c8338ebf7a
This change is designed to try and reduce pulsing effects when moving with a complex transition like a fade, into an easy or static section in an otherwise difficult clip in CQ mode. The active CQ level is relaxed down to the user entered level for frames that are generating less than the passed in minimum bandwidth. Change-Id: Id6d8b551daad4f489c087bd742bc95418a95f3f0
5591 lines
178 KiB
C
5591 lines
178 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "onyxc_int.h"
|
|
#include "onyx_int.h"
|
|
#include "systemdependent.h"
|
|
#include "quantize.h"
|
|
#include "alloccommon.h"
|
|
#include "mcomp.h"
|
|
#include "firstpass.h"
|
|
#include "psnr.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "extend.h"
|
|
#include "ratectrl.h"
|
|
#include "quant_common.h"
|
|
#include "segmentation.h"
|
|
#include "g_common.h"
|
|
#include "vpx_scale/yv12extend.h"
|
|
#include "postproc.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "swapyv12buffer.h"
|
|
#include "threading.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#include "vpxerrors.h"
|
|
#include "temporal_filter.h"
|
|
#if ARCH_ARM
|
|
#include "vpx_ports/arm.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#define IF_RTCD(x) (x)
|
|
#define RTCD(x) &cpi->common.rtcd.x
|
|
#else
|
|
#define IF_RTCD(x) NULL
|
|
#define RTCD(x) NULL
|
|
#endif
|
|
|
|
extern void vp8cx_init_mv_bits_sadcost();
|
|
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
|
|
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
|
|
extern void vp8_init_loop_filter(VP8_COMMON *cm);
|
|
extern void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val);
|
|
extern void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val, int sharpness_lvl);
|
|
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
|
|
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
|
|
extern void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi);
|
|
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
|
|
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
|
|
extern unsigned int vp8_get_processor_freq();
|
|
extern void print_tree_update_probs();
|
|
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
|
|
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
|
|
#if HAVE_ARMV7
|
|
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
#endif
|
|
|
|
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
|
|
int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
|
|
|
|
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi);
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi);
|
|
|
|
extern const int vp8_gf_interval_table[101];
|
|
|
|
#if CONFIG_PSNR
|
|
#include "math.h"
|
|
|
|
extern double vp8_calc_ssim
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
int lumamask,
|
|
double *weight
|
|
);
|
|
|
|
extern double vp8_calc_ssimg
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
double *ssim_y,
|
|
double *ssim_u,
|
|
double *ssim_v
|
|
);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#if 0
|
|
extern int skip_true_count;
|
|
extern int skip_false_count;
|
|
#endif
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
extern int intra_mode_stats[10][10][10];
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned int tot_pm = 0;
|
|
unsigned int cnt_pm = 0;
|
|
unsigned int tot_ef = 0;
|
|
unsigned int cnt_ef = 0;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned __int64 Sectionbits[50];
|
|
extern int y_modes[5] ;
|
|
extern int uv_modes[4] ;
|
|
extern int b_modes[10] ;
|
|
|
|
extern int inter_y_modes[10] ;
|
|
extern int inter_uv_modes[4] ;
|
|
extern unsigned int inter_b_modes[15];
|
|
#endif
|
|
|
|
extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch);
|
|
extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch);
|
|
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
extern const int qrounding_factors[129];
|
|
extern const int qzbin_factors[129];
|
|
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
|
|
extern const int vp8cx_base_skip_false_prob[128];
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static const int kf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23
|
|
};
|
|
static const int kf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21,
|
|
21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30
|
|
};
|
|
static const int gf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
|
|
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
|
|
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
|
|
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
|
|
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
|
|
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
|
|
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
|
|
};
|
|
static const int gf_mid_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
|
|
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
|
|
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
|
|
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
|
|
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
|
|
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64
|
|
};
|
|
static const int gf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
|
|
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
|
|
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
|
|
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
|
|
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
|
|
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80
|
|
};
|
|
static const int inter_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
|
|
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
|
|
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
|
|
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
|
|
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
|
|
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
|
|
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
|
|
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
|
|
};
|
|
|
|
void vp8_initialize()
|
|
{
|
|
static int init_done = 0;
|
|
|
|
if (!init_done)
|
|
{
|
|
vp8_scale_machine_specific_config();
|
|
vp8_initialize_common();
|
|
//vp8_dmachine_specific_config();
|
|
vp8_tokenize_initialize();
|
|
|
|
vp8cx_init_mv_bits_sadcost();
|
|
init_done = 1;
|
|
}
|
|
}
|
|
#ifdef PACKET_TESTING
|
|
extern FILE *vpxlogc;
|
|
#endif
|
|
|
|
static void setup_features(VP8_COMP *cpi)
|
|
{
|
|
// Set up default state for MB feature flags
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs));
|
|
vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data));
|
|
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
set_default_lf_deltas(cpi);
|
|
|
|
}
|
|
|
|
|
|
void vp8_dealloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
// Delete last frame MV storage buffers
|
|
if (cpi->lfmv != 0)
|
|
vpx_free(cpi->lfmv);
|
|
|
|
cpi->lfmv = 0;
|
|
|
|
if (cpi->lf_ref_frame_sign_bias != 0)
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
|
|
cpi->lf_ref_frame_sign_bias = 0;
|
|
|
|
if (cpi->lf_ref_frame != 0)
|
|
vpx_free(cpi->lf_ref_frame);
|
|
|
|
cpi->lf_ref_frame = 0;
|
|
|
|
// Delete sementation map
|
|
if (cpi->segmentation_map != 0)
|
|
vpx_free(cpi->segmentation_map);
|
|
|
|
cpi->segmentation_map = 0;
|
|
|
|
if (cpi->active_map != 0)
|
|
vpx_free(cpi->active_map);
|
|
|
|
cpi->active_map = 0;
|
|
|
|
// Delete first pass motion map
|
|
if (cpi->fp_motion_map != 0)
|
|
vpx_free(cpi->fp_motion_map);
|
|
|
|
cpi->fp_motion_map = 0;
|
|
|
|
vp8_de_alloc_frame_buffers(&cpi->common);
|
|
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer);
|
|
#endif
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; i++)
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer);
|
|
|
|
cpi->source_buffer_count = 0;
|
|
}
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
// Structure used to minitor GF useage
|
|
if (cpi->gf_active_flags != 0)
|
|
vpx_free(cpi->gf_active_flags);
|
|
|
|
cpi->gf_active_flags = 0;
|
|
|
|
if(cpi->mb.pip)
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = 0;
|
|
|
|
if(cpi->total_stats)
|
|
vpx_free(cpi->total_stats);
|
|
|
|
cpi->total_stats = 0;
|
|
|
|
if(cpi->this_frame_stats)
|
|
vpx_free(cpi->this_frame_stats);
|
|
|
|
cpi->this_frame_stats = 0;
|
|
}
|
|
|
|
static void enable_segmentation(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Set the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
static void disable_segmentation(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Clear the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
}
|
|
|
|
// Valid values for a segment are 0 to 3
|
|
// Segmentation map is arrange as [Rows][Columns]
|
|
static void set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Copy in the new segmentation map
|
|
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
|
|
// Signal that the map should be updated.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values.
|
|
//
|
|
// Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF)
|
|
// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF)
|
|
//
|
|
// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given).
|
|
//
|
|
//
|
|
static void set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
|
|
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
|
|
}
|
|
|
|
|
|
static void segmentation_test_function(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
// MB loop to set local segmentation map
|
|
/*for ( i = 0; i < cpi->common.mb_rows; i++ )
|
|
{
|
|
for ( j = 0; j < cpi->common.mb_cols; j++ )
|
|
{
|
|
//seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2);
|
|
//if ( j < cpi->common.mb_cols/2 )
|
|
|
|
// Segment 1 around the edge else 0
|
|
if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) )
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 1;
|
|
//else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 2;
|
|
//else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 3;
|
|
else
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 0;
|
|
}
|
|
}*/
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map(ptr, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation(ptr);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = 4;
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = 0;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data(ptr, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
if (seg_map != 0)
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
// A simple function to cyclically refresh the background at a lower Q
|
|
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
|
|
{
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
int i;
|
|
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
|
|
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
cpi->cyclic_refresh_q = Q;
|
|
|
|
for (i = Q; i > 0; i--)
|
|
{
|
|
if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64))
|
|
//if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
cpi->cyclic_refresh_q = i;
|
|
|
|
// Only update for inter frames
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
// Cycle through the macro_block rows
|
|
// MB loop to set local segmentation map
|
|
for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++)
|
|
{
|
|
// If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1)
|
|
// The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0
|
|
// as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks.
|
|
if (cpi->cyclic_refresh_map[i] == 0)
|
|
{
|
|
seg_map[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
seg_map[i] = 0;
|
|
|
|
// Skip blocks that have been refreshed recently anyway.
