vpx/vp8/common/reconintra.c
Yaowu Xu ca6b85aa4e add 8x8 intra prediction modes
Patch 1 to Patch 3 is an initial implementation of 8x8 intra prediction
modes, here are with the following assumptions:
a. 8x8 has 4 prediction modes DC, H, V and TM
b. UV 4x4 block use the same mode as corresponding 8x8 area
c. i8x8 modes are enabled for key frame only for now
Patch 4:
d. removed debug code from previous patches
Patch 5:
e. added stats code to collect entropy stats and further cleaned up
Patch 6:
f. changed mode stats code to collect finer stats of modes
Patch 7:
g. normalized i8x8 modes distribution to total at 256 (8bits).
Patch 8:
h. fixed a bug in decoder and removed debug printf output.
Patch 9:
i. more cleanups to address paul's comment
Patch 10:
j. messy rebase/merges to bring the commit up to date.

Tests on HD clips encoded with all key frame showing consistent gain
on all clips and all metrics:~0.5%(psnr) and 0.6%(ssim):
http://www.corp.google.com/~yaowu/no_crawl/i8x8hd_allkey_fixedq.html

To build and test, configure with:
--enable-experimental --enable-i8x8

Change-Id: I9813fe07ae48cab5fdb5d904bca022514ad01e7f
2011-09-16 15:55:19 -07:00

735 lines
17 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "recon.h"
#include "reconintra.h"
#include "vpx_mem/vpx_mem.h"
/* For skip_recon_mb(), add vp8_build_intra_predictors_mby_s(MACROBLOCKD *x) and
* vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x).
*/
void vp8_recon_intra_mbuv(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
int i;
for (i = 16; i < 24; i += 2)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
}
}
void vp8_build_intra_predictors_mby(MACROBLOCKD *x)
{
unsigned char *yabove_row = x->dst.y_buffer - x->dst.y_stride;
unsigned char yleft_col[16];
unsigned char ytop_left = yabove_row[-1];
unsigned char *ypred_ptr = x->predictor;
int r, c, i;
for (i = 0; i < 16; i++)
{
yleft_col[i] = x->dst.y_buffer [i* x->dst.y_stride -1];
}
/* for Y */
switch (x->mode_info_context->mbmi.mode)
{
case DC_PRED:
{
int expected_dc;
int i;
int shift;
int average = 0;
if (x->up_available || x->left_available)
{
if (x->up_available)
{
for (i = 0; i < 16; i++)
{
average += yabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 16; i++)
{
average += yleft_col[i];
}
}
shift = 3 + x->up_available + x->left_available;
expected_dc = (average + (1 << (shift - 1))) >> shift;
}
else
{
expected_dc = 128;
}
vpx_memset(ypred_ptr, expected_dc, 256);
}
break;
case V_PRED:
{
for (r = 0; r < 16; r++)
{
((int *)ypred_ptr)[0] = ((int *)yabove_row)[0];
((int *)ypred_ptr)[1] = ((int *)yabove_row)[1];
((int *)ypred_ptr)[2] = ((int *)yabove_row)[2];
((int *)ypred_ptr)[3] = ((int *)yabove_row)[3];
ypred_ptr += 16;
}
}
break;
case H_PRED:
{
for (r = 0; r < 16; r++)
{
vpx_memset(ypred_ptr, yleft_col[r], 16);
ypred_ptr += 16;
}
}
break;
case TM_PRED:
{
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
int pred = yleft_col[r] + yabove_row[ c] - ytop_left;
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
ypred_ptr[c] = pred;
}
ypred_ptr += 16;
}
}
break;
#if CONIFG_I8X8
case I8X8_PRED:
#endif
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
void vp8_build_intra_predictors_mby_s(MACROBLOCKD *x)
{
unsigned char *yabove_row = x->dst.y_buffer - x->dst.y_stride;
unsigned char yleft_col[16];
unsigned char ytop_left = yabove_row[-1];
unsigned char *ypred_ptr = x->predictor;
int r, c, i;
int y_stride = x->dst.y_stride;
ypred_ptr = x->dst.y_buffer; /*x->predictor;*/
for (i = 0; i < 16; i++)
{
yleft_col[i] = x->dst.y_buffer [i* x->dst.y_stride -1];
}
/* for Y */
switch (x->mode_info_context->mbmi.mode)
{
case DC_PRED:
{
int expected_dc;
int i;
int shift;
int average = 0;
if (x->up_available || x->left_available)
{
if (x->up_available)
{
for (i = 0; i < 16; i++)
{
average += yabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 16; i++)
{
average += yleft_col[i];
}
}
