = arg_parse_uint(&arg);
if (arg_passes < 1 || arg_passes > 2)
die("Error: Invalid number of passes (%d)\n", arg_passes);
}
else if (arg_match(&arg, &pass_arg, argi))
{
one_pass_only = arg_parse_uint(&arg);
if (one_pass_only < 1 || one_pass_only > 2)
die("Error: Invalid pass selected (%d)\n", one_pass_only);
}
else if (arg_match(&arg, &fpf_name, argi))
stats_fn = arg.val;
else if (arg_match(&arg, &usage, argi))
arg_usage = arg_parse_uint(&arg);
else if (arg_match(&arg, &deadline, argi))
arg_deadline = arg_parse_uint(&arg);
else if (arg_match(&arg, &best_dl, argi))
arg_deadline = VPX_DL_BEST_QUALITY;
else if (arg_match(&arg, &good_dl, argi))
arg_deadline = VPX_DL_GOOD_QUALITY;
else if (arg_match(&arg, &rt_dl, argi))
arg_deadline = VPX_DL_REALTIME;
else if (arg_match(&arg, &use_yv12, argi))
{
arg_use_i420 = 0;
}
else if (arg_match(&arg, &use_i420, argi))
{
arg_use_i420 = 1;
}
else if (arg_match(&arg, &verbosearg, argi))
verbose = 1;
else if (arg_match(&arg, &limit, argi))
arg_limit = arg_parse_uint(&arg);
else if (arg_match(&arg, &psnrarg, argi))
show_psnr = 1;
else if (arg_match(&arg, &framerate, argi))
{
arg_framerate = arg_parse_rational(&arg);
arg_have_framerate = 1;
}
else if (arg_match(&arg, &use_ivf, argi))
write_webm = 0;
else if (arg_match(&arg, &outputfile, argi))
out_fn = arg.val;
else if (arg_match(&arg, &debugmode, argi))
ebml.debug = 1;
else
argj++;
}
/* Ensure that --passes and --pass are consistent. If --pass is set and --passes=2,
* ensure --fpf was set.
*/
if (one_pass_only)
{
/* DWIM: Assume the user meant passes=2 if pass=2 is specified */
if (one_pass_only > arg_passes)
{
fprintf(stderr, "Warning: Assuming --pass=%d implies --passes=%d\n",
one_pass_only, one_pass_only);
arg_passes = one_pass_only;
}
if (arg_passes == 2 && !stats_fn)
die("Must specify --fpf when --pass=%d and --passes=2\n", one_pass_only);
}
/* Populate encoder configuration */
res = vpx_codec_enc_config_default(codec->iface, &cfg, arg_usage);
if (res)
{
fprintf(stderr, "Failed to get config: %s\n",
vpx_codec_err_to_string(res));
return EXIT_FAILURE;
}
/* Change the default timebase to a high enough value so that the encoder
* will always create strictly increasing timestamps.
*/
cfg.g_timebase.den = 1000;
/* Never use the library's default resolution, require it be parsed
* from the file or set on the command line.