|
|
if (cpi->cyclic_refresh_map[i] < 0)
|
|
//cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16;
|
|
cpi->cyclic_refresh_map[i]++;
|
|
}
|
|
|
|
|
|
if (block_count > 0)
|
|
block_count--;
|
|
else
|
|
break;
|
|
|
|
}
|
|
|
|
// If we have gone through the frame reset to the start
|
|
cpi->cyclic_refresh_mode_index = i;
|
|
|
|
if (cpi->cyclic_refresh_mode_index >= mbs_in_frame)
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map((VP8_PTR)cpi, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation((VP8_PTR)cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
if (seg_map != 0)
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi)
|
|
{
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
|
|
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
// Test of ref frame deltas
|
|
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
|
|
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
|
|
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
|
|
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
|
|
}
|
|
|
|
void vp8_set_speed_features(VP8_COMP *cpi)
|
|
{
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int Mode = cpi->compressor_speed;
|
|
int Speed = cpi->Speed;
|
|
int i;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int last_improved_quant = sf->improved_quant;
|
|
|
|
// Initialise default mode frequency sampling variables
|
|
for (i = 0; i < MAX_MODES; i ++)
|
|
{
|
|
cpi->mode_check_freq[i] = 0;
|
|
cpi->mode_test_hit_counts[i] = 0;
|
|
cpi->mode_chosen_counts[i] = 0;
|
|
}
|
|
|
|
cpi->mbs_tested_so_far = 0;
|
|
|
|
// best quality defaults
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->improved_quant = 1;
|
|
sf->improved_dct = 1;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->quarter_pixel_search = 1;
|
|
sf->half_pixel_search = 1;
|
|
sf->full_freq[0] = 7;
|
|
sf->full_freq[1] = 7;
|
|
sf->min_fs_radius = 8;
|
|
sf->max_fs_radius = 32;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->optimize_coefficients = 1;
|
|
sf->use_fastquant_for_pick = 0;
|
|
sf->no_skip_block4x4_search = 1;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
|
|
cpi->do_full[0] = 0;
|
|
cpi->do_full[1] = 0;
|
|
|
|
// default thresholds to 0
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
sf->thresh_mult[i] = 0;
|
|
|
|
switch (Mode)
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
case 0: // best quality mode
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 5000;
|
|
sf->thresh_mult[THR_SPLITA ] = 5000;
|
|
|
|
sf->full_freq[0] = 7;
|
|
sf->full_freq[1] = 15;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
break;
|
|
case 1:
|
|
case 3:
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
|
|
#if 1
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
// sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
// sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
// sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
// sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
// sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 1700;
|
|
sf->thresh_mult[THR_SPLITG ] = 4500;
|
|
sf->thresh_mult[THR_SPLITA ] = 4500;
|
|
#else
|
|
sf->thresh_mult[THR_NEWMV ] = 1500;
|
|
sf->thresh_mult[THR_NEWG ] = 1500;
|
|
sf->thresh_mult[THR_NEWA ] = 1500;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 5000;
|
|
sf->thresh_mult[THR_SPLITG ] = 10000;
|
|
sf->thresh_mult[THR_SPLITA ] = 10000;
|
|
#endif
|
|
sf->full_freq[0] = 15;
|
|
sf->full_freq[1] = 31;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
if (Speed > 0)
|
|
{
|
|
// Disable coefficient optimization above speed 0
|
|
sf->optimize_coefficients = 0;
|
|
|
|
cpi->mode_check_freq[THR_SPLITG] = 4;
|
|
cpi->mode_check_freq[THR_SPLITA] = 4;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 2;
|
|
|
|
sf->thresh_mult[THR_TM ] = 1500;
|
|
sf->thresh_mult[THR_V_PRED ] = 1500;
|
|
sf->thresh_mult[THR_H_PRED ] = 1500;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 10000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 1500;
|
|
sf->thresh_mult[THR_ZEROG ] = 1500;
|
|
sf->thresh_mult[THR_NEARG ] = 1500;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_SPLITG ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 1500;
|
|
sf->thresh_mult[THR_ZEROA ] = 1500;
|
|
sf->thresh_mult[THR_NEARA ] = 1500;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITA ] = 20000;
|
|
}
|
|
|
|
sf->use_fastquant_for_pick = 1;
|
|
|
|
sf->first_step = 1;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->no_skip_block4x4_search = 0;
|
|
}
|
|
|
|
if (Speed > 1)
|
|
{
|
|
sf->use_fastquant_for_pick = 0;
|
|
|
|
cpi->mode_check_freq[THR_SPLITG] = 15;
|
|
cpi->mode_check_freq[THR_SPLITA] = 15;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 7;
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 7500;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 25000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2500;
|
|
sf->thresh_mult[THR_SPLITA ] = 50000;
|
|
}
|
|
|
|
sf->first_step = 1;
|
|
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
// Only do recode loop on key frames, golden frames and
|
|
// alt ref frames
|
|
sf->recode_loop = 2;
|
|
|
|
sf->full_freq[0] = 31;
|
|
sf->full_freq[1] = 63;
|
|
|
|
}
|
|
|
|
if (Speed > 2)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
cpi->mode_check_freq[THR_V_PRED] = 2;
|
|
cpi->mode_check_freq[THR_H_PRED] = 2;
|
|
cpi->mode_check_freq[THR_B_PRED] = 2;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
|
|
sf->full_freq[0] = 63;
|
|
sf->full_freq[1] = 127;
|
|
}
|
|
|
|
if (Speed > 3)
|
|
{
|
|
cpi->mode_check_freq[THR_V_PRED] = 0;
|
|
cpi->mode_check_freq[THR_H_PRED] = 0;
|
|
cpi->mode_check_freq[THR_B_PRED] = 0;
|
|
cpi->mode_check_freq[THR_NEARG] = 0;
|
|
cpi->mode_check_freq[THR_NEWG] = 0;
|
|
cpi->mode_check_freq[THR_NEARA] = 0;
|
|
cpi->mode_check_freq[THR_NEWA] = 0;
|
|
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 0; // recode loop off
|
|
sf->RD = 0; // Turn rd off
|
|
sf->full_freq[0] = INT_MAX;
|
|
sf->full_freq[1] = INT_MAX;
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 2;
|
|
cpi->mode_check_freq[THR_H_PRED] = 2;
|
|
cpi->mode_check_freq[THR_B_PRED] = 2;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 4000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 4000;
|
|
}
|
|
}
|
|
|
|
break;
|
|
#endif
|
|
case 2:
|
|
sf->optimize_coefficients = 0;
|
|
sf->recode_loop = 0;
|
|
sf->auto_filter = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_TM ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 5000;
|
|
sf->thresh_mult[THR_SPLITG ] = 10000;
|
|
sf->thresh_mult[THR_SPLITA ] = 10000;
|
|
sf->full_freq[0] = 15;
|
|
sf->full_freq[1] = 31;
|
|
sf->search_method = NSTEP;
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
if (Speed > 0)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITG] = 4;
|
|
cpi->mode_check_freq[THR_SPLITA] = 4;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 2;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 10000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_SPLITG ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITA ] = 20000;
|
|
}
|
|
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (Speed > 1)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITMV] = 7;
|
|
cpi->mode_check_freq[THR_SPLITG] = 15;
|
|
cpi->mode_check_freq[THR_SPLITA] = 15;
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 25000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2500;
|
|
sf->thresh_mult[THR_SPLITA ] = 50000;
|
|
}
|
|
|
|
sf->full_freq[0] = 31;
|
|
sf->full_freq[1] = 63;
|
|
}
|
|
|
|
if (Speed > 2)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 2;
|
|
cpi->mode_check_freq[THR_H_PRED] = 2;
|
|
cpi->mode_check_freq[THR_B_PRED] = 2;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
|
|
sf->full_freq[0] = 63;
|
|
sf->full_freq[1] = 127;
|
|
}
|
|
|
|
if (Speed > 3)
|
|
{
|
|
sf->RD = 0;
|
|
sf->full_freq[0] = INT_MAX;
|
|
sf->full_freq[1] = INT_MAX;
|
|
|
|
sf->auto_filter = 1;
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
#if CONFIG_REALTIME_ONLY
|
|
sf->search_method = HEX;
|
|
#else
|
|
sf->search_method = DIAMOND;
|
|
#endif
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 4;
|
|
cpi->mode_check_freq[THR_H_PRED] = 4;
|
|
cpi->mode_check_freq[THR_B_PRED] = 4;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 4000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 4000;
|
|
}
|
|
}
|
|
|
|
if (Speed > 5)
|
|
{
|
|
// Disable split MB intra prediction mode
|
|
sf->thresh_mult[THR_B_PRED] = INT_MAX;
|
|
}
|
|
|
|
if (Speed > 6)
|
|
{
|
|
unsigned int i, sum = 0;
|
|
unsigned int total_mbs = cm->MBs;
|
|
int thresh;
|
|
int total_skip;
|
|
|
|
int min = 2000;
|
|
sf->iterative_sub_pixel = 0;
|
|
|
|
if (cpi->oxcf.encode_breakout > 2000)
|
|
min = cpi->oxcf.encode_breakout;
|
|
|
|
min >>= 7;
|
|
|
|
for (i = 0; i < min; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
}
|
|
|
|
total_skip = sum;
|
|
sum = 0;
|
|
|
|
// i starts from 2 to make sure thresh started from 2048
|
|
for (; i < 1024; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
|
|
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
|
|
break;
|
|
}
|
|
|
|
i--;
|
|
thresh = (i << 7);
|
|
|
|
if (thresh < 2000)
|
|
thresh = 2000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV] = thresh;
|
|
sf->thresh_mult[THR_NEARESTMV ] = thresh >> 1;
|
|
sf->thresh_mult[THR_NEARMV ] = thresh >> 1;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWG] = thresh << 1;
|
|
sf->thresh_mult[THR_NEARESTG ] = thresh;
|
|
sf->thresh_mult[THR_NEARG ] = thresh;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWA] = thresh << 1;
|
|
sf->thresh_mult[THR_NEARESTA ] = thresh;
|
|
sf->thresh_mult[THR_NEARA ] = thresh;
|
|
}
|
|
|
|
// Disable other intra prediction modes
|
|
sf->thresh_mult[THR_TM] = INT_MAX;
|
|
sf->thresh_mult[THR_V_PRED] = INT_MAX;
|
|
sf->thresh_mult[THR_H_PRED] = INT_MAX;
|
|
|
|
}
|
|
|
|
if (Speed > 8)
|
|
{
|
|
sf->quarter_pixel_search = 0;
|
|
}
|
|
|
|
if (Speed > 9)
|
|
{
|
|
int Tmp = cpi->Speed - 8;
|
|
|
|
if (Tmp > 4)
|
|
Tmp = 4;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_ZEROG] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARESTG] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARG] = 1 << Tmp;
|
|
cpi->mode_check_freq[THR_NEWG] = 1 << (Tmp + 1);
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_ZEROA] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARESTA] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARA] = 1 << Tmp;
|
|
cpi->mode_check_freq[THR_NEWA] = 1 << (Tmp + 1);
|
|
}
|
|
|
|
cpi->mode_check_freq[THR_NEWMV] = 1 << (Tmp - 1);
|
|
}
|
|
|
|
cm->filter_type = NORMAL_LOOPFILTER;
|
|
|
|
if (Speed >= 14)
|
|
cm->filter_type = SIMPLE_LOOPFILTER;
|
|
|
|
if (Speed >= 15)
|
|
{
|
|
sf->half_pixel_search = 0; // This has a big hit on quality. Last resort
|
|
}
|
|
|
|
vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins));
|
|
|
|
};
|
|
|
|
// Slow quant, dct and trellis not worthwhile for first pass
|
|
// so make sure they are always turned off.
