7296b3f922
With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74 |
||
---|---|---|
build | ||
examples | ||
libmkv | ||
nestegg | ||
tools | ||
vp8 | ||
vpx | ||
vpx_mem | ||
vpx_ports | ||
vpx_scale | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
args.c | ||
args.h | ||
AUTHORS | ||
CHANGELOG | ||
configure | ||
docs.mk | ||
example_xma.c | ||
examples.mk | ||
keywords.dox | ||
libs.doxy_template | ||
libs.mk | ||
LICENSE | ||
mainpage.dox | ||
md5_utils.c | ||
md5_utils.h | ||
PATENTS | ||
README | ||
solution.mk | ||
tools_common.c | ||
tools_common.h | ||
usage_cx.dox | ||
usage_dx.dox | ||
usage.dox | ||
vp8_api1_migration.txt | ||
vpxdec.c | ||
vpxenc.c | ||
y4minput.c | ||
y4minput.h |
vpx Multi-Format Codec SDK README - 19 May 2010 Welcome to the WebM VP8 Codec SDK! COMPILING THE APPLICATIONS/LIBRARIES: The build system used is similar to autotools. Building generally consists of "configuring" with your desired build options, then using GNU make to build the application. 1. Prerequisites * All x86 targets require the Yasm[1] assembler be installed. * All Windows builds require that Cygwin[2] be installed. * Building the documentation requires PHP[3] and Doxygen[4]. If you do not have these packages, you must pass --disable-install-docs to the configure script. [1]: http://www.tortall.net/projects/yasm [2]: http://www.cygwin.com [3]: http://php.net [4]: http://www.doxygen.org 2. Out-of-tree builds Out of tree builds are a supported method of building the application. For an out of tree build, the source tree is kept separate from the object files produced during compilation. For instance: $ mkdir build $ cd build $ ../libvpx/configure <options> $ make 3. Configuration options The 'configure' script supports a number of options. The --help option can be used to get a list of supported options: $ ../libvpx/configure --help 4. Cross development For cross development, the most notable option is the --target option. The most up-to-date list of supported targets can be found at the bottom of the --help output of the configure script. As of this writing, the list of available targets is: armv5te-linux-rvct armv5te-linux-gcc armv5te-symbian-gcc armv6-darwin-gcc armv6-linux-rvct armv6-linux-gcc armv6-symbian-gcc iwmmxt-linux-rvct iwmmxt-linux-gcc iwmmxt2-linux-rvct iwmmxt2-linux-gcc armv7-linux-rvct armv7-linux-gcc mips32-linux-gcc ppc32-darwin8-gcc ppc32-darwin9-gcc ppc64-darwin8-gcc ppc64-darwin9-gcc ppc64-linux-gcc x86-darwin8-gcc x86-darwin8-icc x86-darwin9-gcc x86-darwin9-icc x86-linux-gcc x86-linux-icc x86-solaris-gcc x86-win32-vs7 x86-win32-vs8 x86_64-darwin9-gcc x86_64-linux-gcc x86_64-solaris-gcc x86_64-win64-vs8 universal-darwin8-gcc universal-darwin9-gcc generic-gnu The generic-gnu target, in conjunction with the CROSS environment variable, can be used to cross compile architectures that aren't explicitly listed, if the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains will likely work as well. For instance, to build using the mipsel-linux-uclibc toolchain, the following command could be used (note, POSIX SH syntax, adapt to your shell as necessary): $ CROSS=mipsel-linux-uclibc- ../libvpx/configure In addition, the executables to be invoked can be overridden by specifying the environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS. 5. Configuration errors If the configuration step fails, the first step is to look in the error log. This defaults to config.err. This should give a good indication of what went wrong. If not, contact us for support. SUPPORT This library is an open source project supported by its community. Please please email webm-users@webmproject.org for help.