*/
cfg.g_w = 0;
cfg.g_h = 0;
/* Now parse the remainder of the parameters. */
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step)
{
arg.argv_step = 1;
if (0);
else if (arg_match(&arg, &threads, argi))
cfg.g_threads = arg_parse_uint(&arg);
else if (arg_match(&arg, &profile, argi))
cfg.g_profile = arg_parse_uint(&arg);
else if (arg_match(&arg, &width, argi))
cfg.g_w = arg_parse_uint(&arg);
else if (arg_match(&arg, &height, argi))
cfg.g_h = arg_parse_uint(&arg);
else if (arg_match(&arg, &timebase, argi))
cfg.g_timebase = arg_parse_rational(&arg);
else if (arg_match(&arg, &error_resilient, argi))
cfg.g_error_resilient = arg_parse_uint(&arg);
else if (arg_match(&arg, &lag_in_frames, argi))
cfg.g_lag_in_frames = arg_parse_uint(&arg);
else if (arg_match(&arg, &dropframe_thresh, argi))
cfg.rc_dropframe_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_allowed, argi))
cfg.rc_resize_allowed = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_up_thresh, argi))
cfg.rc_resize_up_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_down_thresh, argi))
cfg.rc_resize_down_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_down_thresh, argi))
cfg.rc_resize_down_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &end_usage, argi))
cfg.rc_end_usage = arg_parse_uint(&arg);
else if (arg_match(&arg, &target_bitrate, argi))
cfg.rc_target_bitrate = arg_parse_uint(&arg);
else if (arg_match(&arg, &min_quantizer, argi))
cfg.rc_min_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &max_quantizer, argi))
cfg.rc_max_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &undershoot_pct, argi))
cfg.rc_undershoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &overshoot_pct, argi))
cfg.rc_overshoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_sz, argi))
cfg.rc_buf_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_initial_sz, argi))
cfg.rc_buf_initial_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_optimal_sz, argi))
cfg.rc_buf_optimal_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &bias_pct, argi))
{
cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg);
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
}
else if (arg_match(&arg, &minsection_pct, argi))
{
cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg);
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
}
else if (arg_match(&arg, &maxsection_pct, argi))
{
cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg);
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
}
else if (arg_match(&arg, &kf_min_dist, argi))
cfg.kf_min_dist = arg_parse_uint(&arg);
else if (arg_match(&arg, &kf_max_dist, argi))
cfg.kf_max_dist = arg_parse_uint(&arg);
else if (arg_match(&arg, &kf_disabled, argi))
cfg.kf_mode = VPX_KF_DISABLED;
else
argj++;
}
/* Handle codec specific options */
#if CONFIG_VP8_ENCODER
if (codec->iface == &vpx_codec_vp8_cx_algo)
{
ctrl_args = vp8_args;
ctrl_args_map = vp8_arg_ctrl_map;
}
#endif
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step)
{
int match = 0;
arg.argv_step = 1;
for (i = 0; ctrl_args[i]; i++)
{
if (arg_match(&arg, ctrl_args[i], argi))
{
match = 1;
if (arg_ctrl_cnt < ARG_CTRL_CNT_MAX)
{
arg_ctrls[arg_ctrl_cnt][0] = ctrl_args_map[i];
arg_ctrls[arg_ctrl_cnt][1] = arg_parse_enum_or_int(&arg);
arg_ctrl_cnt++;
}
}
}
if (!match)
argj++;
}
/* Check for unrecognized options */
for (argi = argv; *argi; argi++)
if (argi[0][0] == '-' && argi[0][1])
die("Error: Unrecognized option %s\n", *argi);
/* Handle non-option arguments */
in_fn = argv[0];
if (!in_fn)
usage_exit();
if(!out_fn)
die("Error: Output file is required (specify with -o)\n");
memset(&stats, 0, sizeof(stats));
for (pass = one_pass_only ? one_pass_only - 1 : 0; pass < arg_passes; pass++)
{
int frames_in = 0, frames_out = 0;
unsigned long nbytes = 0;
struct detect_buffer detect;
/* Parse certain options from the input file, if possible */
infile = strcmp(in_fn, "-") ? fopen(in_fn, "rb")
: set_binary_mode(stdin);
if (!infile)
{
fprintf(stderr, "Failed to open input file\n");
return EXIT_FAILURE;
}
/* For RAW input sources, these bytes will applied on the first frame
* in read_frame().
*/
detect.buf_read = fread(detect.buf, 1, 4, infile);
detect.position = 0;
if (detect.buf_read == 4 && file_is_y4m(infile, &y4m, detect.buf))
{
if (y4m_input_open(&y4m, infile, detect.buf, 4) >= 0)
{
file_type = FILE_TYPE_Y4M;
cfg.g_w = y4m.pic_w;
cfg.g_h = y4m.pic_h;
/* Use the frame rate from the file only if none was specified
* on the command-line.