|
|
if ( cpi->pass == 1 )
|
|
{
|
|
sf->improved_quant = 0;
|
|
sf->optimize_coefficients = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (cpi->sf.search_method == NSTEP)
|
|
{
|
|
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
else if (cpi->sf.search_method == DIAMOND)
|
|
{
|
|
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
|
|
if (cpi->sf.improved_dct)
|
|
{
|
|
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4);
|
|
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4);
|
|
}
|
|
else
|
|
{
|
|
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4);
|
|
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4);
|
|
}
|
|
|
|
cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4);
|
|
|
|
if (cpi->sf.improved_quant)
|
|
{
|
|
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb);
|
|
}
|
|
else
|
|
{
|
|
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb);
|
|
}
|
|
if (cpi->sf.improved_quant != last_improved_quant)
|
|
vp8cx_init_quantizer(cpi);
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
cpi->mb.e_mbd.rtcd = &cpi->common.rtcd;
|
|
#endif
|
|
|
|
if (cpi->sf.iterative_sub_pixel == 1)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
|
|
}
|
|
else if (cpi->sf.quarter_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
|
|
}
|
|
else if (cpi->sf.half_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
|
|
}
|
|
else
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
}
|
|
|
|
if (cpi->sf.optimize_coefficients == 1)
|
|
cpi->mb.optimize = 1 + cpi->is_next_src_alt_ref;
|
|
else
|
|
cpi->mb.optimize = 0;
|
|
|
|
if (cpi->common.full_pixel)
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->Speed]++;
|
|
#endif
|
|
}
|
|
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
|
|
{
|
|
int i, buffers;
|
|
|
|
buffers = cpi->oxcf.lag_in_frames;
|
|
|
|
if (buffers > MAX_LAG_BUFFERS)
|
|
buffers = MAX_LAG_BUFFERS;
|
|
|
|
if (buffers < 1)
|
|
buffers = 1;
|
|
|
|
for (i = 0; i < buffers; i++)
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer,
|
|
cpi->oxcf.Width, cpi->oxcf.Height,
|
|
16))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffer");
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer,
|
|
cpi->oxcf.Width, cpi->oxcf.Height, 16))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
|
|
#endif
|
|
|
|
cpi->source_buffer_count = 0;
|
|
}
|
|
|
|
static int vp8_alloc_partition_data(VP8_COMP *cpi)
|
|
{
|
|
if(cpi->mb.pip)
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
|
|
(cpi->common.mb_rows + 1),
|
|
sizeof(PARTITION_INFO));
|
|
if(!cpi->mb.pip)
|
|
return ALLOC_FAILURE;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp8_alloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = & cpi->common;
|
|
|
|
int width = cm->Width;
|
|
int height = cm->Height;
|
|
|
|
if (vp8_alloc_frame_buffers(cm, width, height))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
|
|
if (vp8_alloc_partition_data(cpi))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
|
|
|
|
if ((width & 0xf) != 0)
|
|
width += 16 - (width & 0xf);
|
|
|
|
if ((height & 0xf) != 0)
|
|
height += 16 - (height & 0xf);
|
|
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
|
|
width, height, VP8BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, 16))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
|
|
if (cpi->tok != 0)
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
|
|
|
|
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
// Data used for real time vc mode to see if gf needs refreshing
|
|
cpi->inter_zz_count = 0;
|
|
cpi->gf_bad_count = 0;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
|
|
// Structures used to minitor GF usage
|
|
if (cpi->gf_active_flags != 0)
|
|
vpx_free(cpi->gf_active_flags);
|
|
|
|
CHECK_MEM_ERROR(cpi->gf_active_flags, vpx_calloc(1, cm->mb_rows * cm->mb_cols));
|
|
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
if(cpi->total_stats)
|
|
vpx_free(cpi->total_stats);
|
|
|
|
cpi->total_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs));
|
|
|
|
if(cpi->this_frame_stats)
|
|
vpx_free(cpi->this_frame_stats);
|
|
|
|
cpi->this_frame_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs));
|
|
|
|
if(!cpi->total_stats || !cpi->this_frame_stats)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate firstpass stats");
|
|
}
|
|
|
|
|
|
// Quant MOD
|
|
static const int q_trans[] =
|
|
{
|
|
0, 1, 2, 3, 4, 5, 7, 8,
|
|
9, 10, 12, 13, 15, 17, 18, 19,
|
|
20, 21, 23, 24, 25, 26, 27, 28,
|
|
29, 30, 31, 33, 35, 37, 39, 41,
|
|
43, 45, 47, 49, 51, 53, 55, 57,
|
|
59, 61, 64, 67, 70, 73, 76, 79,
|
|
82, 85, 88, 91, 94, 97, 100, 103,
|
|
106, 109, 112, 115, 118, 121, 124, 127,
|
|
};
|
|
|
|
int vp8_reverse_trans(int x)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (q_trans[i] >= x)
|
|
return i;
|
|
|
|
return 63;
|
|
};
|
|
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
|
|
{
|
|
if(framerate < .1)
|
|
framerate = 30;
|
|
|
|
cpi->oxcf.frame_rate = framerate;
|
|
cpi->output_frame_rate = cpi->oxcf.frame_rate;
|
|
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
cpi->max_gf_interval = (int)(cpi->output_frame_rate / 2) + 2;
|
|
|
|
//cpi->max_gf_interval = (int)(cpi->output_frame_rate * 2 / 3) + 1;
|
|
//cpi->max_gf_interval = 24;
|
|
|
|
if (cpi->max_gf_interval < 12)
|
|
cpi->max_gf_interval = 12;
|
|
|
|
|
|
// Special conditions when altr ref frame enabled in lagged compress mode
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
|
|
{
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
rescale(int val, int num, int denom)
|
|
{
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return llval * llnum / llden;
|
|
}
|
|
|
|
|
|
void vp8_init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
cpi->auto_gold = 1;
|
|
cpi->auto_adjust_gold_quantizer = 1;
|
|
cpi->goldquantizer = 1;
|
|
cpi->goldfreq = 7;
|
|
cpi->auto_adjust_key_quantizer = 1;
|
|
cpi->keyquantizer = 1;
|
|
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
|
|
if (oxcf == 0)
|
|
{
|
|
cpi->pass = 0;
|
|
|
|
cpi->auto_worst_q = 0;
|
|
cpi->oxcf.best_allowed_q = MINQ;
|
|
cpi->oxcf.worst_allowed_q = MAXQ;
|
|
|
|
cpi->oxcf.end_usage = USAGE_STREAM_FROM_SERVER;
|
|
cpi->oxcf.starting_buffer_level = 4000;
|
|
cpi->oxcf.optimal_buffer_level = 5000;
|
|
cpi->oxcf.maximum_buffer_size = 6000;
|
|
cpi->oxcf.under_shoot_pct = 90;
|
|
cpi->oxcf.allow_df = 0;
|
|
cpi->oxcf.drop_frames_water_mark = 20;
|
|
|
|
cpi->oxcf.allow_spatial_resampling = 0;
|
|
cpi->oxcf.resample_down_water_mark = 40;
|
|
cpi->oxcf.resample_up_water_mark = 60;
|
|
|
|
cpi->oxcf.fixed_q = cpi->interquantizer;
|
|
|
|
cpi->filter_type = NORMAL_LOOPFILTER;
|
|
|
|
if (cm->simpler_lpf)
|
|
cpi->filter_type = SIMPLE_LOOPFILTER;
|
|
|
|
cpi->compressor_speed = 1;
|
|
cpi->horiz_scale = 0;
|
|
cpi->vert_scale = 0;
|
|
cpi->oxcf.two_pass_vbrbias = 50;
|
|
cpi->oxcf.two_pass_vbrmax_section = 400;
|
|
cpi->oxcf.two_pass_vbrmin_section = 0;
|
|
|
|
cpi->oxcf.Sharpness = 0;
|
|
cpi->oxcf.noise_sensitivity = 0;
|
|
}
|
|
else
|
|
cpi->oxcf = *oxcf;
|
|
|
|
|
|
switch (cpi->oxcf.Mode)
|
|
{
|
|
|
|
case MODE_REALTIME:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 2;
|
|
|
|
if (cpi->oxcf.cpu_used < -16)
|
|
{
|
|
cpi->oxcf.cpu_used = -16;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 16)
|
|
cpi->oxcf.cpu_used = 16;
|
|
|
|
break;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
case MODE_GOODQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_BESTQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (cpi->pass == 0)
|
|
cpi->auto_worst_q = 1;
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
|
|
if (oxcf->fixed_q >= 0)
|
|
{
|
|
if (oxcf->worst_allowed_q < 0)
|
|
cpi->oxcf.fixed_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
|
|
|
|
if (oxcf->alt_q < 0)
|
|
cpi->oxcf.alt_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
|
|
|
|
if (oxcf->key_q < 0)
|
|
cpi->oxcf.key_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.key_q = q_trans[oxcf->key_q];
|
|
|
|
if (oxcf->gold_q < 0)
|
|
cpi->oxcf.gold_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
|
|
|
|
}
|
|
|
|
cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
//cpi->use_golden_frame_only = 0;
|
|
//cpi->use_last_frame_only = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
|
|
cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions;
|
|
|
|
setup_features(cpi);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
if (cpi->oxcf.fixed_q > MAXQ)
|
|
cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
|
|
{
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
|
|
}
|
|
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
cpi->oxcf.starting_buffer_level =
|
|
rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level =
|
|
rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size =
|
|
rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
// Only allow dropped frames in buffered mode
|
|
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
|
|
|
|
cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type;
|
|
|
|
if (!cm->use_bilinear_mc_filter)
|
|
cm->mcomp_filter_type = SIXTAP;
|
|
else
|
|
cm->mcomp_filter_type = BILINEAR;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->Width = cpi->oxcf.Width ;
|
|
cm->Height = cpi->oxcf.Height ;
|
|
|
|
cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8
|
|
|
|
cm->horiz_scale = cpi->horiz_scale;
|
|
cm->vert_scale = cpi->vert_scale ;
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
if (cpi->oxcf.Sharpness > 7)
|
|
cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
|
|
{
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
// Clamp KF frame size to quarter of data rate
|
|
if (cpi->intra_frame_target > cpi->target_bandwidth >> 2)
|
|
cpi->intra_frame_target = cpi->target_bandwidth >> 2;
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
if (cpi->oxcf.lag_in_frames == 0)
|
|
{
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
|
|
// YX Temp
|
|
cpi->last_alt_ref_sei = -1;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
cpi->is_next_src_alt_ref = 0;
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
cpi->use_weighted_temporal_filter = 0;
|
|
|
|
{
|
|
int i;
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
|
|
for (i = 1; i < 512; i++)
|
|
cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This function needs more clean up, i.e. be more tuned torwards
|
|
* change_config rather than init_config !!!!!!!!!!!!!!!!
|
|
* YX - 5/28/2009
|
|
*
|
|
*/
|
|
|
|
void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (!oxcf)
|
|
return;
|
|
|
|
if (cm->version != oxcf->Version)
|
|
{
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
}
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode)
|
|
{
|
|
|
|
case MODE_REALTIME:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 2;
|
|
|
|
if (cpi->oxcf.cpu_used < -16)
|
|
{
|
|
cpi->oxcf.cpu_used = -16;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 16)
|
|
cpi->oxcf.cpu_used = 16;
|
|
|
|
break;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
case MODE_GOODQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_BESTQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (cpi->pass == 0)
|
|
cpi->auto_worst_q = 1;
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
|
|
if (oxcf->fixed_q >= 0)
|
|
{
|
|
if (oxcf->worst_allowed_q < 0)
|
|
cpi->oxcf.fixed_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
|
|
|
|
if (oxcf->alt_q < 0)
|
|
cpi->oxcf.alt_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
|
|
|
|
if (oxcf->key_q < 0)
|
|
cpi->oxcf.key_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.key_q = q_trans[oxcf->key_q];
|
|
|
|
if (oxcf->gold_q < 0)
|
|
cpi->oxcf.gold_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
|
|
|
|
}
|
|
|
|
cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
//cpi->use_golden_frame_only = 0;
|
|
//cpi->use_last_frame_only = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
|
|
cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions;
|
|
|
|
setup_features(cpi);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
if (cpi->oxcf.fixed_q > MAXQ)
|
|
cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
|
|
{
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
|
|
}
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level =
|
|
rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level =
|
|
rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size =
|
|
rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
|
|
|
|
// Experimental cq target value
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
// Only allow dropped frames in buffered mode
|
|
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
|
|
|
|
cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type;
|
|
|
|
if (!cm->use_bilinear_mc_filter)
|
|
cm->mcomp_filter_type = SIXTAP;
|
|
else
|
|
cm->mcomp_filter_type = BILINEAR;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->Width = cpi->oxcf.Width ;
|
|
cm->Height = cpi->oxcf.Height ;
|
|
|
|
cm->horiz_scale = cpi->horiz_scale;
|
|
cm->vert_scale = cpi->vert_scale ;
|
|
|
|
cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
if (cpi->oxcf.Sharpness > 7)
|
|
cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
|
|
{
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
// Clamp KF frame size to quarter of data rate
|
|
if (cpi->intra_frame_target > cpi->target_bandwidth >> 2)
|
|
cpi->intra_frame_target = cpi->target_bandwidth >> 2;
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
if (cpi->oxcf.lag_in_frames == 0)
|
|
{
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
|
|
// YX Temp
|
|
cpi->last_alt_ref_sei = -1;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
cpi->is_next_src_alt_ref = 0;
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#define log2f(x) (log (x) / (float) M_LOG2_E)
|
|
static void cal_mvsadcosts(int *mvsadcost[2])
|
|
{
|
|
int i = 1;
|
|
|
|
mvsadcost [0] [0] = 300;
|
|
mvsadcost [1] [0] = 300;
|
|
|
|
do
|
|
{
|
|
double z = 256 * (2 * (log2f(2 * i) + .6));
|
|
mvsadcost [0][i] = (int) z;
|
|
mvsadcost [1][i] = (int) z;
|
|
mvsadcost [0][-i] = (int) z;
|
|
mvsadcost [1][-i] = (int) z;
|
|
}
|
|
while (++i <= mv_max);
|
|
}
|
|
|
|
VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
|
|
{
|
|
int i;
|
|
volatile union
|
|
{
|
|
VP8_COMP *cpi;
|
|
VP8_PTR ptr;
|
|
} ctx;
|
|
|
|
VP8_COMP *cpi;
|
|
VP8_COMMON *cm;
|
|
|
|
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP));
|
|
// Check that the CPI instance is valid
|
|
if (!cpi)
|
|
return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
vpx_memset(cpi, 0, sizeof(VP8_COMP));
|
|
|
|
if (setjmp(cm->error.jmp))
|
|
{
|
|
VP8_PTR ptr = ctx.ptr;
|
|
|
|
ctx.cpi->common.error.setjmp = 0;
|
|
vp8_remove_compressor(&ptr);
|
|
return 0;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cpi->rdtok, vpx_calloc(256 * 3 / 2, sizeof(TOKENEXTRA)));
|
|
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp8_create_common(&cpi->common);
|
|
vp8_cmachine_specific_config(cpi);
|
|
|
|
vp8_init_config((VP8_PTR)cpi, oxcf);
|
|
|
|
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
|
|
cpi->common.current_video_frame = 0;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
cpi->prob_intra_coded = 63;
|
|
|
|
// Prime the recent reference frame useage counters.