shift = 3 + x->up_available + x->left_available;
expected_dc = (average + (1 << (shift - 1))) >> shift;
}
else
{
expected_dc = 128;
}
/*vpx_memset(ypred_ptr, expected_dc, 256);*/
for (r = 0; r < 16; r++)
{
vpx_memset(ypred_ptr, expected_dc, 16);
ypred_ptr += y_stride; /*16;*/
}
}
break;
case V_PRED:
{
for (r = 0; r < 16; r++)
{
((int *)ypred_ptr)[0] = ((int *)yabove_row)[0];
((int *)ypred_ptr)[1] = ((int *)yabove_row)[1];
((int *)ypred_ptr)[2] = ((int *)yabove_row)[2];
((int *)ypred_ptr)[3] = ((int *)yabove_row)[3];
ypred_ptr += y_stride; /*16;*/
}
}
break;
case H_PRED:
{
for (r = 0; r < 16; r++)
{
vpx_memset(ypred_ptr, yleft_col[r], 16);
ypred_ptr += y_stride; /*16;*/
}
}
break;
case TM_PRED:
{
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
int pred = yleft_col[r] + yabove_row[ c] - ytop_left;
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
ypred_ptr[c] = pred;
}
ypred_ptr += y_stride; /*16;*/
}
}
break;
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
void vp8_build_intra_predictors_mbuv(MACROBLOCKD *x)
{
unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride;
unsigned char uleft_col[16];
unsigned char utop_left = uabove_row[-1];
unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride;
unsigned char vleft_col[20];
unsigned char vtop_left = vabove_row[-1];
unsigned char *upred_ptr = &x->predictor[256];
unsigned char *vpred_ptr = &x->predictor[320];
int i, j;
for (i = 0; i < 8; i++)
{
uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1];
vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1];
}
switch (x->mode_info_context->mbmi.uv_mode)
{
case DC_PRED:
{
int expected_udc;
int expected_vdc;
int i;
int shift;
int Uaverage = 0;
int Vaverage = 0;
if (x->up_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uabove_row[i];
Vaverage += vabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uleft_col[i];
Vaverage += vleft_col[i];
}
}
if (!x->up_available && !x->left_available)
{
expected_udc = 128;
expected_vdc = 128;
}
else
{
shift = 2 + x->up_available + x->left_available;
expected_udc = (Uaverage + (1 << (shift - 1))) >> shift;
expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift;
}
vpx_memset(upred_ptr, expected_udc, 64);
vpx_memset(vpred_ptr, expected_vdc, 64);
}
break;
case V_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memcpy(upred_ptr, uabove_row, 8);
vpx_memcpy(vpred_ptr, vabove_row, 8);
upred_ptr += 8;
vpred_ptr += 8;
}
}
break;
case H_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memset(upred_ptr, uleft_col[i], 8);
vpx_memset(vpred_ptr, vleft_col[i], 8);
upred_ptr += 8;
vpred_ptr += 8;
}
}
break;
case TM_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
int predu = uleft_col[i] + uabove_row[j] - utop_left;
int predv = vleft_col[i] + vabove_row[j] - vtop_left;
if (predu < 0)
predu = 0;
if (predu > 255)
predu = 255;
if (predv < 0)
predv = 0;
if (predv > 255)
predv = 255;
upred_ptr[j] = predu;
vpred_ptr[j] = predv;
}
upred_ptr += 8;
vpred_ptr += 8;
}
}
break;
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
void vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x)
{
unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride;
unsigned char uleft_col[16];
unsigned char utop_left = uabove_row[-1];
unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride;
unsigned char vleft_col[20];
unsigned char vtop_left = vabove_row[-1];
unsigned char *upred_ptr = x->dst.u_buffer; /*&x->predictor[256];*/
unsigned char *vpred_ptr = x->dst.v_buffer; /*&x->predictor[320];*/
int uv_stride = x->dst.uv_stride;
int i, j;
for (i = 0; i < 8; i++)
{
uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1];
vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1];
}
switch (x->mode_info_context->mbmi.uv_mode)
{
case DC_PRED:
{
int expected_udc;
int expected_vdc;
int i;
int shift;
int Uaverage = 0;
int Vaverage = 0;
if (x->up_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uabove_row[i];