*/
if (!arg_have_framerate)
{
arg_framerate.num = y4m.fps_n;
arg_framerate.den = y4m.fps_d;
}
arg_use_i420 = 0;
}
else
{
fprintf(stderr, "Unsupported Y4M stream.\n");
return EXIT_FAILURE;
}
}
else if (detect.buf_read == 4 &&
file_is_ivf(infile, &fourcc, &cfg.g_w, &cfg.g_h, &detect))
{
file_type = FILE_TYPE_IVF;
switch (fourcc)
{
case 0x32315659:
arg_use_i420 = 0;
break;
case 0x30323449:
arg_use_i420 = 1;
break;
default:
fprintf(stderr, "Unsupported fourcc (%08x) in IVF\n", fourcc);
return EXIT_FAILURE;
}
}
else
{
file_type = FILE_TYPE_RAW;
}
if(!cfg.g_w || !cfg.g_h)
{
fprintf(stderr, "Specify stream dimensions with --width (-w) "
" and --height (-h).\n");
return EXIT_FAILURE;
}
#define SHOW(field) fprintf(stderr, " %-28s = %d\n", #field, cfg.field)
if (verbose && pass == 0)
{
fprintf(stderr, "Codec: %s\n", vpx_codec_iface_name(codec->iface));
fprintf(stderr, "Source file: %s Format: %s\n", in_fn,
arg_use_i420 ? "I420" : "YV12");
fprintf(stderr, "Destination file: %s\n", out_fn);
fprintf(stderr, "Encoder parameters:\n");
SHOW(g_usage);
SHOW(g_threads);
SHOW(g_profile);
SHOW(g_w);
SHOW(g_h);
SHOW(g_timebase.num);
SHOW(g_timebase.den);
SHOW(g_error_resilient);
SHOW(g_pass);
SHOW(g_lag_in_frames);
SHOW(rc_dropframe_thresh);
SHOW(rc_resize_allowed);
SHOW(rc_resize_up_thresh);
SHOW(rc_resize_down_thresh);
SHOW(rc_end_usage);
SHOW(rc_target_bitrate);
SHOW(rc_min_quantizer);
SHOW(rc_max_quantizer);
SHOW(rc_undershoot_pct);
SHOW(rc_overshoot_pct);
SHOW(rc_buf_sz);
SHOW(rc_buf_initial_sz);
SHOW(rc_buf_optimal_sz);
SHOW(rc_2pass_vbr_bias_pct);
SHOW(rc_2pass_vbr_minsection_pct);
SHOW(rc_2pass_vbr_maxsection_pct);
SHOW(kf_mode);
SHOW(kf_min_dist);
SHOW(kf_max_dist);
}
if(pass == (one_pass_only ? one_pass_only - 1 : 0)) {
if (file_type == FILE_TYPE_Y4M)
/*The Y4M reader does its own allocation.
Just initialize this here to avoid problems if we never read any
frames.*/
memset(&raw, 0, sizeof(raw));
else
vpx_img_alloc(&raw, arg_use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12,
cfg.g_w, cfg.g_h, 1);
}
outfile = strcmp(out_fn, "-") ? fopen(out_fn, "wb")
: set_binary_mode(stdout);
if (!outfile)
{
fprintf(stderr, "Failed to open output file\n");
return EXIT_FAILURE;
}
if(write_webm && fseek(outfile, 0, SEEK_CUR))
{
fprintf(stderr, "WebM output to pipes not supported.\n");
return EXIT_FAILURE;
}
if (stats_fn)
{
if (!stats_open_file(&stats, stats_fn, pass))
{
fprintf(stderr, "Failed to open statistics store\n");
return EXIT_FAILURE;
}
}
else
{
if (!stats_open_mem(&stats, pass))
{
fprintf(stderr, "Failed to open statistics store\n");
return EXIT_FAILURE;
}
}
cfg.g_pass = arg_passes == 2
? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS
: VPX_RC_ONE_PASS;
#if VPX_ENCODER_ABI_VERSION > (1 + VPX_CODEC_ABI_VERSION)
if (pass)
{
cfg.rc_twopass_stats_in = stats_get(&stats);
}
#endif
if(write_webm)
{
ebml.stream = outfile;
write_webm_file_header(&ebml, &cfg, &arg_framerate);
}
else
write_ivf_file_header(outfile, &cfg, codec->fourcc, 0);
/* Construct Encoder Context */
vpx_codec_enc_init(&encoder, codec->iface, &cfg,
show_psnr ? VPX_CODEC_USE_PSNR : 0);
ctx_exit_on_error(&encoder, "Failed to initialize encoder");
/* Note that we bypass the vpx_codec_control wrapper macro because
* we're being clever to store the control IDs in an array. Real
* applications will want to make use of the enumerations directly