|
|
// Hereafter they will be maintained as a sort of moving average
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
// Set reference frame sign bias for ALTREF frame to 1 (for now)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->gf_decay_rate = 0;
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0 ;
|
|
cpi->alt_is_last = 0 ;
|
|
cpi->gold_is_alt = 0 ;
|
|
|
|
// allocate memory for storing last frame's MVs for MV prediction.
|
|
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+1) * (cpi->common.mb_cols+1), sizeof(int_mv)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+1) * (cpi->common.mb_cols+1), sizeof(int)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+1) * (cpi->common.mb_cols+1), sizeof(int)));
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
cpi->active_map_enabled = 0;
|
|
|
|
// Create the first pass motion map structure and set to 0
|
|
// Allocate space for maximum of 15 buffers
|
|
CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(15*cpi->common.MBs, 1));
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
if (cpi->pass == 0)
|
|
{
|
|
cpi->one_pass_frame_index = 0;
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; i++)
|
|
{
|
|
cpi->one_pass_frame_stats[i].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Should we use the cyclic refresh method.
|
|
// Currently this is tied to error resilliant mode
|
|
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40;
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
cpi->cyclic_refresh_q = 32;
|
|
|
|
if (cpi->cyclic_refresh_mode_enabled)
|
|
{
|
|
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
}
|
|
else
|
|
cpi->cyclic_refresh_map = (signed char *) NULL;
|
|
|
|
// Test function for segmentation
|
|
//segmentation_test_function((VP8_PTR) cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_context_counters();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90<<12;
|
|
|
|
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = FALSE;
|
|
cpi->next_key_frame_forced = FALSE;
|
|
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
cpi->source_alt_ref_active = FALSE;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_PSNR;
|
|
#if CONFIG_PSNR
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
cpi->total_ssimg_y = 0;
|
|
cpi->total_ssimg_u = 0;
|
|
cpi->total_ssimg_v = 0;
|
|
cpi->total_ssimg_all = 0;
|
|
}
|
|
|
|
#ifndef LLONG_MAX
|
|
#define LLONG_MAX 9223372036854775807LL
|
|
#endif
|
|
cpi->first_time_stamp_ever = LLONG_MAX;
|
|
|
|
#endif
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
cpi->tot_key_frame_bits = 0;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->drop_frame = 0;
|
|
cpi->drop_count = 0;
|
|
cpi->max_drop_count = 0;
|
|
cpi->max_consec_dropped_frames = 4;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->est_max_qcorrection_factor = 1.0;
|
|
|
|
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
|
|
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
|
|
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mv_max+1];
|
|
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mv_max+1];
|
|
|
|
cal_mvsadcosts(cpi->mb.mvsadcost);
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
|
|
{
|
|
cpi->prior_key_frame_size[i] = cpi->intra_frame_target;
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
|
|
}
|
|
|
|
cpi->check_freq[0] = 15;
|
|
cpi->check_freq[1] = 15;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
vp8_init_first_pass(cpi);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
size_t packet_sz = vp8_firstpass_stats_sz(cpi->common.MBs);
|
|
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
|
|
|
|
cpi->stats_in = oxcf->two_pass_stats_in.buf;
|
|
cpi->stats_in_end = (void*)((char *)cpi->stats_in
|
|
+ (packets - 1) * packet_sz);
|
|
vp8_init_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
cpi->cpu_freq = 0; //vp8_get_processor_freq();
|
|
cpi->avg_encode_time = 0;
|
|
cpi->avg_pick_mode_time = 0;
|
|
}
|
|
|
|
vp8_set_speed_features(cpi);
|
|
|
|
// Set starting values of RD threshold multipliers (128 = *1)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_mv_ref_counts();
|
|
#endif
|
|
|
|
vp8cx_create_encoder_threads(cpi);
|
|
|
|
cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3);
|
|
cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8);
|
|
cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3);
|
|
cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8);
|
|
cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3);
|
|
cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3);
|
|
cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8);
|
|
cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d);
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search);
|
|
#endif
|
|
cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search);
|
|
|
|
cpi->ready_for_new_frame = 1;
|
|
|
|
cpi->source_encode_index = 0;
|
|
|
|
// make sure frame 1 is okay
|
|
cpi->error_bins[0] = cpi->common.MBs;
|
|
|
|
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
|
|
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
|
|
vp8cx_init_quantizer(cpi);
|
|
{
|
|
vp8_init_loop_filter(cm);
|
|
cm->last_frame_type = KEY_FRAME;
|
|
cm->last_filter_type = cm->filter_type;
|
|
cm->last_sharpness_level = cm->sharpness_level;
|
|
}
|
|
cpi->common.error.setjmp = 0;
|
|
return (VP8_PTR) cpi;
|
|
|
|
}
|
|
|
|
|
|
void vp8_remove_compressor(VP8_PTR *ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(*ptr);
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0))
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
vp8_end_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context();
|
|
#endif
|
|
|
|
#if CONFIG_PSNR
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded = (cpi->source_end_time_stamp - cpi->first_time_stamp_ever) / 10000000.000;
|
|
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error);
|
|
double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2);
|
|
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
|
|
|
|
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n");
|
|
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f %8.0f\n",
|
|
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
|
|
total_encode_time);
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n");
|
|
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
|
|
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
|
|
}
|
|
|
|
fclose(f);
|
|
#if 0
|
|
f = fopen("qskip.stt", "a");
|
|
fprintf(f, "minq:%d -maxq:%d skipture:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef SPEEDSTATS
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("cxspeed.stt", "a");
|
|
cnt_pm /= cpi->common.MBs;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
fprintf(f, "%5d", frames_at_speed[i]);
|
|
|
|
fprintf(f, "\n");
|
|
//fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_STATS
|
|
{
|
|
extern int count_mb_seg[4];
|
|
FILE *f = fopen("modes.stt", "a");
|
|
double dr = (double)cpi->oxcf.frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ;
|
|
fprintf(f, "intra_mode in Intra Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++)
|
|
fprintf(f, "%8d, ", b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
|
|
fprintf(f, "Modes in Inter Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
|
|
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
|
|
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 15; i++)
|
|
fprintf(f, "%8d, ", inter_b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
|
|
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
|
|
|
|
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
|
|
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
|
|
|
|
for (i = 0; i < 10; i++)
|
|
{
|
|
|
|
fprintf(fmode, " { //Above Mode : %d\n", i);
|
|
|
|
for (j = 0; j < 10; j++)
|
|
{
|
|
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < 10; k++)
|
|
{
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, // left_mode %d\n", j);
|
|
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; i++)
|
|
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
vp8cx_remove_encoder_threads(cpi);
|
|
|
|
vp8_dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
vpx_free(cpi->rdtok);
|
|
vpx_free(cpi->cyclic_refresh_map);
|
|
|
|
vp8_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
|
|
unsigned char *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows,
|
|
vp8_variance_rtcd_vtable_t *rtcd)
|
|
{
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16)
|
|
{
|
|
for (col = 0; col + 16 <= cols; col += 16)
|
|
{
|
|
unsigned int sse;
|
|
|
|
VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride,
|
|
recon + col, recon_stride,
|
|
&sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols)
|
|
{
|
|
unsigned int border_row, border_col;
|
|
unsigned char *border_orig = orig;
|
|
unsigned char *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; border_row++)
|
|
{
|
|
for (border_col = col; border_col < cols; border_col++)
|
|
{
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; row++)
|
|
{
|
|
for (col = 0; col < cols; col++)
|
|
{
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
return total_sse;
|
|
}
|
|
|
|
|
|
static void generate_psnr_packet(VP8_COMP *cpi)
|
|
{
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = cpi->common.Width;
|
|
unsigned int height = cpi->common.Height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = (width + 1) / 2;
|
|
height = (height + 1) / 2;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
|
|
pkt.data.psnr.sse[i]);
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
|
|
int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->common.refresh_golden_frame = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
cpi->common.refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP8_LAST_FLAG)
|
|
cpi->common.refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_GOLD_FLAG)
|
|
cpi->common.refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_ALT_FLAG)
|
|
cpi->common.refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_update_entropy(VP8_PTR comp, int update)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
cm->refresh_entropy_probs = update;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if OUTPUT_YUV_SRC
|
|
void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s)
|
|
{
|
|
FILE *yuv_file = fopen(name, "ab");
|
|
unsigned char *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
fclose(yuv_file);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// are we resizing the image
|
|
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int tmp_height;
|
|
|
|
if (cm->vert_scale == 3)
|
|
tmp_height = 9;
|
|
else
|
|
tmp_height = 11;
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
|
|
tmp_height, hs, hr, vs, vr, 0);
|
|
|
|
cpi->Source = &cpi->scaled_source;
|
|
#endif
|
|
}
|
|
// we may need to copy to a buffer so we can extend the image...
|
|
else if (cm->Width != cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
cm->Height != cm->yv12_fb[cm->lst_fb_idx].y_height)
|
|
{
|
|
//vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source);
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_yv12_copy_src_frame_func_neon(sd, &cpi->scaled_source);
|
|
}
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
else
|
|
#endif
|
|
#endif
|
|
#if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT
|
|
{
|
|
vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source);
|
|
}
|
|
#endif
|
|
|
|
cpi->Source = &cpi->scaled_source;
|
|
}
|
|
|
|
vp8_extend_to_multiple_of16(cpi->Source, cm->Width, cm->Height);
|
|
|
|
}
|
|
static void resize_key_frame(VP8_COMP *cpi)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Do we need to apply resampling for one pass cbr.
|
|
// In one pass this is more limited than in two pass cbr
|
|
// The test and any change is only made one per key frame sequence
|
|
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int new_width, new_height;
|
|
|
|
// If we are below the resample DOWN watermark then scale down a notch.
|
|
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
|
|
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
|
|
}
|
|
// Should we now start scaling back up
|
|
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
|
|
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
|
|
}
|
|
|
|
// Get the new hieght and width
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
// If the image size has changed we need to reallocate the buffers
|
|
// and resample the source image
|
|
if ((cm->Width != new_width) || (cm->Height != new_height))
|
|
{
|
|
cm->Width = new_width;
|
|
cm->Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
}
|
|
// return of 0 means drop frame
|
|
static int pick_frame_size(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// First Frame is a special case
|
|
if (cm->current_video_frame == 0)
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
vp8_calc_auto_iframe_target_size(cpi);
|
|
|
|
// 1 Pass there is no information on which to base size so use bandwidth per second * fixed fraction
|
|
else
|
|
#endif
|
|
cpi->this_frame_target = cpi->oxcf.target_bandwidth / 2;
|
|
|
|
// in error resilient mode the first frame is bigger since it likely contains
|
|
// all the static background
|
|
if (cpi->oxcf.error_resilient_mode == 1 || (cpi->compressor_speed == 2))
|
|
{
|
|
cpi->this_frame_target *= 3; // 5;
|
|
}
|
|
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
|
|
}
|
|
// Special case for forced key frames
|
|
// The frame sizing here is still far from ideal for 2 pass.