Vaverage += vabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uleft_col[i];
Vaverage += vleft_col[i];
}
}
if (!x->up_available && !x->left_available)
{
expected_udc = 128;
expected_vdc = 128;
}
else
{
shift = 2 + x->up_available + x->left_available;
expected_udc = (Uaverage + (1 << (shift - 1))) >> shift;
expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift;
}
/*vpx_memset(upred_ptr,expected_udc,64);*/
/*vpx_memset(vpred_ptr,expected_vdc,64);*/
for (i = 0; i < 8; i++)
{
vpx_memset(upred_ptr, expected_udc, 8);
vpx_memset(vpred_ptr, expected_vdc, 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
}
}
break;
case V_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memcpy(upred_ptr, uabove_row, 8);
vpx_memcpy(vpred_ptr, vabove_row, 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
}
}
break;
case H_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memset(upred_ptr, uleft_col[i], 8);
vpx_memset(vpred_ptr, vleft_col[i], 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
}
}
break;
case TM_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
int predu = uleft_col[i] + uabove_row[j] - utop_left;
int predv = vleft_col[i] + vabove_row[j] - vtop_left;
if (predu < 0)
predu = 0;
if (predu > 255)
predu = 255;
if (predv < 0)
predv = 0;
if (predv > 255)
predv = 255;
upred_ptr[j] = predu;
vpred_ptr[j] = predv;
}
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
}
}
break;
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
#if CONFIG_I8X8
void vp8_intra8x8_predict(BLOCKD *x,
int mode,
unsigned char *predictor)
{
unsigned char *yabove_row = *(x->base_dst) + x->dst - x->dst_stride;
unsigned char yleft_col[8];
unsigned char ytop_left = yabove_row[-1];
int r, c, i;
for (i = 0; i < 8; i++)
{
yleft_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride];
}
switch (mode)
{
case DC_PRED:
{
int expected_dc = 0;
for (i = 0; i < 8; i++)
{
expected_dc += yabove_row[i];
expected_dc += yleft_col[i];
}
expected_dc = (expected_dc + 8) >> 4;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = expected_dc;
}
predictor += 16;
}
}
break;
case V_PRED:
{
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = yabove_row[c];
}
predictor += 16;
}
}
break;
case H_PRED:
{
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = yleft_col[r];
}
predictor += 16;
}
}
break;
case TM_PRED:
{
/* prediction similar to true_motion prediction */
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
int pred = yabove_row[c] - ytop_left + yleft_col[r];
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
predictor[c] = pred;
}
predictor += 16;
}
}
break;
}
}
void vp8_intra_uv4x4_predict(BLOCKD *x,
int mode,
unsigned char *predictor)
{
unsigned char *above_row = *(x->base_dst) + x->dst - x->dst_stride;
unsigned char left_col[4];
unsigned char top_left = above_row[-1];
int r, c, i;
for (i = 0; i < 4; i++)
{
left_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride];
}
switch (mode)
{
case DC_PRED:
{
int expected_dc = 0;
for (i = 0; i < 4; i++)
{
expected_dc += above_row[i];
expected_dc += left_col[i];
}
expected_dc = (expected_dc + 4) >> 3;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = expected_dc;
}
predictor += 8;
}
}
break;
case V_PRED:
{
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = above_row[c];
}
predictor += 8;
}
}
break;
case H_PRED:
{
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = left_col[r];
}
predictor += 8;
}
}
break;
case TM_PRED:
{
/* prediction similar to true_motion prediction */
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
int pred = above_row[c] - top_left + left_col[r];
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
predictor[c] = pred;
}
predictor += 8;
}
}
break;
}
}
/* TODO: try different ways of use Y-UV mode correlation
Current code assumes that a uv 4x4 block use same mode
as corresponding Y 8x8 area
*/
#endif