*/
for (i = 0; i < arg_ctrl_cnt; i++)
{
if (vpx_codec_control_(&encoder, arg_ctrls[i][0], arg_ctrls[i][1]))
fprintf(stderr, "Error: Tried to set control %d = %d\n",
arg_ctrls[i][0], arg_ctrls[i][1]);
ctx_exit_on_error(&encoder, "Failed to control codec");
}
frame_avail = 1;
got_data = 0;
while (frame_avail || got_data)
{
vpx_codec_iter_t iter = NULL;
const vpx_codec_cx_pkt_t *pkt;
struct vpx_usec_timer timer;
int64_t frame_start, next_frame_start;
if (!arg_limit || frames_in < arg_limit)
{
frame_avail = read_frame(infile, &raw, file_type, &y4m,
&detect);
if (frame_avail)
frames_in++;
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB \033[K", pass + 1,
arg_passes, frames_in, frames_out, nbytes);
}
else
frame_avail = 0;
vpx_usec_timer_start(&timer);
frame_start = (cfg.g_timebase.den * (int64_t)(frames_in - 1)
* arg_framerate.den) / cfg.g_timebase.num / arg_framerate.num;
next_frame_start = (cfg.g_timebase.den * (int64_t)(frames_in)
* arg_framerate.den)
/ cfg.g_timebase.num / arg_framerate.num;
vpx_codec_encode(&encoder, frame_avail ? &raw : NULL, frame_start,
next_frame_start - frame_start,
0, arg_deadline);
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
ctx_exit_on_error(&encoder, "Failed to encode frame");
got_data = 0;
while ((pkt = vpx_codec_get_cx_data(&encoder, &iter)))
{
got_data = 1;
switch (pkt->kind)
{
case VPX_CODEC_CX_FRAME_PKT:
frames_out++;
fprintf(stderr, " %6luF",
(unsigned long)pkt->data.frame.sz);
if(write_webm)
{
/* Update the hash */
if(!ebml.debug)
hash = murmur(pkt->data.frame.buf,
pkt->data.frame.sz, hash);
write_webm_block(&ebml, &cfg, pkt);
}
else
{
write_ivf_frame_header(outfile, pkt);
if(fwrite(pkt->data.frame.buf, 1,
pkt->data.frame.sz, outfile));
}
nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_STATS_PKT:
frames_out++;
fprintf(stderr, " %6luS",
(unsigned long)pkt->data.twopass_stats.sz);
stats_write(&stats,
pkt->data.twopass_stats.buf,
pkt->data.twopass_stats.sz);
nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_PSNR_PKT:
if (show_psnr)
{
int i;
psnr_sse_total += pkt->data.psnr.sse[0];
psnr_samples_total += pkt->data.psnr.samples[0];
for (i = 0; i < 4; i++)
{
fprintf(stderr, "%.3lf ", pkt->data.psnr.psnr[i]);
psnr_totals[i] += pkt->data.psnr.psnr[i];
}
psnr_count++;
}
break;
default:
break;
}
}
fflush(stdout);
}
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB %7ldb/f %7"PRId64"b/s"
" %7lu %s (%.2f fps)\033[K", pass + 1,
arg_passes, frames_in, frames_out, nbytes, nbytes * 8 / frames_in,
nbytes * 8 *(int64_t)arg_framerate.num / arg_framerate.den / frames_in,
cx_time > 9999999 ? cx_time / 1000 : cx_time,
cx_time > 9999999 ? "ms" : "us",
(float)frames_in * 1000000.0 / (float)cx_time);
if ( (show_psnr) && (psnr_count>0) )
{
int i;
double ovpsnr = vp8_mse2psnr(psnr_samples_total, 255.0,
psnr_sse_total);
fprintf(stderr, "\nPSNR (Overall/Avg/Y/U/V)");
fprintf(stderr, " %.3lf", ovpsnr);
for (i = 0; i < 4; i++)
{
fprintf(stderr, " %.3lf", psnr_totals[i]/psnr_count);
}
}
vpx_codec_destroy(&encoder);
fclose(infile);
if(write_webm)
{
write_webm_file_footer(&ebml, hash);
}
else
{
if (!fseek(outfile, 0, SEEK_SET))
write_ivf_file_header(outfile, &cfg, codec->fourcc, frames_out);
}
fclose(outfile);
stats_close(&stats, arg_passes-1);
fprintf(stderr, "\n");
if (one_pass_only)
break;
}
vpx_img_free(&raw);
free(argv);
return EXIT_SUCCESS;
}