|
|
else if (cm->frame_flags & FRAMEFLAGS_KEY)
|
|
{
|
|
cm->frame_type = KEY_FRAME;
|
|
resize_key_frame(cpi);
|
|
vp8_calc_iframe_target_size(cpi);
|
|
}
|
|
else if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_calc_auto_iframe_target_size(cpi);
|
|
}
|
|
else
|
|
{
|
|
// INTER frame: compute target frame size
|
|
cm->frame_type = INTER_FRAME;
|
|
vp8_calc_pframe_target_size(cpi);
|
|
|
|
// Check if we're dropping the frame:
|
|
if (cpi->drop_frame)
|
|
{
|
|
cpi->drop_frame = FALSE;
|
|
cpi->drop_count++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
static void set_quantizer(VP8_COMP *cpi, int Q)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
|
|
|
|
cm->base_qindex = Q;
|
|
|
|
cm->y1dc_delta_q = 0;
|
|
cm->y2dc_delta_q = 0;
|
|
cm->y2ac_delta_q = 0;
|
|
cm->uvdc_delta_q = 0;
|
|
cm->uvac_delta_q = 0;
|
|
|
|
// Set Segment specific quatizers
|
|
mbd->segment_feature_data[MB_LVL_ALT_Q][0] = cpi->segment_feature_data[MB_LVL_ALT_Q][0];
|
|
mbd->segment_feature_data[MB_LVL_ALT_Q][1] = cpi->segment_feature_data[MB_LVL_ALT_Q][1];
|
|
mbd->segment_feature_data[MB_LVL_ALT_Q][2] = cpi->segment_feature_data[MB_LVL_ALT_Q][2];
|
|
mbd->segment_feature_data[MB_LVL_ALT_Q][3] = cpi->segment_feature_data[MB_LVL_ALT_Q][3];
|
|
}
|
|
|
|
static void update_alt_ref_frame_and_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Update the golden frame buffer
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]);
|
|
|
|
// Select an interval before next GF or altref
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
|
|
cpi->gf_overspend_bits += cpi->projected_frame_size;
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
// Clear the alternate reference update pending flag.
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
|
|
// Set the alternate refernce frame active flag
|
|
cpi->source_alt_ref_active = TRUE;
|
|
|
|
|
|
}
|
|
static void update_golden_frame_and_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Update the Golden frame reconstruction buffer if signalled and the GF usage counts.
|
|
if (cm->refresh_golden_frame)
|
|
{
|
|
// Update the golden frame buffer
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]);
|
|
|
|
// Select an interval before next GF
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
|
|
{
|
|
// Calcluate GF bits to be recovered
|
|
// Projected size - av frame bits available for inter frames for clip as a whole
|
|
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
|
|
}
|
|
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cm->refresh_golden_frame = 0;
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
//if ( cm->frame_type == KEY_FRAME )
|
|
//{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
//}
|
|
//else
|
|
//{
|
|
// // Carry a potrtion of count over to begining of next gf sequence
|
|
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
|
|
//}
|
|
|
|
// ******** Fixed Q test code only ************
|
|
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
|
|
if (cpi->oxcf.fixed_q >= 0 &&
|
|
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->source_alt_ref_pending = TRUE;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending)
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
}
|
|
else if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->common.frames_till_alt_ref_frame)
|
|
cpi->common.frames_till_alt_ref_frame --;
|
|
|
|
cpi->common.frames_since_golden ++;
|
|
|
|
if (cpi->common.frames_since_golden > 1)
|
|
{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function updates the reference frame probability estimates that
|
|
// will be used during mode selection
|
|
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
#if 0
|
|
const int *const rfct = cpi->recent_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else if (!(rf_intra + rf_inter))
|
|
{
|
|
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else
|
|
{
|
|
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
|
|
|
|
if (cpi->prob_intra_coded < 1)
|
|
cpi->prob_intra_coded = 1;
|
|
|
|
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
|
|
{
|
|
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (cpi->prob_last_coded < 1)
|
|
cpi->prob_last_coded = 1;
|
|
|
|
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (cpi->prob_gf_coded < 1)
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
}
|
|
|
|
#else
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else if (!(rf_intra + rf_inter))
|
|
{
|
|
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else
|
|
{
|
|
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
|
|
|
|
if (cpi->prob_intra_coded < 1)
|
|
cpi->prob_intra_coded = 1;
|
|
|
|
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (cpi->prob_last_coded < 1)
|
|
cpi->prob_last_coded = 1;
|
|
|
|
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (cpi->prob_gf_coded < 1)
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
|
|
// update reference frame costs since we can do better than what we got last frame.
|
|
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->prob_intra_coded += 40;
|
|
cpi->prob_last_coded = 200;
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 0)
|
|
{
|
|
cpi->prob_last_coded = 214;
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 1)
|
|
{
|
|
cpi->prob_last_coded = 192;
|
|
cpi->prob_gf_coded = 220;
|
|
}
|
|
else if (cpi->source_alt_ref_active)
|
|
{
|
|
//int dist = cpi->common.frames_till_alt_ref_frame + cpi->common.frames_since_golden;
|
|
cpi->prob_gf_coded -= 20;
|
|
|
|
if (cpi->prob_gf_coded < 10)
|
|
cpi->prob_gf_coded = 10;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
// 1 = key, 0 = inter
|
|
static int decide_key_frame(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int code_key_frame = FALSE;
|
|
|
|
cpi->kf_boost = 0;
|
|
|
|
if (cpi->Speed > 11)
|
|
return FALSE;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
|
|
{
|
|
double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error);
|
|
double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
|
|
double minerror = cm->MBs * 256;
|
|
|
|
#if 0
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
FILE *f = fopen("intra_inter.stt", "a");
|
|
|
|
if (cpi->prediction_error <= 0)
|
|
cpi->prediction_error = 1;
|
|
|
|
fprintf(f, "%d %d %d %d %14.4f\n",
|
|
cm->current_video_frame,
|
|
(int) cpi->prediction_error,
|
|
(int) cpi->intra_error,
|
|
(int)((10 * cpi->intra_error) / cpi->prediction_error),
|
|
change);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->last_intra_error = cpi->intra_error;
|
|
cpi->last_prediction_error = cpi->prediction_error;
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
// If the following are true we might as well code a key frame
|
|
if (((cpi->this_frame_percent_intra == 100) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
|
|
((cpi->this_frame_percent_intra > 95) &&
|
|
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
|
|
{
|
|
code_key_frame = TRUE;
|
|
}
|
|
// in addition if the following are true and this is not a golden frame then code a key frame
|
|
// Note that on golden frames there often seems to be a pop in intra useage anyway hence this
|
|
// restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated.
|
|
else if (((cpi->this_frame_percent_intra > 60) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
|
|
((cpi->this_frame_percent_intra > 75) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
|
|
((cpi->this_frame_percent_intra > 90) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
|
|
{
|
|
if (!cm->refresh_golden_frame)
|
|
code_key_frame = TRUE;
|
|
}
|
|
|
|
return code_key_frame;
|
|
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
|
|
{
|
|
(void) size;
|
|
(void) dest;
|
|
(void) frame_flags;
|
|
set_quantizer(cpi, 26);
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
vp8_first_pass(cpi);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
|
|
{
|
|
|
|
// write the frame
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; i++)
|
|
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
// return of 0 means drop frame
|
|
|
|
// Function to test for conditions that indeicate we should loop
|
|
// back and recode a frame.
|
|
static BOOL recode_loop_test( VP8_COMP *cpi,
|
|
int high_limit, int low_limit,
|
|
int q, int maxq, int minq )
|
|
{
|
|
BOOL force_recode = FALSE;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Is frame recode allowed at all
|
|
// Yes if either recode mode 1 is selected or mode two is selcted
|
|
// and the frame is a key frame. golden frame or alt_ref_frame
|
|
if ( (cpi->sf.recode_loop == 1) ||
|
|
( (cpi->sf.recode_loop == 2) &&
|
|
( (cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame ||
|
|
cm->refresh_alt_ref_frame ) ) )
|
|
{
|
|
// General over and under shoot tests
|
|
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq)) )
|
|
{
|
|
force_recode = TRUE;
|
|
}
|
|
// Special Constrained quality tests
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
// Undershoot and below auto cq level
|
|
if ( (q > cpi->cq_target_quality) &&
|
|
(cpi->projected_frame_size <
|
|
((cpi->this_frame_target * 7) >> 3)))
|
|
{
|
|
force_recode = TRUE;
|
|
}
|
|
// Severe undershoot and between auto and user cq level
|
|
else if ( (q > cpi->oxcf.cq_level) &&
|
|
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
|
|
(cpi->active_best_quality > cpi->oxcf.cq_level))
|
|
{
|
|
force_recode = TRUE;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
|
|
static void encode_frame_to_data_rate
|
|
(
|
|
VP8_COMP *cpi,
|
|
unsigned long *size,
|
|
unsigned char *dest,
|
|
unsigned int *frame_flags
|
|
)
|
|
{
|
|
int Q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int Loop = FALSE;
|
|
int loop_count;
|
|
int this_q;
|
|
int last_zbin_oq;
|
|
|
|
int q_low;
|
|
int q_high;
|
|
int zbin_oq_high;
|
|
int zbin_oq_low = 0;
|
|
int top_index;
|
|
int bottom_index;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int active_worst_qchanged = FALSE;
|
|
|
|
int overshoot_seen = FALSE;
|
|
int undershoot_seen = FALSE;
|
|
int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100;
|
|
int drop_mark75 = drop_mark * 2 / 3;
|
|
int drop_mark50 = drop_mark / 4;
|
|
int drop_mark25 = drop_mark / 8;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state();
|
|
|
|
// Test code for segmentation of gf/arf (0,0)
|
|
//segmentation_test_function((VP8_PTR) cpi);
|
|
|
|
// For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for the alt ref frame
|
|
cpi->target_bandwidth = cpi->gf_bits * cpi->output_frame_rate; // per second target bitrate
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate);
|
|
|
|
// Default turn off buffer to buffer copying
|
|
cm->copy_buffer_to_gf = 0;
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
// Clear zbin over-quant value and mode boost values.
|
|
cpi->zbin_over_quant = 0;
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// Enable or disable mode based tweaking of the zbin
|
|
// For 2 Pass Only used where GF/ARF prediction quality
|
|
// is above a threshold
|
|
cpi->zbin_mode_boost = 0;
|
|
cpi->zbin_mode_boost_enabled = TRUE;
|
|
if (cpi->pass == 2)
|
|
{
|
|
if ( cpi->gfu_boost <= 400 )
|
|
{
|
|
cpi->zbin_mode_boost_enabled = FALSE;
|
|
}
|
|
}
|
|
|
|
// Current default encoder behaviour for the altref sign bias
|
|
if (cpi->source_alt_ref_active)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
else
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
|
|
|
|
// Check to see if a key frame is signalled
|
|
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
|
|
{
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
}
|
|
|
|
// Set default state for segment and mode based loop filter update flags
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
// Set various flags etc to special state if it is a key frame
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
int i;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Reset the RD threshold multipliers to default of * 1 (128)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
}
|
|
|
|
// Test code for segmentation
|
|
//if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0))
|
|
//if ( (cm->current_video_frame % 2) == 0 )
|
|
// enable_segmentation((VP8_PTR)cpi);
|
|
//else
|
|
// disable_segmentation((VP8_PTR)cpi);
|
|
|
|
#if 0
|
|
// Experimental code for lagged compress and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
//if ( cpi->pass == 0 )
|
|
{
|
|
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
|
|
}
|
|
#endif
|
|
|
|
update_rd_ref_frame_probs(cpi);
|
|
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
// The reset to decimation 0 is only done here for one pass.
|
|
// Once it is set two pass leaves decimation on till the next kf.
|
|
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
|
|
cpi->decimation_factor --;
|
|
|
|
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
|
|
cpi->decimation_factor = 1;
|
|
|
|
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
|
|
{
|
|
cpi->decimation_factor = 3;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
|
|
{
|
|
cpi->decimation_factor = 2;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
|
|
{
|
|
cpi->decimation_factor = 1;
|
|
}
|
|
|
|
//vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor);
|
|
}
|
|
|
|
// The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate)
|
|
// This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in
|
|
// some situations to drop frame rate but throw more bits at each frame.
|
|
//
|
|
// Note that dropping a key frame can be problematic if spatial resampling is also active
|
|
if (cpi->decimation_factor > 0)
|
|
{
|
|
switch (cpi->decimation_factor)
|
|
{
|
|
case 1:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
|
|
break;
|
|
case 2:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
case 3:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
}
|
|
|
|
// Note that we should not throw out a key frame (especially when spatial resampling is enabled).
|
|
if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling )
|
|
{
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
else if (cpi->decimation_count > 0)
|
|
{
|
|
cpi->decimation_count --;
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
|
|
#if CONFIG_PSNR
|
|
cpi->count ++;
|
|
#endif
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
return;
|
|
}
|
|
else
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
|
|
// Decide how big to make the frame
|
|
if (!pick_frame_size(cpi))
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
return;
|
|
}
|
|
|
|
// Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
|
|
// This has a knock on effect on active best quality as well.
|
|
// For CBR if the buffer reaches its maximum level then we can no longer
|
|
// save up bits for later frames so we might as well use them up
|
|
// on the current frame.
|
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
|
{
|
|
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
|
|
|
if (Adjustment)
|
|
{
|
|
int buff_lvl_step;
|
|
int tmp_lvl = cpi->buffer_level;
|
|
|
|
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
|
|
{
|
|
buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment;
|
|
|
|
if (buff_lvl_step)
|
|
{
|
|
Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step;
|
|
cpi->active_worst_quality -= Adjustment;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality -= Adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set an active best quality and if necessary active worst quality
|
|
// There is some odd behaviour for one pass here that needs attention.
|
|
if ( (cpi->pass == 2) || (cpi->ni_frames > 150))
|
|
{
|
|
vp8_clear_system_state();
|
|
|
|
Q = cpi->active_worst_quality;
|
|
|
|
if ( cm->frame_type == KEY_FRAME )
|
|
{
|
|
// Special case for key frames forced because we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// close to but just below the ambient Q to minimize the risk
|
|
// of popping
|
|
if ( cpi->this_key_frame_forced )
|
|
{
|
|
cpi->active_worst_quality = cpi->avg_frame_qindex * 7/8;
|
|
cpi->active_best_quality = cpi->avg_frame_qindex * 2/3;
|
|
}
|
|
else
|
|
{
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if (cpi->gfu_boost > 600)
|
|
cpi->active_best_quality = kf_low_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
}
|
|
|
|
else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
if (cpi->avg_frame_qindex < cpi->active_worst_quality)
|
|
Q = cpi->avg_frame_qindex;
|
|
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if ( cpi->gfu_boost > 1000 )
|
|
cpi->active_best_quality = gf_low_motion_minq[Q];
|
|
else if ( cpi->gfu_boost < 400 )
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = gf_mid_motion_minq[Q];
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
}
|
|
else
|
|
{
|
|
cpi->active_best_quality = inter_minq[Q];
|
|
|
|
// For the constant/constrained quality mode we dont want
|
|
// the quality to rise above the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality) )
|
|
{
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// If CBR and the buffer is as full then it is reasonable to allow higher quality on the frames
|
|
// to prevent bits just going to waste.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Note that the use of >= here elliminates the risk of a devide by 0 error in the else if clause
|
|
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
|
|
{
|
|
int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level);
|
|
int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
|
|
|
|
cpi->active_best_quality -= min_qadjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
else if (cpi->active_best_quality > cpi->active_worst_quality)
|
|
cpi->active_best_quality = cpi->active_worst_quality;
|
|
|
|
// Determine initial Q to try
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
|
|
// Set highest allowed value for Zbin over quant
|
|
if (cm->frame_type == KEY_FRAME)
|
|
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
|
|
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oq_high = 16;
|
|
else
|
|
zbin_oq_high = ZBIN_OQ_MAX;
|
|
|
|
// Setup background Q adjustment for error resilliant mode
|
|
if (cpi->cyclic_refresh_mode_enabled)
|
|
cyclic_background_refresh(cpi, Q, 0);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
vp8_save_coding_context(cpi);
|
|
|
|
loop_count = 0;
|
|
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0)
|
|
{
|
|
unsigned char *src;
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity)
|
|
{
|
|
case 1:
|
|
l = 20;
|
|
break;
|
|
case 2:
|
|
l = 40;
|
|
break;
|
|
case 3:
|
|
l = 60;
|
|
break;
|
|
case 4:
|
|
l = 80;
|
|
break;
|
|
case 5:
|
|
l = 100;
|
|
break;
|
|
case 6:
|
|
l = 150;
|
|
break;
|
|
}
|
|
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
|
|
}
|
|
else
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
|
|
|
|
src = cpi->Source->y_buffer;
|
|
|
|
if (cpi->Source->y_stride < 0)
|
|
{
|
|
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp8_write_yuv_frame(cpi->Source);
|
|
#endif
|
|
|
|
do
|
|
{
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
/*
|
|
if(cpi->is_src_frame_alt_ref)
|
|
Q = 127;
|
|
*/
|
|
|
|
set_quantizer(cpi, Q);
|
|
this_q = Q;
|
|
|
|
// setup skip prob for costing in mode/mv decision
|
|
if (cpi->common.mb_no_coeff_skip)
|
|
{
|
|
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[2] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
else if (cpi->last_skip_false_probs[2]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[1] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
else if (cpi->last_skip_false_probs[1]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
if (cpi->last_skip_false_probs[0] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
else if(cpi->last_skip_false_probs[0]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
|
|
//as this is for cost estimate, let's make sure it does not go extreme eitehr way
|
|
if (cpi->prob_skip_false < 5)
|
|
cpi->prob_skip_false = 5;
|
|
|
|
if (cpi->prob_skip_false > 250)
|
|
cpi->prob_skip_false = 250;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
cpi->prob_skip_false = 1;
|
|
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp8_setup_key_frame(cpi);
|
|
|
|
// transform / motion compensation build reconstruction frame
|
|
|
|
vp8_encode_frame(cpi);
|
|
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
|
|
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
// Test to see if the stats generated for this frame indicate that we should have coded a key frame
|
|
// (assuming that we didn't)!
|
|
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (decide_key_frame(cpi))
|
|
{
|
|
vp8_calc_auto_iframe_target_size(cpi);
|
|
|
|
// Reset all our sizing numbers and recode
|
|
cm->frame_type = KEY_FRAME;
|
|
|
|
// Clear the Alt reference frame active flag when we have a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
vp8_restore_coding_context(cpi);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
loop_count++;
|
|
Loop = TRUE;
|
|
|
|
resize_key_frame(cpi);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
|
|
if (frame_over_shoot_limit == 0)
|
|
frame_over_shoot_limit = 1;
|
|
|
|
// Are we are overshooting and up against the limit of active max Q.
|
|
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
|
|
(Q == cpi->active_worst_quality) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality) &&
|
|
(cpi->projected_frame_size > frame_over_shoot_limit))
|
|
{
|
|
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
|
|
|
|
// If so is there any scope for relaxing it
|
|
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
|
|
{
|
|
cpi->active_worst_quality++;
|
|
top_index = cpi->active_worst_quality;
|
|
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
|
|
}
|
|
|
|
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
|
active_worst_qchanged = TRUE;
|
|
}
|
|
else
|
|
active_worst_qchanged = FALSE;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
// Is the projected frame size out of range and are we allowed to attempt to recode.
|
|
if ( recode_loop_test( cpi,
|
|
frame_over_shoot_limit, frame_under_shoot_limit,
|
|
Q, top_index, bottom_index ) )
|
|
{
|
|
int last_q = Q;
|
|
int Retries = 0;
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (cpi->projected_frame_size > cpi->this_frame_target)
|
|
{
|
|
//if ( cpi->zbin_over_quant == 0 )
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
|
|
|
|
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
|
|
//if ( undershoot_seen || (Q == MAXQ) )
|
|
if (undershoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low + 1) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
{
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = TRUE;
|
|
}
|
|
// Frame is too small
|
|
else
|
|
{
|
|
if (cpi->zbin_over_quant == 0)
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
|
|
else // else lower zbin_oq_high
|
|
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
|
|
|
|
if (overshoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < q_low) )
|
|
{
|
|
q_low = Q;
|
|
}
|
|
|
|
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = TRUE;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
// Clamp cpi->zbin_over_quant
|
|
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
|
|
|
|
//Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
|
|
Loop = ((Q != last_q)) ? TRUE : FALSE;
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
}
|
|
else
|
|
#endif
|
|
Loop = FALSE;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
Loop = FALSE;
|
|
|
|
if (Loop == TRUE)
|
|
{
|
|
vp8_restore_coding_context(cpi);
|
|
loop_count++;
|
|
#if CONFIG_PSNR
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
}
|
|
while (Loop == TRUE);
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Update stats used for one pass GF selection
|
|
{
|
|
/*
|
|
int frames_so_far;
|
|
double frame_intra_error;
|
|
double frame_coded_error;
|
|
double frame_pcnt_inter;
|
|
double frame_pcnt_motion;
|
|
double frame_mvr;
|
|
double frame_mvr_abs;
|
|
double frame_mvc;
|
|
double frame_mvc_abs;
|
|
*/
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
|
|
}
|
|
#endif
|
|
|
|
// Update the GF useage maps.
|
|
// This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter
|
|
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
|
|
// This frame's MVs are saved and will be used in next frame's MV prediction.
|
|
if(cm->show_frame) //do not save for altref frame
|
|
{
|
|
int mb_row;
|
|
int mb_col;
|
|
MODE_INFO *tmp = cm->mip; //point to beginning of allocated MODE_INFO arrays.
|
|
//static int last_video_frame = 0;
|
|
|
|
if(cm->frame_type != KEY_FRAME)
|
|
{
|
|
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
|
|
{
|
|
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
|
|
{
|
|
if(tmp->mbmi.ref_frame != INTRA_FRAME)
|
|
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride)].as_int = tmp->mbmi.mv.as_int;
|
|
|
|
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
|
|
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride)] = tmp->mbmi.ref_frame;
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Update the GF useage maps.
|
|
// This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter
|
|
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cm->refresh_last_frame = 1;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfactive.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
// For inter frames the current default behaviour is that when cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
|
|
// This is purely an encoder descision at present.
|
|
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
|
|
cm->copy_buffer_to_arf = 2;
|
|
else
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
if (cm->refresh_last_frame)
|
|
{
|
|
vp8_swap_yv12_buffer(&cm->yv12_fb[cm->lst_fb_idx], &cm->yv12_fb[cm->new_fb_idx]);
|
|
cm->frame_to_show = &cm->yv12_fb[cm->lst_fb_idx];
|
|
}
|
|
else
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
|
|
|
|
//#pragma omp parallel sections
|
|
{
|
|
|
|
//#pragma omp section
|
|
{
|
|
|
|
struct vpx_usec_timer timer;
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
if (cpi->sf.auto_filter == 0)
|
|
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
|
|
else
|
|
vp8cx_pick_filter_level(cpi->Source, cpi);
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
|
|
if (cm->no_lpf)
|
|
cm->filter_level = 0;
|
|
|
|
if (cm->filter_level > 0)
|
|
{
|
|
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
|
|
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level);
|
|
cm->last_filter_type = cm->filter_type;
|
|
cm->last_sharpness_level = cm->sharpness_level;
|
|
}
|
|
/* Move storing frame_type out of the above loop since it is also needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
|
|
|
|
if (cpi->oxcf.error_resilient_mode == 1)
|
|
{
|
|
cm->refresh_entropy_probs = 0;
|
|
}
|
|
|
|
}
|
|
//#pragma omp section
|
|
{
|
|
// build the bitstream
|
|
vp8_pack_bitstream(cpi, dest, size);
|
|
}
|
|
}
|
|
|
|
{
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
|
|
YV12_BUFFER_CONFIG *alt_yv12 = &cm->yv12_fb[cm->alt_fb_idx];
|
|
// At this point the new frame has been encoded coded.
|
|
// If any buffer copy / swaping is signalled it should be done here.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, gld_yv12);
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, alt_yv12);
|
|
}
|
|
else // For non key frames
|
|
{
|
|
// Code to copy between reference buffers
|
|
if (cm->copy_buffer_to_arf)
|
|
{
|
|
if (cm->copy_buffer_to_arf == 1)
|
|
{
|
|
if (cm->refresh_last_frame)
|
|
// We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set.
|
|
vp8_yv12_copy_frame_ptr(new_yv12, alt_yv12);
|
|
else
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, alt_yv12);
|
|
}
|
|
else if (cm->copy_buffer_to_arf == 2)
|
|
vp8_yv12_copy_frame_ptr(gld_yv12, alt_yv12);
|
|
}
|
|
|
|
if (cm->copy_buffer_to_gf)
|
|
{
|
|
if (cm->copy_buffer_to_gf == 1)
|
|
{
|
|
if (cm->refresh_last_frame)
|
|
// We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set.
|
|
vp8_yv12_copy_frame_ptr(new_yv12, gld_yv12);
|
|
else
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
|
|
}
|
|
else if (cm->copy_buffer_to_gf == 2)
|
|
vp8_yv12_copy_frame_ptr(alt_yv12, gld_yv12);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update rate control heuristics
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cpi->avg_frame_qindex = cm->base_qindex;
|
|
else
|
|
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
|
|
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)
|
|
{
|
|
cpi->ni_frames++;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU
|
|
// frames).
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
else
|
|
{
|
|
// Damp value for first few frames
|
|
if (cpi->ni_frames > 150 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
// For one pass, early in the clip ... average the current frame Q
|
|
// value with the worstq entered by the user as a dampening measure
|
|
else
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
|
|
}
|
|
|
|
// If the average Q is higher than what was used in the last frame
|
|
// (after going through the recode loop to keep the frame size within range)
|
|
// then use the last frame value - 1.
|
|
// The -1 is designed to stop Q and hence the data rate, from progressively
|
|
// falling away during difficult sections, but at the same time reduce the number of
|
|
// itterations around the recode loop.
|
|
if (Q > cpi->ni_av_qi)
|
|
cpi->ni_av_qi = Q - 1;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
// If the frame was massively oversize and we are below optimal buffer level drop next frame
|
|
if ((cpi->drop_frames_allowed) &&
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
|
|
(cpi->projected_frame_size > (4 * cpi->this_frame_target)))
|
|
{
|
|
cpi->drop_frame = TRUE;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Set the count for maximum consequative dropped frames based upon the ratio of
|
|
// this frame size to the target average per frame bandwidth.
|
|
// (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0.
|
|
if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0))
|
|
{
|
|
cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth;
|
|
|
|
if (cpi->max_drop_count > cpi->max_consec_dropped_frames)
|
|
cpi->max_drop_count = cpi->max_consec_dropped_frames;
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
else
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
|
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
|
|
|
|
// Actual bits spent
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->kf_group_bits < 0)
|
|
cpi->kf_group_bits = 0 ;
|
|
}
|
|
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
{
|
|
cpi->gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->gf_group_bits < 0)
|
|
cpi->gf_group_bits = 0 ;
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[2] = cm->base_qindex;
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[1] = cm->base_qindex;
|
|
}
|
|
else
|
|
{
|
|
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[0] = cm->base_qindex;
|
|
|
|
//update the baseline
|
|
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
|
|
|
|
}
|
|
}
|
|
|
|
#if 0 && CONFIG_PSNR
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->total_coded_error_left != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld"
|
|
"%6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f"
|
|
"%10.3f %8ld\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->est_max_qcorrection_factor, (int)cpi->bits_left,
|
|
cpi->total_coded_error_left,
|
|
(double)cpi->bits_left / cpi->total_coded_error_left,
|
|
cpi->tot_recode_hits);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld"
|
|
"%6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f"
|
|
"%8ld\n",
|
|
cpi->common.current_video_frame,
|
|
cpi->this_frame_target, cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->est_max_qcorrection_factor, (int)cpi->bits_left,
|
|
cpi->total_coded_error_left, cpi->tot_recode_hits);
|
|
|
|
fclose(f);
|
|
|
|
{
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cm->refresh_golden_frame,
|
|
cm->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// If this was a kf or Gf note the Q
|
|
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
cm->last_kf_gf_q = cm->base_qindex;
|
|
|
|
if (cm->refresh_golden_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cm->refresh_alt_ref_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
|
|
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_last = 0;
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
|
|
cpi->alt_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
|
|
cpi->alt_is_last = 0;
|
|
|
|
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_alt = 1;
|
|
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
if (cpi->gold_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
|
|
|
|
if (cpi->alt_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
if (cpi->gold_is_alt)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
// Is this an alternate reference update
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]);
|
|
|
|
if (cpi->common.refresh_golden_frame)
|
|
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]);
|
|
}
|
|
else
|
|
{
|
|
if (cpi->oxcf.play_alternate && cpi->common.refresh_alt_ref_frame && (cpi->common.frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame and stats as appropriate.
|
|
update_alt_ref_frame_and_stats(cpi);
|
|
else
|
|
// Update the Golden frame and golden frame and stats as appropriate.
|
|
update_golden_frame_and_stats(cpi);
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
// As this frame is a key frame the next defaults to an inter frame.
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
cpi->last_frame_percent_intra = 100;
|
|
}
|
|
else
|
|
{
|
|
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
|
|
|
|
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
|
|
// Dont increment frame counters if this was an altref buffer update not a real frame
|
|
if (cm->show_frame)
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
}
|
|
|
|
// reset to normal state now that we are done.
|
|
|
|
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
|
|
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
|
|
// DEBUG
|
|
//vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show);
|
|
|
|
|
|
}
|
|
|
|
int vp8_is_gf_update_needed(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) ptr;
|
|
int ret_val;
|
|
|
|
ret_val = cpi->gf_update_recommended;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
void vp8_check_gf_quality(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols);
|
|
int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols);
|
|
int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols);
|
|
|
|
// Gf refresh is not currently being signalled
|
|
if (cpi->gf_update_recommended == 0)
|
|
{
|
|
if (cpi->common.frames_since_golden > 7)
|
|
{
|
|
// Low use of gf
|
|
if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15))
|
|
{
|
|
// ...but last frame zero zero usage is reasonbable so a new gf might be appropriate
|
|
if (last_ref_zz_useage >= 25)
|
|
{
|
|
cpi->gf_bad_count ++;
|
|
|
|
if (cpi->gf_bad_count >= 8) // Check that the condition is stable
|
|
{
|
|
cpi->gf_update_recommended = 1;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Restart count as the background is not stable enough
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Gf useage has picked up so reset count
|
|
}
|
|
}
|
|
// If the signal is set but has not been read should we cancel it.
|
|
else if (last_ref_zz_useage < 15)
|
|
{
|
|
cpi->gf_update_recommended = 0;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfneeded.stt", "a");
|
|
fprintf(f, "%10d %10d %10d %10d %10ld \n",
|
|
cm->current_video_frame,
|
|
cpi->common.frames_since_golden,
|
|
gf_active_pct, gf_ref_usage_pct,
|
|
cpi->gf_update_recommended);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
|
|
{
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
vp8_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
cpi->bits_left -= 8 * *size;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
*cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
cpi->bits_left += (long long)(two_pass_min_rate / cpi->oxcf.frame_rate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
|
|
#if HAVE_ARMV7
|
|
extern void vp8_push_neon(INT64 *store);
|
|
extern void vp8_pop_neon(INT64 *store);
|
|
#endif
|
|
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, INT64 time_stamp, INT64 end_time)
|
|
{
|
|
#if HAVE_ARMV7
|
|
INT64 store_reg[8];
|
|
#endif
|
|
VP8_COMP *cpi = (VP8_COMP *) ptr;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
// no more room for frames;
|
|
if (cpi->source_buffer_count != 0 && cpi->source_buffer_count >= cpi->oxcf.lag_in_frames)
|
|
{
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
//printf("in-cpi->source_buffer_count: %d\n", cpi->source_buffer_count);
|
|
|
|
cm->clr_type = sd->clrtype;
|
|
|
|
// make a copy of the frame for use later...
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->oxcf.allow_lag)
|
|
{
|
|
int which_buffer = cpi->source_encode_index - 1;
|
|
SOURCE_SAMPLE *s;
|
|
|
|
if (which_buffer == -1)
|
|
which_buffer = cpi->oxcf.lag_in_frames - 1;
|
|
|
|
if (cpi->source_buffer_count < cpi->oxcf.lag_in_frames - 1)
|
|
which_buffer = cpi->source_buffer_count;
|
|
|
|
s = &cpi->src_buffer[which_buffer];
|
|
|
|
s->source_time_stamp = time_stamp;
|
|
s->source_end_time_stamp = end_time;
|
|
s->source_frame_flags = frame_flags;
|
|
vp8_yv12_copy_frame_ptr(sd, &s->source_buffer);
|
|
|
|
cpi->source_buffer_count ++;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
SOURCE_SAMPLE *s;
|
|
s = &cpi->src_buffer[0];
|
|
s->source_end_time_stamp = end_time;
|
|
s->source_time_stamp = time_stamp;
|
|
s->source_frame_flags = frame_flags;
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_yv12_copy_src_frame_func_neon(sd, &s->source_buffer);
|
|
}
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
else
|
|
#endif
|
|
#endif
|
|
#if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT
|
|
{
|
|
vp8_yv12_copy_frame_ptr(sd, &s->source_buffer);
|
|
}
|
|
#endif
|
|
cpi->source_buffer_count = 1;
|
|
}
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, INT64 *time_stamp, INT64 *time_end, int flush)
|
|
{
|
|
#if HAVE_ARMV7
|
|
INT64 store_reg[8];
|
|
#endif
|
|
VP8_COMP *cpi = (VP8_COMP *) ptr;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer tsctimer;
|
|
struct vpx_usec_timer ticktimer;
|
|
struct vpx_usec_timer cmptimer;
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
|
|
// flush variable tells us that even though we have less than 10 frames
|
|
// in our buffer we need to start producing compressed frames.
|
|
// Probably because we are at the end of a file....
|
|
if ((cpi->source_buffer_count == cpi->oxcf.lag_in_frames && cpi->oxcf.lag_in_frames > 0)
|
|
|| (!cpi->oxcf.allow_lag && cpi->source_buffer_count > 0)
|
|
|| (flush && cpi->source_buffer_count > 0))
|
|
{
|
|
|
|
SOURCE_SAMPLE *s;
|
|
|
|
s = &cpi->src_buffer[cpi->source_encode_index];
|
|
cpi->source_time_stamp = s->source_time_stamp;
|
|
cpi->source_end_time_stamp = s->source_end_time_stamp;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
// Should we code an alternate reference frame
|
|
if (cpi->oxcf.error_resilient_mode == 0 &&
|
|
cpi->oxcf.play_alternate &&
|
|
cpi->source_alt_ref_pending &&
|
|
(cpi->frames_till_gf_update_due < cpi->source_buffer_count) &&
|
|
cpi->oxcf.lag_in_frames != 0)
|
|
{
|
|
cpi->last_alt_ref_sei = (cpi->source_encode_index + cpi->frames_till_gf_update_due) % cpi->oxcf.lag_in_frames;
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
if (cpi->oxcf.arnr_max_frames > 0)
|
|
{
|
|
#if 0
|
|
// my attempt at a loop that tests the results of strength filter.
|
|
int start_frame = cpi->last_alt_ref_sei - 3;
|
|
|
|
int i, besti = -1, pastin = cpi->oxcf.arnr_strength;
|
|
|
|
int besterr;
|
|
|
|
if (start_frame < 0)
|
|
start_frame += cpi->oxcf.lag_in_frames;
|
|
|
|
besterr = vp8_calc_low_ss_err(&cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer,
|
|
&cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
for (i = 0; i < 7; i++)
|
|
{
|
|
int thiserr;
|
|
cpi->oxcf.arnr_strength = i;
|
|
vp8_temporal_filter_prepare_c(cpi);
|
|
|
|
thiserr = vp8_calc_low_ss_err(&cpi->alt_ref_buffer.source_buffer,
|
|
&cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
if (10 * thiserr < besterr * 8)
|
|
{
|
|
besterr = thiserr;
|
|
besti = i;
|
|
}
|
|
}
|
|
|
|
if (besti != -1)
|
|
{
|
|
cpi->oxcf.arnr_strength = besti;
|
|
vp8_temporal_filter_prepare_c(cpi);
|
|
s = &cpi->alt_ref_buffer;
|
|
|
|
// FWG not sure if I need to copy this data for the Alt Ref frame
|
|
s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp;
|
|
s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp;
|
|
s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags;
|
|
}
|
|
else
|
|
s = &cpi->src_buffer[cpi->last_alt_ref_sei];
|
|
|
|
#else
|
|
vp8_temporal_filter_prepare_c(cpi);
|
|
s = &cpi->alt_ref_buffer;
|
|
|
|
// FWG not sure if I need to copy this data for the Alt Ref frame
|
|
s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp;
|
|
s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp;
|
|
s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags;
|
|
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
s = &cpi->src_buffer[cpi->last_alt_ref_sei];
|
|
|
|
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
|
|
cm->refresh_alt_ref_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
cm->show_frame = 0;
|
|
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
cpi->is_next_src_alt_ref = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
cm->show_frame = 1;
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->oxcf.allow_lag)
|
|
{
|
|
if (cpi->source_encode_index == cpi->last_alt_ref_sei)
|
|
{
|
|
cpi->is_src_frame_alt_ref = 1;
|
|
cpi->last_alt_ref_sei = -1;
|
|
}
|
|
else
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
cpi->source_encode_index = (cpi->source_encode_index + 1) % cpi->oxcf.lag_in_frames;
|
|
|
|
if(cpi->source_encode_index == cpi->last_alt_ref_sei)
|
|
cpi->is_next_src_alt_ref = 1;
|
|
else
|
|
cpi->is_next_src_alt_ref = 0;
|
|
}
|
|
|
|
#endif
|
|
cpi->source_buffer_count--;
|
|
}
|
|
|
|
cpi->un_scaled_source = &s->source_buffer;
|
|
cpi->Source = &s->source_buffer;
|
|
cpi->source_frame_flags = s->source_frame_flags;
|
|
|
|
*time_stamp = cpi->source_time_stamp;
|
|
*time_end = cpi->source_end_time_stamp;
|
|
}
|
|
else
|
|
{
|
|
*size = 0;
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (flush && cpi->pass == 1 && !cpi->first_pass_done)
|
|
{
|
|
vp8_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->first_pass_done = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
*frame_flags = cpi->source_frame_flags;
|
|
|
|
if (cpi->source_time_stamp < cpi->first_time_stamp_ever)
|
|
{
|
|
cpi->first_time_stamp_ever = cpi->source_time_stamp;
|
|
cpi->last_end_time_stamp_seen = cpi->source_time_stamp;
|
|
}
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (!cm->refresh_alt_ref_frame)
|
|
{
|
|
if (cpi->source_time_stamp == cpi->first_time_stamp_ever)
|
|
{
|
|
double this_fps = 10000000.000 / (cpi->source_end_time_stamp - cpi->source_time_stamp);
|
|
|
|
vp8_new_frame_rate(cpi, this_fps);
|
|
}
|
|
else
|
|
{
|
|
long long nanosecs = cpi->source_end_time_stamp
|
|
- cpi->last_end_time_stamp_seen;
|
|
double this_fps = 10000000.000 / nanosecs;
|
|
|
|
vp8_new_frame_rate(cpi, (7 * cpi->oxcf.frame_rate + this_fps) / 8);
|
|
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source_time_stamp;
|
|
cpi->last_end_time_stamp_seen = cpi->source_end_time_stamp;
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
vp8_check_gf_quality(cpi);
|
|
}
|
|
|
|
if (!cpi)
|
|
{
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
vpx_usec_timer_start(&tsctimer);
|
|
vpx_usec_timer_start(&ticktimer);
|
|
}
|
|
|
|
// start with a 0 size frame
|
|
*size = 0;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
#if 0
|
|
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
//cm->refresh_golden_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
}
|
|
else
|
|
{
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
Pass1Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
Pass2Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
else
|
|
#endif
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
unsigned int duration, duration2;
|
|
vpx_usec_timer_mark(&tsctimer);
|
|
vpx_usec_timer_mark(&ticktimer);
|
|
|
|
duration = vpx_usec_timer_elapsed(&ticktimer);
|
|
duration2 = (unsigned int)((double)duration / 2);
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->avg_encode_time == 0)
|
|
cpi->avg_encode_time = duration;
|
|
else
|
|
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
|
|
}
|
|
|
|
if (duration2)
|
|
{
|
|
//if(*frame_flags!=1)
|
|
{
|
|
|
|
if (cpi->avg_pick_mode_time == 0)
|
|
cpi->avg_pick_mode_time = duration2;
|
|
else
|
|
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs == 0)
|
|
{
|
|
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
|
|
}
|
|
|
|
// if its a dropped frame honor the requests on subsequent frames
|
|
if (*size > 0)
|
|
{
|
|
|
|
// return to normal state
|
|
cm->refresh_entropy_probs = 1;
|
|
cm->refresh_alt_ref_frame = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
}
|
|
|
|
cpi->ready_for_new_frame = 1;
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
|
|
generate_psnr_packet(cpi);
|
|
|
|
#if CONFIG_PSNR
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame)
|
|
{
|
|
|
|
cpi->count ++;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
double y, u, v;
|
|
double sq_error;
|
|
double frame_psnr = vp8_calc_psnr(cpi->Source, cm->frame_to_show, &y, &u, &v, &sq_error);
|
|
|
|
cpi->total_y += y;
|
|
cpi->total_u += u;
|
|
cpi->total_v += v;
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
{
|
|
double y2, u2, v2, frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
|
|
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc));
|
|
vp8_clear_system_state();
|
|
frame_psnr2 = vp8_calc_psnr(cpi->Source, &cm->post_proc_buffer, &y2, &u2, &v2, &sq_error);
|
|
frame_ssim2 = vp8_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight);
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
cpi->totalp_y += y2;
|
|
cpi->totalp_u += u2;
|
|
cpi->totalp_v += v2;
|
|
cpi->totalp += frame_psnr2;
|
|
cpi->total_sq_error2 += sq_error;
|
|
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
double y, u, v, frame_all;
|
|
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
|
|
cpi->total_ssimg_y += y;
|
|
cpi->total_ssimg_u += u;
|
|
cpi->total_ssimg_v += v;
|
|
cpi->total_ssimg_all += frame_all;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
|
|
{
|
|
skiptruecount += cpi->skip_true_count;
|
|
skipfalsecount += cpi->skip_false_count;
|
|
}
|
|
|
|
#endif
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
|
|
|
|
if (cpi->is_src_frame_alt_ref == 1)
|
|
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
return -1;
|
|
else
|
|
{
|
|
int ret;
|
|
#if CONFIG_POSTPROC
|
|
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
|
|
if (cpi->common.frame_to_show)
|
|
{
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.Width;
|
|
dest->y_height = cpi->common.Height;
|
|
dest->uv_height = cpi->common.Height / 2;
|
|
ret = 0;
|
|
}
|
|
else
|
|
{
|
|
ret = -1;
|
|
}
|
|
|
|
#endif //!CONFIG_POSTPROC
|
|
vp8_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
|
|
return -1;
|
|
|
|
if (!map)
|
|
{
|
|
disable_segmentation((VP8_PTR)cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map((VP8_PTR)cpi, map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation((VP8_PTR)cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = delta_q[0];
|
|
feature_data[MB_LVL_ALT_Q][1] = delta_q[1];
|
|
feature_data[MB_LVL_ALT_Q][2] = delta_q[2];
|
|
feature_data[MB_LVL_ALT_Q][3] = delta_q[3];
|
|
|
|
// Set up the loop segment data s
|
|
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
|
|
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
|
|
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
|
|
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
|
|
|
|
cpi->segment_encode_breakout[0] = threshold[0];
|
|
cpi->segment_encode_breakout[1] = threshold[1];
|
|
cpi->segment_encode_breakout[2] = threshold[2];
|
|
cpi->segment_encode_breakout[3] = threshold[3];
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
|
|
{
|
|
if (map)
|
|
{
|
|
vpx_memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
}
|
|
else
|
|
cpi->active_map_enabled = 0;
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
//cpi->active_map_enabled = 0;
|
|
return -1 ;
|
|
}
|
|
}
|
|
|
|
int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (horiz_mode <= ONETWO)
|
|
cpi->common.horiz_scale = horiz_mode;
|
|
else
|
|
return -1;
|
|
|
|
if (vert_mode <= ONETWO)
|
|
cpi->common.vert_scale = vert_mode;
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
|
|
{
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
(void)rtcd;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing (square differences)
|
|
for (i = 0; i < source->y_height; i += 16)
|
|
{
|
|
for (j = 0; j < source->y_width; j += 16)
|
|
{
|
|
unsigned int sse;
|
|
Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
|
|
{
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
(void)rtcd;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing (square differences)
|
|
for (i = 0; i < source->y_height; i += 16)
|
|
{
|
|
for (j = 0; j < source->y_width; j += 16)
|
|
{
|
|
unsigned int sse;
|
|
VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
|
|
|
|
if (sse < 8096)
|
|
Total += sse;
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
|
|
int vp8_get_speed(VP8_PTR c)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) c;
|
|
return cpi->Speed;
|
|
}
|
|
int vp8_get_quantizer(VP8_PTR c)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) c;
|
|
return cpi->common.base_qindex;
|
|
}
|